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Abstract. We present an improved method for locating periodic orbits of a dynamical system of
arbitrary dimension. The method first employs the characteristic bisection method (CBM) to roughly
locate a periodic orbit, followed by the quadratically convergent Newton method to rapidly refine its
position. The method is applied to the physically interesting example of the two degrees of freedom
photogravitational problem, and shown to surpass the CBM algorithm and Newton’s method alone.
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1. Introduction

In the effort to understand the structure of the solutions of a non-integrable dynam-
ical system, numerical determination of its periodic solutions and their stability
properties plays a role of fundamental importance. The fact that for most dynamical
systems the periodic orbits are dense in the set of all possible solutions, at least in
certain parts of the phase space, necessitates the presence of an efficient numerical
method for their determination. Traditional iterative schemes such as Newton’s
method and related classes of algorithms often fail to converge to a specific periodic
solution, since their convergence depends strongly on the initial guess, while there
exist several solutions close to each other.

In this paper we propose an efficient method for the rapid computation of a
periodic orbit with certainty. First, the method utilizes the characteristic bisec-
tion (CHABIS) method, which exploits the topological degree theory to locate a
periodic orbit within relatively large regions of initial conditions (Vrahatis, 1988,
1995). Then, when the orbit is located with modest accuracy, sufficient for the loc-
ation to be used as initial guess so that the conditions of convergence of Newton’s
method are satisfied, the method computes the orbit utilizing Newton’s method.
Our approach is based on the Poincaré map � on a surface of section. We say that
x = (x1, . . . , xn) is a fixed point or a periodic orbit of � if �(x) = x and a periodic
orbit of period p if:

x = �p(x) ≡ �(�(· · · (�(x)) · · · ))︸ ︷︷ ︸
p times

. (1)
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From the above it is evident that the problem of computing a periodic orbit is
equivalent to the problem of evaluating a fixed point of the Poincaré map.

In this paper, we use our approach to compute efficiently and rapidly periodic
orbits of the well-known photogravitational restricted circular three-body problem,
described by Radzievskii (1950).

The paper is organized as follows. In the next section, we present the proposed
method for computing within a given box in the surface of section periodic orbits
of a given period. In Section 3, we briefly present the photogravitational problem.
In Section 4, we apply the proposed method to the computation of periodic orbits
of the photogravitational problem. The paper ends with some concluding remarks.

2. The Proposed Method

In this section, we describe the proposed method (CHABISNEWT), which is based
on the characteristic bisection (CHABIS) and Newton’s (NEWT) method.

Many problems in different areas of science and technology can be reduced to
a study of a set of solutions of a system of nonlinear equations of the form:

F(X) = 0, (2)

in an appropriate space. Topological degree theory has been developed as means of
examining this solution set and obtaining information on the existence of solutions,
their number and their nature. This theory is widely used in the study of nonlinear
differential (ordinary and partial) equations. It is useful, for example, in bifurcation
theory and for providing information about the existence and stability of periodic
solutions of ordinary differential equations as well as the existence of solutions of
certain partial differential equations. Several of these applications involve the use
of various fixed point theorems which can be provided by means of topological
degree (Cronin, 1964; Lloyd, 1978; Vrahatis, 1989; Vrahatis, 1995; Vrahatis et al.,
1996; Vrahatis et al., 1997; Mourrain et al., 2001).

Next, we will briefly discuss the characteristic bisection method based on the
characteristic polyhedron concept for the computation of periodic orbits. The prob-
lem of finding periodic orbits of period p of dynamical systems in R

n+1 amounts to
fixing one of the variables, say xn+1 = const., and locating points X	 = (x	

1, x
	
2 , . . . ,

x	
n) on an n-dimensional surface of section 
t0 which satisfy the equation

�p(X	) = X	, (3)

where �p = Pt0 : 
t0 → 
t0 is the Poincaré map of the system. This is equivalent
to solving system (2) with F = (f1, f2, . . . , fn) = �p − In, where In is the n × n

identity matrix and 0 = (0, 0, . . . , 0) is the origin of R
n. It is well known that if

we have a function F, which is continuous in an open and bounded domain D and
the topological degree of F at 0 relative to D is not equal to zero, then there is
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at least one solution of system (2) within D. This criterion can be used, in com-
bination with the construction of a suitable n-polyhedron, called the characteristic
polyhedron, for the calculation of a solution contained in this region. This can
be done as follows. Let Mn be the 2n × n matrix whose rows are formed by all
possible combinations of −1 and 1. Consider now an oriented n-polyhedron �n,
with vertices Vk, k = 1, . . . , 2n. If the 2n ×n matrix of signs associated with F and
�n, S(F;�n), whose entries are the vectors

sgn F(Vk) = (sgn f1(Vk), sgn f2(Vk), . . . , sgn fn(Vk)), (4)

(where sgn denotes the well known three valued sign function), is identical to Mn,
possibly after some permutations of these rows, then �n is called the characteristic
polyhedron relative to F. Furthermore, if F is continuous, then, under some suitable
assumptions on the boundary of �n,

deg[F,�n, 0] =
∑

X∈F−1(0)∩ ◦
�n

sgn det JF(X) = ±1 �= 0, (5)

where deg[F,�n, 0] denotes the topological degree of F at 0 relative to �n,
◦
�n

determines the interior of �n and det JF(X) denotes the determinant of the Jacobian
matrix at X), which implies the existence of a periodic orbit inside �n.

To clarify the characteristic polyhedron concept we consider a function F =
(f1, f2). Each function fi , i = 1, 2, separates the space into a number of different
regions, according to its sign, for some regions fi < 0 and for the rest fi > 0,
i = 1, 2. Thus, in Figure 1(a) we distinguish between the regions where f1 < 0
and f2 < 0, f1 < 0 and f2 > 0, f1 > 0 and f2 > 0, f1 > 0 and f2 < 0.
Clearly, the following combinations of signs are possible; (−,−), (−,+), (+,+),
and (+,−). Picking a point, close to the solution, from each region we construct

Figure 1. (a) The polyhedron ABDC is noncharacteristic while the polyhedron AEDC is character-
istic. (b) Application of the characteristic bisection method to the characteristic polyhedron AEDC,
giving rise to the polyhedra GEDC and HEDC, which are also characteristic.
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a characteristic polyhedron. In this figure, we can perceive a characteristic and a
noncharacteristic polyedron �2. For a polyhedron �2 to be characteristic all the
above combinations of signs must appear at its vertices. Based on this criterion,
polyhedron ABDC does not qualify as a characteristic polyhedron, whereas AEDC
does.

Next, we describe the characteristic bisection method. This method simply
amounts to constructing another refined characteristic polyhedron, by bisecting a
known one, say �n, in order to determine the solution with the desired accuracy.
We compute the midpoint M of a 1-simplex, for example, 〈Vi ,Vj 〉, which ac-
counts for an one-dimensional edge of �n. The endpoints of this one-dimensional
line segment are vertices of �n, for which the corresponding coordinates of the
vectors, sgn F(Vi) and sgn F(Vj ) differ from each other only in one entry. We
call this 1-simplex proper 1-simplex. To obtain another characteristic polyhedron
�n∗ we compare the sign of F(M) with that of F(Vi) and F(Vj ) and substitute
M for that vertex for which the signs are identical. Subsequently, we reapply the
aforementioned technique to a different edge (for details we refer to Vrahatis, 1988;
Vrahatis, 1995). In particular, let 〈Vi ,Vj 〉 be a proper 1-simplex of �n and let
B = (Vi + Vj )/2 be its midpoint. We then distinguish the following three cases:

1. If the vectors sgn F(B) and sgn F(Vi) are identical B replaces Vi and the
process continues with the next proper 1-simplex.

2. If the vectors sgn F(B) and sgn F(Vj ) are identical then B replaces Vj and the
process continues with the next proper 1-simplex.

3. Otherwise the process continues with the next proper 1-simplex.

To fully comprehend the characteristic bisection method we illustrate in Fig-
ure 1(b), its repetitive operation on a characteristic polyhedron �2. Starting from
the edge AE we find its midpoint G and then calculate its vector of signs, which is
(−1,−1). Thus, vertex G replaces A and the new refined polyhedron GEDC, is
also characteristic. Applying the same procedure, we further refine the polyhedron
by considering the midpoint H of GC and checking the vector of signs at this point.
In this case, its vector of signs is (−1,−1), so that vertex G can be replaced by
vertex H . Consequently, the new refined polyhedron HEDC is also characteristic.
This procedure continues up to the point that the midpoint of the longest diagonal
of the refined polyhedron approximates the root within a predetermined accuracy.

Consider the characteristic n-polyhedron, �n, whose longest edge length is
�(�n). The minimum number ζ of bisections of the edges of �n required to obtain
a characteristic polyhedron �n∗ whose longest edge length satisfies �(�n∗) � ε, for
some accuracy ε ∈ (0, 1), is given by

ζ = ⌈
log2(�(�n) ε−1)

⌉
. (6)

Notice that ζ is independent of the dimension n, implying that the bisection al-
gorithm performs the same number of iterations as the bisection in one-dimension,
which is optimal and asymptotically possesses the best rate of convergence
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(Sikorski, 1982). The characteristic bisection method is efficient for low dimen-
sions (say, n� 10). This is due to the fact that the starting box as well as the
characteristic polyhedron require 2n vertices.

The characteristic bisection method has been applied to numerous difficult prob-
lems (see e.g. Drossos et al., 1996; Waalkens et al., 1997; Burić and Mudrinić,
1998; Kalantonis et al., 2001; Vrahatis et al., 2001). The characteristic bisection
method is very useful in cases where the period of the periodic orbit is very high
and especially when the orbit is unstable, since the method always converges within
the initial specified region. Although this method computes a specific periodic orbit
with certainty, its convergence is not as rapid as that of Newton’s method, which is
known to be quadratic.

With the proposed method CHABISNEWT we improve the computational speed
of the characteristic bisection method by combining it with Newton’s method. This
is achieved as follows. First the characteristic bisection method locates the periodic
solution. Once the solution is located with a predetermined modest accuracy (2 to
3 decimal digits), sufficient for the conditions of convergence of Newton’s method
to be satisfied, we proceed to employ Newton’s method to compute the orbit with
full accuracy and quadratic convergence.

A periodic orbit can be determined by Newton’s method as follows: If (x0, ẋ0)

are the initial conditions of an orbit at t0 = 0, on the surface of section of the
Poincaré map for a certain value of the Jacobian constant C, then the periodicity
conditions that must be satisfied are:

x(x0, ẋ0) = x0, ẋ(x0, ẋ0) = ẋ0. (7)

Since these are not satisfied for an initial guess (x0, ẋ0) we consider corrections δx0

and δẋ0 such that:

x(x0 + δx0, ẋ0 + δẋ0) = x0 + δx0,

ẋ(x0 + δx0, ẋ0 + δẋ0) = ẋ0 + δẋ0. (8)

Expanding to first-order terms in the corrections, we obtain the corrector system:(
∂x

∂x0
− 1

)
δx0 + ∂x

∂ẋ0
δẋ0 = x0 − x,

∂ẋ

∂x0
δx0 +

(
∂ẋ

∂ẋ0
− 1

)
δẋ0 = ẋ0 − ẋ.

It is important here to recognize that the derivatives involved refer to isoenergetic
variations in accordance with the definition of the mapping of the Poincaré surface
of section into itself. We then write the above corrector in the form:

(a − 1)δx0 + bδẋ0 = x0 − x,

cδx0 + (d − 1) δẋ0 = ẋ0 − ẋ, (9)
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where a = ∂x/∂x0, b = ∂x/∂ẋ0, c = ∂ẋ/∂x0, and d = ∂ẋ/∂ẋ0 are the isoenergetic
stability indices of the mapping (Hénon, 1973). The stability indices a, b, c, and d

can be obtained with additional integrations but in this application we need high
accuracy and so we choose to compute them by integrating the equations of motion
simultaneously with the equations of variation and using the formulae of Markellos
(1976):

a = ∂x1

∂x01
+ ∂x1

∂x04
D4

1 + D4
3

(
∂x2

∂x01
+ ∂x2

∂x04
D4

1

)
,

b = ∂x1

∂x03
+ ∂x1

∂x04
D4

3 + D4
3

(
∂x2

∂x03
+ ∂x2

∂x04
D4

3

)
,

c = ∂x3

∂x01
+ ∂x3

∂x04
D4

1 − f10

x04

(
∂x2

∂x01
+ ∂x2

∂x04
D4

1

)
,

d = ∂x3

∂x03
+ ∂x3

∂x04
D4

3 − f10

x04

(
∂x2

∂x03
+ ∂x2

∂x04
D4

3

)
, (10)

where

f10 = f1(t = 0), D4
1 = 1

2x04

∂F

∂x01
, D4

3 = −x03

x04
.

In this manner the indices a, b, c, d are computed with the accuracy of the numer-
ical integration. The corrector is applied successively until the periodicity condi-
tions are satisfied with the desired accuracy. Newton’s method converges rapidly
but often needs a very good initial guess. In our proposed scheme this is provided
by the CHABIS method which is firstly applied until an accuracy sufficient for the
conditions of convergence of Newton’s method to be satisfied is achieved.

3. The Photogravitational Problem

Let us briefly describe the photogravitational restricted three-body problem
(Radzievskii, 1950). The system of equations that expresses the motion of the third
particle is the following:

ẍ = 2ẏ + ∂(

∂x
= f1,

ÿ = −2ẋ + ∂(

∂y
= f2, (11)

where

( = 1

2
(x2 + y2) + q1(1 − µ)

r1
+ q2µ

r2
, µ = m2

m1 + m2
,

r1 =
√
(x + µ)2 + y2, r2 =

√
(x + µ − 1)2 + y2,
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while (1−µ), µ represent the masses of the two main bodies with µ � 0.5 and q1,
q2 are parameters expressing the relations between the gravitation attraction and
the radiation pressure of each one of them, qi � 1, i = 1, 2. The Jacobian integral
of the above system is given by the following equation:

F(x, y, ẋ, ẏ) = (ẋ2 + ẏ2) − 2( = C, (12)

where C is the Jacobi (‘energy’) constant.

4. Numerical Results

We apply the proposed method to the restricted circular photogravitational three-
body problem described by Equations (11), for particular values of the parameters
q1 = 0.5, q2 = 1, and µ= 0.01214. To produce the surface of section of the prob-
lem, we take successive sections of an orbit with the straight line y = 0, along the
positive direction of the flow (ẏ > 0). Thus, the initial conditions are (x, 0, ẋ, ẏ)
where the value of ẏ is computed using Equation (12) for a given value of C. A
periodic orbit of period p intersects the x-axis 2p times and thereupon a p peri-
odic orbit is represented by p points in (x, ẋ) plane. To compute successively the
intersection points with the surface of section, we choose a value of the Jacobian
constant C and by keeping this value fixed we integrate numerically Equations (11)
(for details see Kalantonis et al., 2001). An example of a surface of section is shown
in Figures 2(a), (b) (for arbitrarily chosen Jacobian constant CL2 = −2.31058003).

For the specific surfaces of section shown in Kalantonis et al. (2001), we apply
and compare the methods described in Section 2 to the computation of periodic
orbits of the photogravitational problem with accuracy ε � 10−8.

Figure 2. (a) Surface of section points and the invariant curves of system 11 with parameters
q1 = 0.5, q2 = 1, and µ = 0.01214, for CL2 = −2.31058003, (b) magnification of box A.
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We find that the method of the characteristic polyhedron always converges to
the periodic solution (within any region that does not contain orbits whose period
is a sub-multiple of the period of the desired orbit). This means that the method
of the characteristic polyhedron can converge equally well to stable as well as to
unstable periodic orbits, independently of the initial guess.

A further advantage of the characteristic bisection method is the ease with which
we can distinguish the exact location of all periodic orbits of a given period, includ-
ing the unstable orbits. This can be achieved through the coloring of the surface
of the section. The coloring process works as follows. Suppose that the periodic
orbit under consideration is of period p. Denote the initial point by (x0, ẋ0). We
integrate the equations of motion, starting from (x0, ẋ0), up to the point that the
orbit intersects the x-axis 2p times. Let (x, ẋ) denote the point at the end of
the integration. We evaluate the signs of the following differences:

(x − x0) and (ẋ − ẋ0). (13)

Clearly, four combinations of signs are possible; namely (−,−), (−,+), (+,+),
and (+,−). Each one of these combinations corresponds to a different color. More
specifically, we color white the area that corresponds to the sign combination
(−,−), gray for (−,+), light gray for (+,+), and finally dark gray for (+,−).
To color the whole plane we select each point contained in the plane as the initial
point and apply the coloring procedure. At each point where the four different
colors meet, a periodic orbit (stable or unstable) exists.

Examples of the coloring procedure are exhibited in Figures 3(a), (b). These
figures correspond to the coloring of the Poincaré surface of section of Figure 2(b).
In Figure 3(a) the coloring procedure was applied to detect a 1-period periodic

Figure 3. Coloring the (x, ẋ) plane of system 11 with parameters q1 = 0.5, q2 = 1, and
µ = 0.01214, for CL2 = −2.31058003. The white color corresponds to the sign combination
(−,−), the gray to (−,+), the light gray to (+,+), and the dark gray to (+,−). (a) Locating a
1-period periodic orbit, (b) locating a 4-period periodic orbit.
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orbit, whereas in Figure 3(b) a 4-period periodic orbit was detected. In the later
figure the 1-period periodic orbit appears due to the fact that its period is a sub-
multiple of the period of the 4-period orbit.

In Figures 4(a)–(d) the application of the characteristic bisection method to
the photogravitational problem is illustrated. Starting with a polyhedron ABDC,
Figure 4(a), we examine whether it is characteristic or not. In the particular case
ABDC is not characteristic; this is easily verifiable by the fact that two vertices
of the box have the same color. To overcome this problem, we need to deter-
mine a new vertex that will contain the missing combination; such a vertex is E.
Having constructed a characteristic polyhedron we legitimately apply the method.
In Figure 4(b) we select the midpoint, F , of the largest edge, namely EC, and
examine the corresponding combination of signs at F . Since the combination at
F is identical to that in C (these two points have the same color), F substitutes
C giving rise to a new refined characteristic polyhedron, ABEF. Figures 4(c),
(d) exhibit two subsequent iterations of this method. Both GBEF and GHEF are
characteristic. Following this procedure the desired solution is successfully
captured.

Note that the application of the characteristic bisection method does not require
the coloring procedure. We utilized this procedure to illustrate the operation of the
method and to provide a visualization of the solution.

Newton’s method behaves quite differently, its convergence depending strongly
on the initial guess. We have found that the higher the period the smaller are the
regions of convergence (a smaller part of the region that does not contain orbits
whose period is a sub-multiple of the period of the desired orbit). Thus, for periodic
orbits of large period, it turns out that Newton’s method needs an initial guess
lying within a very small distance from the solution. Figure 5 exhibits examples of
the basins of convergence of Newton’s method. We observe that the convergence
properties of Newton’s method, depend on the multiplicity and the stability of the
periodic orbit. In Figure 6, we illustrate the typical performance of CHABIS and
Newton’s method. The basin of convergence of Newton’s method for the particular
36-period unstable periodic point is a small irregular area around it. On the other
hand CHABIS encloses a large region around the specific periodic point which
is determined by any box that does not contain another periodic point of a sub-
multiple or the same period.

A comparison of the three methods, namely CHABIS, Newton and CHABIS-
NEWT, is shown in Table I. First, we compute the periodic points of Table I using
CHABIS. We start with a box surrounding the fixed point (see box A of Figure 6)
and refine this box with CHABIS until the desired periodic point (x, ẋ) of period p

is found with accuracy ε � 10−8. The elapsed CPU time (integral part of seconds)
required for this computation is given as t1 in the table. Next, we have taken the
same starting boxes and used the centers of these boxes as initial guesses for
Newton’s method. The corresponding elapsed CPU time, for the convergence to the
same fixed points (x, ẋ), is given as t2. Note that for these starting values Newton’s
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Figure 4. Application of the characteristic bisection method to the photogravitational problem with
parameters q1 = 0.5, q2 = 1, and µ = 0.01214, for CL2 = −2.31058003. The white color
corresponds to the sign combination (−,−), the gray to (−,+), the light gray to (+,+), and the
dark gray to (+,−).

method has a rapid convergence to the specific fixed points. But in many cases and
in particular for high period points, Newton’s method does not converge. In our
new approach CHABISNEWT we have combined the advantages of CHABIS and
Newton’s method. This is evident in Table I since we have succeeded to compute
all the periodic orbits as CHABIS has done, but at the same time the convergence
was more rapid. An interesting fact is that in some cases CHABISNEWT is faster
even than Newton. This is due to the fact that in these cases Newton’s method did
not converge monotonically.

With CHABISNEWT method we first start with CHABIS in order to compute a
periodic point with a modest accuracy, say ε � 10−2. Then we utilize the obtained
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Figure 5. Basins of convergence of Newton’s method. The exact position of the periodic points is
marked by ×. (a) 1-period stable periodic point. (b) 13-period unstable periodic point. (c) 140-period
unstable periodic point.

estimate of the orbit as a starting value for Newton’s method. If, after one iter-
ation of Newton’s method a better approximation is not obtained we apply again
CHABIS method using the final characteristic polyhedron obtained by the previous
CHABIS application, in order to obtain a more accurate estimate, say ε � 10−3.
Then we apply again Newton’s method and so on. For the results exhibited in
Table I we have obtained convergence of Newton’s method in the CHABISNEWT
procedure for almost all cases when CHABIS applied with accuracy ε � 10−2.
But in some cases, such as the two cases of period 140 of Table I, the required
accuracy using CHABIS was ε � 10−4. Also, a surprising result was from a small
period point (x, ẋ) = (0.46640390, 0) of period 7 where the required accuracy
using CHABIS was ε � 10−4.
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Figure 6. A typical example showing the convergence properties of the CHABIS and Newton meth-
ods. The irregular gray area within box A represents the basin of convergence of Newton’s method
while the box A represents the basin of convergence of CHABIS. S4 indicates a 4-period stable
periodic orbit, S36 indicates a 36-period stable periodic orbit, and U36 indicates a 36-period unstable
periodic orbit.

TABLE I

Fixed points of periodic orbits of period p on the Poincaré surface of section for system (11)
using Jacobian constant CL2 = −2.31058003; CPU time t in seconds (integral part) required
for their computation within accuracy ε � 10−8 the method of CHABIS (t1), Newton’s method
(t2) and the proposed method CHABISNEWT (t3); NC indicates non-convergence; symmetry
identification Sym. (‘S’ denotes symmetry while ‘A’ denotes asymmetry)

p Fixed point (x, ẋ) t1 t2 t3 Sym.

1 (0.93717344, 0.00000000) 1 0 0 S

1 (1.11150338, 0.00000000) 1 0 0 S

1 (−2.10504200, 0.00000000) 1 0 0 S

1 (−0.18431881, 0.00000000) 1 0 0 S

1 (0.32311727, 0.00000000) 1 0 0 S

3 (0.16581940, 0.00000000) 3 0 0 S

3 (0.43782960, 0.00000000) 2 2 1 S

4 (−2.98416804, 0.00000000) 1 1 1 S

4 (−2.82606292, 0.05524204) 2 1 1 A

5 (−1.57785783, 0.00000000) 2 1 1 S

5 (−3.65008738, 0.00000000) 2 1 1 S

7 (−2.47322591, 0.00000000) 3 1 1 S

7 (−1.84329896, 0.00000000) 4 NC 1 S

7 (0.09075069, 0.00000000) 8 2 1 S
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TABLE I

(continued)

p Fixed point (x, ẋ) t1 t2 t3 Sym.

7 (0.46640390, 0.00000000) 7 NC 4 S

9 (−3.44436456, 0.00000000) 6 1 1 S

9 (−1.62423304, 0.00000000) 5 1 1 S

11 (−2.62914789, 0.00000000) 5 3 1 S

11 (−1.78051126, 0.00000000) 5 2 2 S

13 (−3.32141447, 0.00000000) 5 1 2 S

13 (−1.63525729, 0.00000000) 8 NC 2 S

17 (−3.27000405, 0.00000000) 6 4 3 S

17 (−1.64026111, 0.00000000) 8 NC 5 S

19 (−2.71020057, 0.00000000) 12 4 3 S

19 (−1.75442473, 0.00000000) 13 9 6 S

22 (−3.36990585, 0.00000000) 6 5 4 S

22 (−3.05346495, −0.07823604) 13 4 6 A

23 (−2.71984195, 0.00000000) 11 3 3 S

23 (−1.75154707, 0.00000000) 19 NC 7 S

25 (−1.59026031, 0.00000000) 11 3 3 S

25 (−1.56733859, 0.00000000) 12 NC 3 S

32 (−1.72895845, 0.00000000) 13 NC 4 S

32 (−3.16205619, 0.00000000) 14 8 6 S

35 (−3.35824891, 0.00000000) 9 NC 3 S

35 (−1.63329154, 0.00000000) 15 NC 8 S

36 (−2.75989136, 0.00000000) 18 NC 5 S

36 (−3.20216680, 0.00000000) 18 NC 9 S

52 (−2.99324919, 0.06747215) 20 NC 6 A

52 (−3.33276884, 0.00000000) 20 NC 11 S

140 (−3.03248329, 0.05557997) 63 NC 29 A

140 (−3.35744012, 0.00000000) 85 NC 29 S

5. Epilogue

In this paper, we have proposed a composite method for computing efficiently and
with certainty periodic orbits on a surface of section of the Poincaré map. We have
applied this method to compute periodic orbits of the photogravitational restricted
circular three-body problem.

The proposed method utilizes the characteristic bisection and Newton’s method,
combining the advantages of both methods. First, it utilizes the characteristic bi-
section method, within a box around a periodic point of a given period, to locate it
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with certainty. When the solution is located with a predetermined modest accuracy
sufficient for the conditions of convergence of Newton’s method to be satisfied, the
method utilizes Newton’s method, with accurately computed stability indices of
the Poincaré map, to compute the orbit with quadratic convergence. The proposed
method computes all the solutions efficiently.
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