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Abstract

The new economic geography literature provides a general equilibrium framework that explains the emergence of eco-
nomic agglomerations as a trade-off between increasing returns at the firm level and transportation costs related to the
shipment of goods. The existence and uniqueness of short-run equilibria of this model has been shown for the case of
two regions. The proposed approach employs the differential evolution algorithm to obtain estimates of the Lipschitz con-
stant and the infinity norm of the function along the boundary and utilizes these values to investigate the existence of solu-
tions of a function, and the computational burden of computing the topological degree of this function. This approach is
employed to investigate the existence of short-run equilibria for more than two regions using fixed point and topological
degree theory, as well as, the differential evolution algorithm. Irrespective of parameter settings the criteria from topolog-
ical degree theory suggest that the model can have equilibria. The differential evolution algorithm identified such equilibria
and for none of the parameter settings that were considered more than one equilibria were detected. The experimental
results obtained also indicate that the computation of such equilibria has an exponential worst-case lower bound complex-
ity, as the model yields a function that is neither contractive, nor nonexpanding. Finally, the computation of the topolog-
ical degree to identify the number of equilibria also has a very high computational cost.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

New Economic Geography has emerged from the long-existing need to explain concentrations of economic
activity. The distinction between the manufacturing sector and farm belts, the existence of cities, and the role of
industry clusters, are issues that come within the scope of the New Economic Geography. The literature in the
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field provides a general equilibrium framework in which agglomerations of manufacturing activity emerge due
to the trade-off between increasing returns at the firm level, and transportation costs [1]. We consider a standard
new economic geography model involving a finite number of regions [2,3], and two sectors in the economy: the
agricultural sector and the manufacturing sector. In this framework, economic equilibria refer to the allocation
of the factors of production (in the model the manufacturing labor force), and the set of prices, that arise by the
optimal behavior of firms and consumers and yield market clearing. Short-run equilibria of the model are char-
acterized by the fixed distribution of labor across regions, while in long-run equilibria the spatial adjustment of
workers is allowed. The present paper focuses on issues relating to the existence and the computational com-
plexity of locating short-run equilibria, which correspond to fixed points of a function.

Computing fixed points, or equivalently, solving systems of nonlinear equations has long been a topic of
great interest for researchers in the field of mathematics, engineering, economics, and many other professions.
Numerous problems such as finding an equilibrium, a zero point, or a fixed point, can be formulated as the
problem of finding a solution to an equation of the form F(x) = p in an appropriate space. Topological degree
theory provides means for examining this solution set and obtaining information about the existence of solu-
tions, their number and their nature. The Lipschitz constant of the function, as well as the value of the infinity
norm along the boundary of its domain, also provide information about the existence of solutions to the afore-
mentioned problem. These values are also employed to determine the computational cost of computing the
topological degree. The proposed approach relies on the approximation of the Lipschitz constant and the
infinity norm along the boundary using an evolutionary optimization algorithm, namely the differential evo-
lution algorithm. In particular, we estimate the modulus of continuity of the function, which serves as a lower
bound for the Lipschitz constant. The differential evolution algorithm is employed as the approximation of
both the modulus of continuity and the infinity norm involve the minimization of a non-differentiable objec-
tive function. This approach is applied to investigate the existence, as well as, the computational complexity of
locating short-run equilibria, which correspond to fixed points of a function.

The rest of the paper is organized as follows: Section 2 outlines the basic notions associated with economic
geography and presents the model. Section 3 presents background material. Specifically, Section 3.1 outlines
the basic notions of topological degree theory and provides references to efficient methods for its computation.
In Section 3.2 algorithms for computing fixed points and their computational complexity, are discussed. The
differential evolution algorithm, is presented in Section 3.3. Section 4 provides a detailed exposition of the pro-
posed approach. It describes criteria, based on the value of the Lipschitz constant and the infinity norm along
the boundary of the function, for the existence of solutions and discusses the corresponding complexity of
computing the topological degree. In Section 5 the obtained experimental results are discussed, and the paper
ends with conclusions.

2. Economic geography

Lately the increasing interest in the field of economic geography has attracted numerous scientists from var-
ious disciplines ranging from economics to regional science and geography. There is no doubt that the building
of the European Union and the several policy issues which come along have contributed to boost interest in
the field. Space has always been a concern in economics. If mainstream economics has rather neglected it dur-
ing the past, it is not so much because economists have been uninterested in the subject, but rather because it
has remained intractable for a long time. Modeling tools that had been developed to analyze industrial orga-
nization, international trade, and economic growth, have allowed us to overcome technical problems arising
when dealing with imperfect competition in a general equilibrium framework [1,2]. The literature in the field of
New Economic Geography provides a general equilibrium framework explaining the emergence of economic
agglomerations as a trade-off between increasing returns at the firm level and transportation costs related to
the shipment of goods. This means that this literature provides economic motives for agglomeration rather
than assuming that some regions are more productive than others ex ante. Recent work in the field has incor-
porated additional economic concerns into the analysis (e.g. capital, welfare analysis, expectations), while at
the same time, an empirical literature testing the theory with data has emerged.

The main ingredients of the new economic geography are transportation costs, and the interaction of market
size with increasing returns which creates a cumulative process in which larger markets attract additional eco-
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nomic activity. A central feature of the models in the literature is that a higher taste for product variety, a larger
share of the manufacturing expenditure, and lower transportation costs, favor the emergence of agglomerations
(e.g. spatial concentration of economic activities). We consider a standard new economic geography model
involving a finite number of regions, see [2,3]. This model can be viewed as an extension of Krugman’s core-
periphery model [1] to the case of a spatial economy consisting of N regions. As in Krugman’s original work,
there are two sectors in the economy. The agricultural sector employs farmers and produces a single homoge-
neous good under constant returns to scale. The manufacturing sector employs workers and produces a differ-
entiated good, giving rise to manufacturing varieties. Consumers (workers and farmers) buy the agricultural
good on a perfectly competitive national market and manufacturing varieties on monopolistically competitive
regional markets. In addition, transporting manufacturing varieties from their production location to where
they are consumed, is costly. Economic equilibria define economic allocations and prices derived from optimal
behaviors of firms and consumers that are compatible with market clearing. On the one hand, short-run equi-
libria are obtained under the assumption of no spatial adjustment. These short-run equilibria are thus viewed as
implicitly determined by some given spatial distribution of labor. On the other hand, long-run equilibria refer to
steady states of a spatial economy where workers are allowed to adjust their location over time. In the case of a
spatial economy consisting of two regions, a short-run equilibrium has been shown to exist and to be unique [4],
while the number and stability of steady states have also been studied [2]. However, for the case of three or more
regions, no analytical result concerning short- or long-run equilibria has been derived so far.

In this paper we focus on short-run equilibria. Regions are denoted by i = 1, . . . ,N. Assume a spatial dis-
tribution of labor Li across these regions. The proportion of the labor force in region i is denoted by
ki ¼ Li=

PN
j¼1Lj. The variables of the model are yi, hi, and wi respectively the income, the manufacturing price

index and the manufacturing wage in region i. The system of equations defining short-run equilibria of the
spatial economy can be written in the following reduced form:
yi ¼ ð1� lÞ=N þ lkiwi;

hi ¼
XN

j¼1

kjw
ð1�rÞ
j exp �sðr� 1Þdði; jÞ½ �

( )�1=ðr�1Þ

;

wi ¼
XN

j¼1

yjh
ðr�1Þ
j exp �sðr� 1Þdði; jÞ½ �

( )1=r

;

ð1Þ
where
d(i, j) distance between locations i and j

r > 1 elasticity of substitution among manufacturing varieties
l 2 (0,1) share of manufacturing expenditure
s > 0 transportation cost per unit of distance for manufacturing goods

The final equation of the system in Eq. (1) corresponds to the level of nominal wages at which manufac-
turing in region i breaks even. Throughout the remaining paper we refer to this equation as fi(w) to avoid con-
fusing notation when referring to the fixed point problem f = w, or the zero point problem f � w = 0.

3. Background material

3.1. The topological degree and its computation

This subsection is devoted to a brief presentation of topological degree theory to determine the exact num-
ber of zeros of a system of nonlinear transcendental equations. This is achieved by computing the value of the
topological degree using Kronecker’s integral [5] on Picard’s extension [6,7]. Assume a function
F n ¼ ðf1; f2; . . . ; fnÞ : Dn � Rn ! Rn, which is defined and twice continuously differentiable in an open and
bounded domain Dn of Rn with boundary #Dn. Further suppose that the zeros of the equation Fn(x) = p,
where p 2 Rn is a given vector, are not located on #Dn, and that they are simple, i.e. the determinant,
det J F n , of the Jacobian matrix of Fn at these points is non-zero.
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Definition. The topological degree of Fn at p relative to Dn is denoted by deg½F n;Dn; p� and is defined by the
following sum:
deg½F n;Dn; p� ¼
X

x2F�1
n ðpÞ\Dn

sgnðdet J F nðxÞÞ; ð2Þ
where sgn(w) stands for the three valued sign function.

The topological degree is invariant under changes of the vector p in the sense that, for any q 2 Rn, it holds
that: deg½F n;Dn; p� � deg½F n � q;Dn; p � q�; where Fn � q denotes the mapping Fn(x) � q, x 2 Dn [8, p. 157].
We thus consider only the case where the topological degree is defined at the point Hn = (0, . . . , 0) in Rn.

The topological degree deg½F n;Dn;Hn� can be represented by the Kronecker integral which is defined as
deg½F n;Dn;Hn� ¼
Cðn=2Þ
2pn=2

Z Z
#Dn

� � �
Z Pn

i¼1Ai dx1 � � � dxi�1 dxiþ1 � � � dxn

ðf 2
1 þ f 2

2 þ � � � þ f 2
n Þ

n=2
; ð3Þ
where Ai denote the following determinants:
Ai ¼ ð�1Þnði�1Þ det F n
oF n
ox1
� � � oF n

oxi�1

oF n
oxiþ1

� � � oF n
oxn

h i
; ð4Þ
where, oF n
oxk
¼ ðof1

oxk
; of2

oxk
; . . . ; ofn

oxk
Þ is the kth column of the determinant det J F n of the Jacobian matrix J F n . The topo-

logical degree can be generalized when the function is only continuous [8]. In this case, Kronecker’s theorem
[8] states that Fn(x) = Hn has at least one zero in Dn if deg½F n;Dn;Hn� 6¼ 0.

Eq. (2) states that deg½F n;Dn;Hn� is equal to the number of zeros of Fn(x) = Hn that give positive determi-
nant of the Jacobian matrix minus the number of zeros that give negative determinant of the Jacobian matrix.
The total number Nr of zeros of Fn(x) = Hn would therefore be equal to the value of deg½F n;Dn;Hn� if the
determinant of the Jacobian matrix at all these zeros yielded the same sign. Recall that all the zeros of
Fn(x) = Hn are assumed to be simple. To this end, Picard proposed the following extension of the function
Fn and the domain Dn:
F nþ1 ¼ ðf1; . . . ; fn; fnþ1Þ : Dnþ1 � Rnþ1 ! Rnþ1;
where fnþ1 ¼ y det J F n , and Dnþ1 is the direct product of the domain Dn with an arbitrary interval of the real y-
axis containing the point y = 0. The zeros of the following system of equations:
fiðx1; x2; . . . ; xnÞ ¼ 0; i ¼ 1; . . . ; n;

y det J F nðx1; x2; . . . ; xnÞ ¼ 0
ð5Þ
are, therefore, identical with the zeros of Fn(x) = Hn provided that y = 0. Furthermore, the determinant of the
Jacobian matrix of (5) is equal to ½det J F nðxÞ�

2 which is always nonnegative, and positive at the simple zeros.
We may thus conclude:

Theorem [7]. The total number Nr of zeros of Fn(x) = Hn is given by
Nr ¼ deg½F nþ1;Dnþ1;Hnþ1�; ð6Þ

under the hypotheses that Fn is twice continuously differentiable and that all the zeros are simple and lie in the

strict interior of Dnþ1.

Several methods for the computation of the topological degree have been proposed [5,9,10]. These methods
are based on Stenger’s method that is an almost optimal complexity algorithm for a number of classes of func-
tions [10].

3.2. Fixed points and their computation

The development of fixed point algorithms has been an intensive research area since 1922 when Banach in
his famous dissertation proposed the simple iteration algorithm [8,10,11]
xkþ1 ¼ F nðxkÞ; k ¼ 0; 1; . . . ð7Þ
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which for a function F n : Dn � Rn ! Rn which is contractive on a closed set Qn � Dn and that F nðQnÞ � Qn,
converges to the unique fixed point x� 2 Qn for any arbitrary starting point x0 2 Qn [8]. For Lipschitz functions
Fn with constant L < 1 and large dimension n the iteration algorithm (7) is optimal [10,12,13] and requires
m = dlog2(e�1)/log2(L�1)e function evaluations to compute the approximation ~x of the fixed point x* such that
k~x� x�k2 6 ekx�k2 (see [10]).

Numerous algorithms have been proposed since Banach’s algorithm, including homotopy continuation,
simplicial and Newton type methods [14–17]. The latter algorithms, for Lipschitz functions with constant
L > 1 with respect to the infinity norm, exhibit exponential complexity in the worst case when computing e-
residual approximation ~x : kF nð~xÞ � ~xk1 6 e, (that is the computed approximation ~x satisfies the residual cri-
terion kF nð~xÞ � ~xk1 6 e where e > 0) and that the lower bound on the complexity is also exponential [18].
On the other hand, the computation of fixed points of a function that is contractive (L < 1) is a commonly
encountered problem in numerical computation (for nonlinear problems and large scale linear systems). More-
over, fixed points of contractive, or nonexpanding (L = 1), functions appear in numerous fields including eco-
nomics, game theory (especially ergodic games), meromorphic functions, nonlinear differential equations and
dynamical systems. In the study of dynamical systems with two degrees of freedom, such fixed point (periodic
orbits) problems model conservative or dissipative systems depending on whether the mapping is area-preserv-
ing or area-contracting, respectively (see [19–27]).

Several algorithms for approximating a fixed point, x*, of a Lipschitz function that is contractive or non-
expanding with respect to the second norm have been developed [10,28,29]. An efficient method for the com-
putation of fixed points is the interior ellipsoid method [10,28,30]. In the nonexpanding case and moderate
dimensions n the interior ellipsoid algorithm is optimal [28]. This algorithm requires m = cn log(e�1) function
evaluations to compute an e-residual approximation ~x : kF nð~xÞ � ~xk2 6 e. Notice that the worst-case complex-
ity of computing an e-absolute approximation ~x : k~x� x�k2 6 e for the nonexpanding case is infinite [10]. This
means that there exists no algorithm based on function evaluations that solves this problem for all functions in
this class. For the contractive case the interior ellipsoid algorithm computes ~x : k~x� x�k 6 e within
m = cn(log(e�1) + log((1 � L)�1)) function evaluations. A recently proposed algorithm named PFix for
approximating a fixed point of a function Fn, where Fn has arbitrary dimensionality, is defined on a rectangu-
lar domain, and is Lipschitz continuous with respect to the infinity norm with constant one, has been pre-
sented in [31]. This algorithm computes an approximation that satisfies the residual error criterion, and can
also compute an approximation satisfying the absolute error criterion when the Lipschitz constant is less than
one. Furthermore it is a recursive algorithm, in that it uses solutions to an n-dimensional problem to compute
a solution to an (n + 1)-dimensional problem.

3.3. Differential evolution algorithm

The differential evolution algorithm (DE) [32,33] is a population-based stochastic optimization algorithm
that exploits a population of potential solutions, called individuals, to probe the search space. New individuals
are generated by the combination of randomly chosen individuals from the existing population. An operation
which is called mutation in the context of DE. Specifically, for each individual xk

g, k = 1, . . . ,NP, where g

denotes the index of the current generation, a new individual vi
g, called mutant individual, is generated accord-

ing to one of the equations below:
vi
g ¼ xbest

g þ lðxr1
g � xr2

g Þ; ð8Þ
vi

g ¼ xr1
g þ lðxr2

g � xr3
g Þ; ð9Þ

vi
g ¼ xi

g þ lðxbest
g � xi

gÞ þ lðxr1
g � xr2

g Þ; ð10Þ
vi

g ¼ xbest
g þ lðxr1

g � xr2
g Þ þ lðxr3

g � xr4
g Þ; ð11Þ

vi
g ¼ xr1

g þ lðxr2
g � xr3

g Þ þ lðxr4
g � xr5

g Þ; ð12Þ
where, xbest
g is the best member of generation g; l > 0 is a real parameter, called mutation constant, which con-

trols the amplification of the difference between two individuals so as to avoid the stagnation of the search
process; and r1, r2, r3, r4, r5 2 {1,2, . . . ,k � 1,k + 1, . . . ,NP}, are mutually different random integers, different
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from the running index k. To further increase the diversity of the mutant individuals, they are combined with
other predetermined individuals – the target individuals – through an operation known as recombination – to
produce trial individuals. At the recombination stage, for each component l (l = 1,2, . . . ,D) of the mutant indi-
vidual vk

g, a random real number r in the interval [0, 1] is drawn and compared to the recombination constant,
q. If r 6 q, then the lth component of the trial individual uk

g is set equal to the lth component of the mutant
individual vk

g. Otherwise, the lth component of the target vector, xk
g, becomes the lth component of the trial

vector. After the completion of recombination the trial individuals are subjected to selection. Each trial indi-
vidual, uk

g, is accepted for the next generation, if and only if, it yields a reduction in the value of the error func-
tion relative to the individual of the previous generation, xk

g. Otherwise, xk
g, is retained at the next generation.

4. The proposed approach

An approach for the investigation of the existence of roots requires the value of the Lipschitz constant of
the function, as well as, the infinity norm of the function along the boundary of Dn [10,34,35]. These values are
also relevant for the estimation of the computational burden, in terms of required function evaluations, for the
computation of the topological degree of the function. The value of the topological degree, under certain con-
ditions, provides information regarding the existence of roots. Moreover, by properly extending the function
and the corresponding domain, the value of the topological degree gives the number of simple roots of the
function, within the interior of Dn.

Consider the class F of Lipschitz functions with Lipschitz constant L, defined on the n-dimensional unit
hypercube C,
F n ¼ ðf1; f2; . . . ; fnÞ : C � Rn ! Rn;
such that for every F n 2F we have
kF nðxÞk1 P d > 0
for all x 2 #C, where #C denotes the boundary of C. Then, the following existence criteria hold [10]:
ðiÞ if L=ð2dÞP 4; then the function F n may have zeros in C;

ðiiÞ if L=ð2dÞ < 1; then the function F n does not have any zeros in C:

�
ð13Þ
The case 1 6 L/(2d) < 4 remains an open problem [10].
Furthermore, using the values of L and d, Boult and Sikorski proved in [34] that the topological degree can

be computed using
A ¼ L
2d
þ 1

� �
þ 1

� �n

� L
2d
þ 1

� �
� 1

� �n

; ð14Þ
function evaluations for every F n 2F, n P 2. This can be achieved through an algorithm due to Kearfott [36],
with cost given by A(c + (n2/2)(n � 1)!), where c is the cost of each function evaluation, while the cost of
elementary arithmetic operations and comparisons is unity. Thus, for a small n, e.g. n 6 5, and a small value
of L/(2d), e.g. L/(2d) 6 9, the degree can be computed in time at most 105(c + 300). For large n and/or large
L/(2d) the problem is intractable [10,34]. The Lipschitz constant can also be used for the determination of the
complexity of the fixed point problem, in the case of the residual error criterion, in the class of functions
F n : C! C, satisfying the Lipschitz condition with Lipschitz constant L > 1 [10,18].

In numerous cases, the parameters d and L are not a priori known, and their estimation is a computation-
ally heavy task [35,37]. In this paper, DE is used to estimate the parameter d and the Lipschitz constant, L, of a
function, to infer conclusions regarding the existence of roots and estimate the computational burden, in terms
of the required function evaluations, for the computation of the topological degree. DE is a population-based
optimization method, that requires function values solely. Consequently, in general, neither derivatives nor an
analytic representation of the function is needed.

As previously mentioned, the values of main interest that have to be computed, are
d ¼ min
x2#Dn

kF nðxÞk1 ð15Þ
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and
L ¼ max
x6¼y

x;y2Dn

kF nðxÞ � F nðyÞk1
kx� yk1

; ð16Þ
where Dn is an n-dimensional polyhedron. The value L can be estimated by performing the maximization of
the corresponding fraction on x, with y being randomly selected at each evaluation of the fraction, following a
uniform distribution. Alternatively, one can estimate the modulus of continuity of Fn on Dn
xðF n; tÞ ¼ supfkF nðxÞ � F nðyÞk; for x; y 2 Dn; and kx� yk 6 tg: ð17Þ

Note that if Fn is Lipschitz for some real number L and for all x; y 2 Dn then we immediately have
xðF n; tÞ 6 Lt: ð18Þ

In the proposed approach, DE is employed to compute d, through consecutive optimization on the boundary
of the domain under consideration. Moreover, L is estimated by approximating the modulus of continuity,
Eq. (17). In general DE has proved to be considerably noise-tolerant. The procedure for the estimation of
the modulus of continuity can be considered, in regions of small size, as a noisy optimization procedure with
noise proportional to the value of the function.

Obviously, the estimates d 0 and L 0, of d and L, respectively, which are obtained through the aforementioned
procedures, will differ from their actual values. Since the value of d is computed through a minimization pro-
cedure with a prespecified accuracy, where d is the global minimum, it holds that d 0 P d. Similarly, the
obtained estimate, L 0, of the Lipschitz constant, will be L 0 6 L (as shown in Eq. (18)), i.e., there will always
be an underestimation of L and an overestimation of d. However, if
L0

2d0
P 4
for the computed values in the unit hypercube, then, the function may have roots (c.f. criterion in (13)), since
4 6
L0

2d0
6

L
2d
:

Thus, the proposed approach can provide valuable information regarding the existence of roots of functions
with unknown Lipschitz constant and infinity norm along the boundary. We recall that in the case of
L 0/(2d 0) < 4, conclusions cannot be derived. Furthermore, the quantity
Â ¼ L0

2d0
þ 1

� �
þ 1

� �n

� L0

2d0
þ 1

� �
� 1

� �n

ð19Þ
constitutes a lower bound on the number of function evaluations, A, required for the computation of the topo-
logical degree, as defined in Eq. (14), since A is non-decreasing with respect to L/(2d).

5. Presentation of experimental results

To obtain an estimate for the modulus of continuity (which in turn is used to obtain a lower bound of the
Lipschitz constant, L) and also to approximate the infinity norm along the boundary, d, of the function we
employ the DE algorithm. The domain of the function FN of Eq. (1) is determined by the requirement of
the economic geography model to have the sum of nominal wages across regions constant
XN

j¼1

kjxi
j ¼ 1;
where, xi denotes the ith DE individual, and xi
j; j ¼ 1; . . . ;N stands for the nominal manufacturing wage at

region j, wj. As DE is an unconstrained optimization algorithm, we employ the following normalization to the
individuals, xi, to evaluate FN
xi
p ¼ kxik

Xmi

j¼1

kkjxi
jk

,
;
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where mi is the number of regions. Note that this normalization is used only when evaluating the individuals
and not to constraint the population of the algorithm in the domain of the function. If the normalized indi-
viduals, xi

p, replace the original individuals, xi, our experience suggests that the diversity of the population de-
creases drastically which can cause the premature convergence of the algorithm. To evaluate the fitness
function for the case of computing the modulus of continuity, for each DE individual (xi), 1000 random points
within a fixed range, t = 0.1, from xi (using as a distance metric the infinity norm) are generated. The fitness
function for each individual, xi, is an estimate of the negative of the modulus of continuity in the neighbor-
hood of the individual
Table
Estima

Param

l

0.513
0.840
0.304
0.121
0.449
�max
rj
fkF ðxiÞ � F ðrjÞk1g; j ¼ 1; . . . ; 1000;
where rj, j = 1, . . . , 1000 represents a random point within the specified distance from the individual xi. The
global minimum of this fitness function corresponds to minus the modulus of continuity.

At a first step, we investigated whether the Lipschitz constant of the function FN is lower than unity for a
number of parameter settings. Employing the DE algorithm to compute the modulus of continuity for a num-
ber of parameter settings, and for three to five regions equidistributed along the unit circle, the obtained results
for all instances of the problem yielded a lower bound on the Lipschitz constant substantially larger than one.
As previously mentioned, fixed point algorithms for Lipschitz functions with constant L > 1 with respect to
the infinity norm, exhibit exponential complexity in the worst case when computing e-residual approximation.
Next we investigate whether the criteria from topological degree theory can provide information concerning
the existence of equilibria and estimate the computational complexity associated with the computation of the
degree for this type of functions. Since short-run equilibria correspond to fixed points of Eq. (1), while the
topological degree of a function provides information concerning the number of simple zeros of a function
in a domain, we transform the fixed point problem to a root finding problem through the following
manipulation:
GN ¼ ðfiðwÞ � wi; . . . ; fN ðwÞ � wN Þ; ð20Þ

where fi(w) and wi are as in Eq. (1). To obtain a lower bound for the Lipschitz constant we estimate through
DE the modulus of continuity x 0(GN, t) for fixed t = 0.1, and from Eq. (18) we have L 0 P x 0(GN, t)/t. In Tables
1–3 the results obtained for the case of three to five regions are summarized. Note that due to space limita-
tions, all entries in the tables are rounded to three decimal places.

In all the conducted numerical experiments the ratio L 0/2d 0 exceeded the value of four, indicating that the
function under consideration may have roots (Eq. (13)). The existence of zeros of the function for different
parameter settings has been verified through their computation using the DE algorithm. A point was consid-
ered a short-run equilibrium if kGNk1 6 10�6. Due to space limitations, only a small sample of the parameter
settings tested and the corresponding short-run equilibria are reported in Tables 4–6. For each parameter set-
ting the DE algorithm was executed ten times. It is important to note that DE did not locate more than one
equilibria for all the parameter settings considered, indicating that the fixed point of the short-run economic
geography model might be unique.

As illustrated in Tables 1–3 the ratio L 0/(2d 0) assumes large values sometimes even exceeding the threshold
of nine. Hence, the computation of the number of short-run equilibria of the economic geography model
through the computation of the topological degree of the function GN is a computationally hard task, as sug-
1
tion for the infinity norm along the boundary and the Lipschitz constant for the three-region model

eter setting d0 L 0

r s k1 k2 k3

4.288 2.043 0.245 0.462 0.292 2.558 32.990
4.386 2.538 0.477 0.267 0.254 2.538 36.835
4.021 2.870 0.382 0.166 0.450 2.071 48.522
1.503 2.637 0.350 0.361 0.288 2.413 11.963
1.680 2.171 0.651 0.140 0.208 1.840 18.343



Table 2
Estimation for the infinity norm along the boundary and the Lipschitz constant for the four-region model

Parameter setting d 0 L 0

l r s k1 k2 k3 k4

0.709 3.606 1.404 0.262 0.404 0.261 0.070 2.150 13.500
0.735 3.224 2.744 0.238 0.155 0.339 0.266 2.128 45.349
0.765 4.536 2.013 0.204 0.471 0.212 0.111 2.245 35.344
0.625 2.526 2.370 0.239 0.083 0.323 0.353 2.022 36.120
0.071 3.883 1.815 0.334 0.298 0.021 0.344 2.040 20.109

Table 3
Estimation for the infinity norm along the boundary and the Lipschitz constant for the five-region model

Parameter setting d 0 L 0

l r s k1 k2 k3 k4 k5

0.851 2.512 1.889 0.192 0.207 0.182 0.353 0.066 2.143 27.925
0.423 3.299 2.284 0.147 0.221 0.098 0.124 0.410 2.218 43.522
0.889 3.358 2.373 0.128 0.283 0.023 0.181 0.386 2.043 45.992
0.490 1.912 2.649 0.249 0.246 0.214 0.141 0.149 2.274 17.106

Table 4
Short-run equilibria for the three-region model

Parameter settings Equilibrium point

l r s k1 k2 k3 w1 w2 w3

0.277 1.230 2.841 0.203 0.367 0.428 1.053 0.995 0.978
0.803 2.781 2.289 0.357 0.316 0.325 0.932 1.053 1.022
0.907 1.492 2.611 0.458 0.095 0.445 1.021 0.814 1.017
0.719 4.679 2.178 0.353 0.403 0.242 0.942 0.825 1.374
0.898 1.303 2.135 0.257 0.393 0.348 0.934 1.038 1.005
0.060 3.524 2.380 0.357 0.316 0.325 0.931 1.054 1.022
0.776 4.383 2.509 0.357 0.316 0.325 0.931 1.054 1.022
0.348 3.115 2.737 0.353 0.403 0.242 0.942 0.825 1.373
0.798 1.976 2.433 0.458 0.095 0.445 0.883 2.035 0.897
0.803 3.575 2.55 0.458 0.095 0.445 0.728 3.470 0.748
0.871 1.600 2.402 0.357 0.316 0.325 1.000 0.999 0.999

Table 5
Short-run equilibria for the four-region model

Parameter settings Equilibrium point

l r s k1 k2 k3 k4 w1 w2 w3 w4

0.984 4.886 2.678 0.211 0.261 0.272 0.254 1.184 0.955 0.917 0.981
0.757 2.152 2.570 0.155 0.161 0.311 0.372 1.379 1.389 0.867 0.783
0.325 2.487 2.572 0.211 0.261 0.272 0.254 1.175 0.958 0.919 0.983
0.903 2.493 2.688 0.155 0.161 0.311 0.372 1.442 1.442 0.847 0.751
0.931 2.323 2.785 0.087 0.322 0.185 0.403 1.600 0.954 1.132 0.844
0.066 1.294 2.712 0.211 0.261 0.272 0.254 1.033 0.996 0.975 1.002
0.610 4.691 2.576 0.155 0.161 0.311 0.372 1.612 1.550 0.802 0.671
0.682 2.844 2.597 0.155 0.161 0.311 0.372 1.581 1.535 0.809 0.685
0.720 2.305 2.168 0.103 0.337 0.141 0.418 1.508 0.929 1.311 0.826
0.769 3.451 2.027 0.155 0.161 0.311 0.372 1.563 1.527 0.813 0.693
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gested by the lower bound on the number of function evaluations (Eq. (14)) that has been suggested by Boult
and Sikorski [34].



Table 6
Short-run equilibria for the 5-region model

Parameter settings Equilibrium point

l r s k1 k2 k3 k4 k5 w1 w2 w3 w4 w5

0.839 4.458 2.778 0.154 0.163 0.231 0.214 0.236 1.296 1.224 0.864 0.931 0.847
0.965 3.398 2.112 0.282 0.145 0.176 0.148 0.246 0.837 1.148 1.154 1.167 0.887
0.980 3.962 2.426 0.282 0.145 0.176 0.148 0.246 0.750 1.289 1.148 1.288 0.834
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6. Conclusions

The new economic geography literature provides a general equilibrium framework that explains the emer-
gence of economic agglomerations. The existence and uniqueness of short-run equilibria of this model has
been shown for the case of two regions. In this paper we applied criteria from the theory of fixed points
and that of topological degree to investigate the existence and the computational complexity of computing
short-run equilibria of a model of a spatial economy consisting of three to five regions. The criteria employed
make use of the Lipschitz constant, or alternatively the modulus of continuity, and the infinity norm along the
boundary of the domain, of the function. The proposed approach employs the differential evolution algorithm
to obtain an estimate of these quantities as their approximation involves the minimization of non-differentia-
ble objective functions. The obtained experimental results for a number of different parameter settings of the
model suggest that the function is neither contractive, nor nonexpanding. The complexity of computing e-
residual approximations to fixed points of Lipschitz functions with constant L > 1, with respect to the infinity
norm, is exponential in the worst case. For all the parameter settings tested, the existence criteria from topo-
logical degree theory state the function can have zeros in the domain under consideration. However, the esti-
mated Lipschitz constants and infinity norms along the boundary indicate that the computation of the
topological degree for this type of problems is computationally very demanding. The application of the dif-
ferential evolution algorithm to obtain short-run equilibria suggests that such points exist. For each parameter
setting a number of executions of the algorithm were performed to investigate whether more than one equi-
libria can be located. This was not the case for all the considered parameter settings, suggesting that the equi-
librium might be unique for a spatial economy with more than two regions.
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