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Two methodologies are presented for the numerical approximation of the “domain of stability”
of nonlinear conservative maps: (a) the Evolutionary Estimation of the Domain of Stability
(EEDS) and (b) the Evolutionary Frequency Optimization (EFO), optimizing certain frequency
parameters of these maps so that the domain of stability encompasses the maximum possible
“yolume” of bounded motion, known in the accelerator literature as the dynamic aperture.
The central components of the proposed approaches are: The Differential Evolution algorithm
(DE) based on concepts of Computational Intelligence and the method of the Smaller ALignment
Index (SALI) used for the determination of chaotic dynamics. Initially, we give a brief description
of the two methodologies and then demonstrate their usefulness by applying them to some well-
known examples of 2D and 4D Hénon maps. The proposed methodologies can be easily applied
to “volume” preserving maps which are not necessarily symplectic as well as to continuous
dynamical systems (flows) and can also be generalized to treat conservative dynamical systems
of any dimension.
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Conservative maps and in particular symplectic
ones, represent discrete versions of Hamiltonian
systems which arise in many applications includ-
ing particle accelerators, plasma physics and fluid
dynamics [Meiss, 1992]. An important example in
this class are symplectic mappings used to model
betatron motion in the storage ring of high energy
accelerators [Scandale & Turchetti, 1991; Todesco &
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Giovannozzi, 1996; Vrahatis et al., 1997]. If the par-
ticles are protons (or antiprotons) radiation effects
can be neglected and a turn around such as a ring
can be described by a symplectic map. This map has
a unique fixed point corresponding to the ideal cir-
cular orbit of particles passing through the center of
the ring. Storage rings are constructed in such a way
as to make the fixed point elliptic, so that particles
with initial conditions within a small neighborhood
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of the fixed point remain inside that neighborhood
under the repeated action of the symplectic map in
the linear approximation.

In this paper, we study Hénon type symplectic
maps of two (2D) and four (4D) dimensions which
describe the effects of a particle’s motion through
nonlinear magnetic focusing elements of the FODO
cell type [Scandale & Turchetti, 1991; Todesco &
Giovannozzi, 1996; Vrahatis et al., 1997; Vrahatis,
1995; Bazzani et al., 1994].

The 2D Hénon map is given by the set of
equations

2’ = cos(2mvy )z + sin(2mv,) (pe + 22),
Pl = —sin(27wv, )z + cos(2mv,) (pe + 22),
and the 4D Hénon map is given by

2’ = cos(2mvy )z + sin(2mv, ) (pe + (22 — y?)),
Pl = —sin(27v, )z 4 cos(2mv,) (pe + (22 — 3?)),
Y = cos(2mvy)y + sin(2mvy ) (py — 22y),

Py, = —sin(2mvy )y + cos(2mvy ) (p, — 2zy).

The z,y variables are the deviations of the par-
ticle’s motion from the ideal circular trajectory in
the horizontal and vertical directions, respectively
and p;,p, are the corresponding momenta. Vari-
ables v;,v, are the linear tunes of the accelerator
machine.

As is well known, the nonlinearities that appear
in the above equations can deflect particles far from
the fixed point under repeated application of the
map, causing them eventually to be removed from
the beam. Thus, it is of crucial importance for
the efficient operation of the accelerator and suc-
cessful outcome of the experiments to identify the
largest possible region in phase space, where one
can safely avoid severe particle loss and decrease
of the beam’s luminosity [Scandale & Turchetti,
1991; Todesco & Giovannozzi, 1996; Vrahatis et al.,
1997; Vrahatis, 1995; Bazzani et al., 1994]. An accu-
rate estimate of this domain yields the so-called
dynamic aperture, as it is called in the accelerator
literature.

In the 2D case, it is well known that there exists
a last KAM torus that divides the two-dimensional
phase space into two disjoint domains in the follow-
ing sense: It is a continuous, but in general non-
differentiable curve, beyond which no closed curves
exist surrounding the origin [Todesco & Giovan-
nozzi, 1996; Bazzani et al., 1994; MacKay & Meiss,
1987]. As we cannot locate this particular curve,

with our method, we call “boundary of stability”
the closest possible smooth approximation of this
curve bounding a region around the origin called
G. Orbits corresponding to initial conditions in the
interior of GG remain inside G for an infinite number
of iterations of the map.

Of course, within G there also exist initial con-
ditions corresponding to unstable periodic orbits.
These orbits possess small regions of chaotic motion
around them, which also remain forever within G.
In the case of 2D maps, orbits starting within G
never pass outside the boundary of stability since
this consists of a closed curve which separates the
two-dimensional plane into disjoint regions. On the
other hand, outside this boundary there exist chains
of islands, as well as initial conditions correspond-
ing to chaotic orbits that escape to infinity after a
small number of iterations.

In the 4D case, the tori are two-dimensional
and do not divide the four-dimensional phase space
into disjoint regions. Chaotic layers are no longer
separated by invariant surfaces and can be con-
nected, allowing orbits to move away from the ori-
gin and finally escape to infinity. However, we have
found that there is a large part of phase space
around the origin, in which initial conditions are
stable for a very long time. In this region there
are instabilities related to the so-called Arnold dif-
fusion [Chirikov, 1979] but they are so slow that
the corresponding orbits can be practically consid-
ered stable. Outside this region, chaos is dominant
and the majority of the initial conditions escape to
infinity after a finite time. Furthermore, in such 4D
maps the meaning of phase space “volume” in which
orbits remain bounded for a very long time is not
at all clear, since the corresponding domain of sta-
bility cannot be defined as precisely as in the 2D
case.

In this paper, we propose two methodologies:
The first one is named Evolutionary Estimation
of the Domain of Stability (EEDS) and its pri-
mary aim is to estimate approximately the “domain
of stability” of conservative maps which contains
the maximum possible “volume” of bounded orbits.
The second is called Evolutionary Frequency Opti-
mization (EFO), treating the frequency(ies) of a
map as parameters of a maximization problem. The
aim of this optimization is to find parameter val-
ues ensuring the maximum such possible “volume”
of bounded motion for the dynamics of the map.
EEDS will be a component in the solution of this
maximization problem.



Both methodologies combine the following well-
known techniques of nonlinear dynamics theory and
computational intelligence [Engelbrecht, 2002]:

(a) The correlation dimension [Grassberger & Pro-
caccia, 1983a, 1983b| for the estimation of the
dimension of particular set points that are pro-
duced by the proposed methodologies.

(b) The Differential Evolution (DE) [Storn & Price,
1997, Corne et al., 1999] algorithm for the
optimization issues that arise in the proposed
methodologies.

(c) The Smaller ALignment Index (SALI) [Skokos,
2001] which is used for the efficient and fast
detection of chaotic motion in conservative
dynamical systems (flows and/or maps).

Our paper is organized as follows: In Sec. 2, we
give the necessary background material, by describ-
ing the SALI method and the DE algorithm. The
two proposed evolutionary methodologies are pre-
sented in Sec. 3. Furthermore, the experimental
results obtained from the application of EEDS and
EFO to the Hénon symplectic maps in 2 and 4
dimensions are detailed in Sec. 4. The paper ends
with concluding remarks in Sec. 5.

2. Background Material
2.1. Smaller ALignment Index (SALI)

The SALI method was initially introduced in
[Skokos, 2001] and has already been successfully
applied to distinguish ordered from chaotic orbits
in maps of various dimensions [Bountis & Skokos,
2006a, 2006b], in Hamiltonian systems [Skokos
et al., 2003a, 2003b, 2004], as well as in problems
of Celestial Mechanics [Széll, 2003, 2004], Galactic
Dynamics [Manos & Athanassoula, 2005a, 2005b],
Field Theory [De Assis et al., 2005] and nonlin-
ear one-dimensional lattices [Antonopoulos et al.,
2006; Antonopoulos & Bountis, 2006a; Panagopou-
los et al., 2004].

Let us consider the M-dimensional phase space
of an arbitrary conservative dynamical system, for
example a symplectic map of even dimension M =
2m, m € N. In this case, an initial condition X° =
(29,29, ... ,x%) of the map evolves according to the
equations of motion

X = o(x™), (1)
where n is the number of iterations and X" =

(., 2y,...,2";) denotes the nth iteration of
the map.
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In order to determine the chaotic or ordered
nature of a particular orbit of the map (1) with
initial condition X°, we follow the evolution of two
initially linearly independent deviation vectors V9
and VY. Their evolution in time is governed by the
so-called tangent map equations

VIt =Do(X") VT, i=1,2 (2)
where V7 = (dvfy, dvy, ..., dv}'y ) and DO(X") is
the Jacobian matrix of the equations of motion (1).

The evaluation of the SALI is then accom-

plished by computing the quantity

Vn V’I’l
SALI(n) = min 711 + i )
{ vl vl
LT | W
Vel vl f
where || - || denotes the usual Euclidean distance of

the argument.
According to the above definition, two distinct
cases exist in general:

(a) The orbit under consideration is chaotic. Then
the two deviation vectors tend to become
aligned in the most unstable nearby direction
corresponding to the maximal Lyapunov expo-
nent of the orbit under consideration. Thus,
the SALI tends to zero exponentially with a
slope that depends on the two largest Lyapunov
exponents [Skokos et al., 2003].

(b) The orbit under consideration is regular or
quasiperiodic, hence there is no preferred direc-
tion in which the vectors can become aligned
since the Lyapunov exponents are all zero. The
two deviation vectors tend to become tangent
to the torus on which the orbit is evolving and,
in general, have different directions, making the
SALI fluctuate around nonzero positive values
[Skokos et al., 2004]. An exception exists in the
case of 2D maps, where SALI tends to zero
following a power law of the form oc n=! (see
[Skokos, 2001] for more details).

It is thus clear that SALI behaves differently
in the cases of ordered and chaotic orbits and this
makes it a powerful, simple and easy criterion to
implement numerically. It is well suited for mul-
tidimensional systems and is especially rapid and
reliable for 2/ N-dimensional symplectic maps.
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2.2. Dafferential evolution

Differential Evolution (DE) [Storn & Price, 1997] is
a population-based algorithm for the global opti-
mization of multimodal N-dimensional functions.
It attains a set of possible solutions for the prob-
lem under consideration and evolves them in order
to find the “best” one. The meaning of the term
“best” will become clear below when we present the
distinct steps one follows for the application of the
DE algorithm. Some of the advantages of the DE
algorithm are the following:

(a) It can operate on nondifferentiable and/or dis-
continuous functions of arbitrary dimensions.

(b) It can be applied in functions contaminated by
noise or functions that change dynamically over
time.

(¢) It can be applied to integer, discrete and mixed
programming problems.

(d) Finally, it can be easily computer-parallelized
[Plagianakos & Vrahatis, 2002].

More specifically, the DE algorithm is said to
exploit a population of individuals (N-dimensional
vectors). Let u; denote the ith individual of the
population in the gth iteration of the algorithm.
Then, DE is described by the following four distinct
steps:

Step 1 (Initialization step). Initialize randomly the
individuals of the population. Set the mutation fac-
tor, F, and the recombination (cross-over) factor,
CR, to fixed values within the interval [0,1] and
choose an objective function for the problem under
study.

Step 2 (Mutation step). Mutate each individual u;
(called the target individual) of the population to
form a trial vector, vy, by applying one of the
following operators,

vl = upt + F( —up?), DE1
Lo =gt + Fup? —up®) + F(ut —ul®),  DE2
L= ubet +F( upt — u?), DE3
;+1 = ul + F(u} — up™*) + F(u}) ;2) DE4
vh g = ub® + Flug! — uf?) + F(up® —ul?), DE5

where r1,72,73,7r4 are random integers such that,
rl # r2 # r3 # rd # i # best. The index best
is used to represent the individual with the best
objective function value in the current population.
Throughout the paper, the DE2 operator was used.

Step 3 (Recombination (Crossover) step). For each
element of the trial vector, vg 10 obtain a random
value, r € [O 1. If r < CR, set uy | = ng, other-

wise set uy | = ug

Step 4 (Selection step). For each individual of
the population ug 41 evaluate its value through the
objective function. If this value is better than the
one of the target individual uy, then the individual

ug 1 replaces the target 1nd1v1dual in the next iter-
ation. Otherwise, the target individual is retained
in the next iteration of the DE algorithm. If the
termination criterion is not satisfied, then go to the
second step. As a termination criterion we can use
a predefined number of iterations or an error goal
value of the objective function.

3. The Proposed Methodologies

3.1. Ewolutionary estimation of the
domain of stability (EEDS) of
conservative maps

The aim of the EEDS is to approximate numerically
the “domain of stability” surrounding the maximum
possible “volume” of bounded orbits in the phase
space. To do this, we locate first a point, as close as
possible to the boundary of this domain, which we
call from now on, the last point. The consecutive
iterations of the map having this point as initial
condition will produce a set of points which we shall
call the “object”. This “object” is considered as a
candidate for the determination of the “domain”
of stability of the above map, in the sense that at
closer distances from the origin no orbit is observed
to escape, up to 10% iterations.

EEDS first solves an optimization problem
in order to find the minimum/maximum dis-
tance between the central elliptic point and the
“object”. Using the output of the optimization
problem, EEDS finds the last point and after-
wards the associated “object”. The main compo-
nents of EEDS are the DE algorithm, the SALI
method and the correlation dimension. The indi-
viduals of the DE algorithm are points in the
phase space of the map that serve as initial con-
ditions for the SALI method. When SALI encoun-
ters the first chaotic orbit (that is, SALI becomes
less than a given very small threshold), its cor-
responding initial condition is a possible candi-
date point belonging to the “object”. Next, for the



sake of improving our prediction, we further iter-
ate the map (using as initial condition this par-
ticular point) for thousands of iterations to see
whether the orbit escapes to infinity. If it does not,
then we assume that it is sufficiently close to the
“object”.

Additionally, in order to achieve an even bet-
ter precision, we use the one-dimensional bisec-
tion method [Vrahatis, 1995] combined with the
SALI algorithm. The two end-points of the bisec-
tion method are the origin of the map and the last
point found by the above procedure. Here, the SALI
method plays the role of the objective function, used
in the bisection method. The output point result-
ing from the application of the bisection method is
used as an approximate closest point “lying” on the
“object”.

Consequently, we calculate the FEuclidean dis-
tance between the last point and the origin of the
map. This distance will be the value of the objec-
tive function for the particular individual. If we are
looking for the maximum and/or minimum distance
between the origin and the “object”, the best direc-
tion will be the one with the maximum or mini-
mum distance proposed by the application of the
above DE algorithm. We then repeat the steps of
the DE algorithm to evolve the population for more
iterations in order to obtain as good estimates as
possible.

After the termination of the DE algorithm, in
order to obtain even better accuracy we use as
radial directions the optimum individual and the
individuals with objective function values worse
than the optimum value within 5%. Then, we move,
in every such direction, with small steps 0.003 from
the origin and iterate the map for 100,000 itera-
tions. Thus, for each individual, we record the last
point for which the orbit remains bounded under
these iterations and calculate the Euclidean dis-
tance between this last point and the origin of the
map. This distance is the new objective function
value. After this, we use the final optimum indi-
vidual and its corresponding objective function to
calculate the last point in phase space for which
bounded motion is ensured. The iterations of the
map with this point as an initial condition will
fully produce the desired “object” mentioned above.
Finally, the calculation of the correlation dimen-
sion [Grassberger & Procaccia, 1983a, 1983b] of
the “object” will be a satisfactory indication of the
closeness of this point to the domain of stability of
the map.
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Below, we highlight the key-points of EEDS:

(1) The individuals uz of the DE are directions
(initially random) in the phase space.

(2) The objective function output is the distance
between the origin (elliptic fixed point) and the
last point found in each direction.

(3) The last point is an approximated point for the
“object”.

(4) The last point is found by using the SALI and
the bisection method.

(5) The directions are evolved using the DE
operators.

(6) Output of the optimization scheme is the min-
imum/maximum distance (direction) between
the origin and the “object”. (Also, available are
statistics on intermediate distances.)

(7) Using the last point associated with the min-
imum/maximum distance as initial condition,
we follow it for a given number of iterations to
verify that the orbit does not escape to infinity.

(8) This set of points (“object”) is assumed to be
an approximation of the domain of stability of
the map.

(9) The estimation of the dimension of this set of
points is accomplished by using the correlation
dimension.

3.2. Ewolutionary frequency
optimization (EFO) of
conservative maps

The frequencies appearing in the two maps consid-
ered in this paper are constant parameters that can
be changed by the experimentalist, whose values are
crucial for the success of the experiment. They may
lead to beam diffusion or safe operation, keeping the
largest possible number of particles bounded for the
greatest number of turns inside the storage rings of
the accelerator.

Here, we propose a way to treat these fre-
quencies as parameters in an optimization prob-
lem, whose objective function has as output the
largest possible region of stability around the ori-
gin of the map. Thus, it is a maximization problem.
The determination of the objective function for this
problem makes use of the EEDS method already
introduced in Sec. 3.1 to study the region and last
domain of stability of the Hénon 2D and 4D sym-
plectic maps with specific constant frequencies.

Thus, we use once more the DE algorithm to
solve the new optimization problem. This time,
the individuals are sets of frequency(ies) of the
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map. So, the DE algorithm has a population of
frequency(ies) which evolves according to the pre-
scribed DE steps of Sec. 2.2. The objective function,
we propose, is a weighted sum of three factors and
will be computed by EEDS for every individual (fre-
quency(ies)). These factors are

(a) The correlation dimension of the resulting
“object”.

(b) The mean value of the distances of the points
of the “object” from the central elliptic point
of the map.

(¢c) The perturbation of some randomly chosen
points of this “object”. Each chosen point is
slightly perturbed and new points are produced
in the phase space.

The perturbation procedure consists of two
parts: First, we produce points with directions
towards the elliptic point (“inner” points), while in
the second part points are produced in the opposite
direction (“outer” points). Each produced point will
serve as an initial condition of the map for a given
number of iterations. The number of iterations for
which the orbit stays bounded are recorded and
their mean values are computed for the “inner” and
“outer” perturbed points. Finally, the third factor is
the difference between these values (mean “inner”—
mean “outer”) divided by the maximum number of
iterations of the map.

4. Results

4.1. Application of EEDS to the
2D Hénon map

In the 2D Hénon case, EEDS was applied for a
variety of constant tunes v, lying in the interval
[0.1,0.45] with tune step 0.025. For every tune vy,
ten different experiments were performed. The pop-
ulation of the DE algorithm was set to 10 and the
mutation and crossover factors F, CR equal to 0.5.
The chaoticity threshold for the SALI method was
set to 107% as in references [Skokos, 2001; Skokos
et al., 2003a, 2003b], while for the bisection method
it was set to 1075, The number of iterations of the
map used in the SALI computation was 500. When
the SALI was used in combination with the bisec-
tion method, the number of iterations was decreased
to 100.

In every single experiment, the goal of the
DE algorithm was to find the minimum distance
between the central elliptic point (origin of the 2D

map) and the “object”. We followed this approach
because we noticed that the boundary of stabil-
ity was approximated more accurately by iterations
starting with the point associated with the mini-
mum distance found by the DE algorithm. After
locating this point, the map was iterated an addi-
tional 10° times, producing at the end an “object”.
For every such produced “object”, the maximum
and minimum distances from the origin were also
computed. In Fig. 1, we have displayed for the 2D
Hénon map with the frequency v, = 0.45, the last
invariant curve (red curve), the minimum (blue line)
and maximum distance (green line) of this curve
from the central elliptic point.

To test the validity of our approach on the 2D
Hénon map, we also calculated an approximation of
the last invariant curve by ad hoc methods, follow-
ing a particular radial direction outward and apply-
ing the map equations until an orbit escaped in
less than 10® iterations. These approximate values
are then compared with the corresponding ones
obtained by EEDS for a wide range of frequencies
in Figs. 2(a) and 2(b). In particular, in Fig. 2(a)
the results concerning the maximum distance are
shown, while in Fig. 2(b) we exhibit those of the
minimum distance. As the two plots in these figures

2E
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Fig. 1. Phase portrait of the 2D Hénon map for the fre-
quency vz = 0.45, showing the approximate last invariant
curve (red curve) by indicating via a blue line its minimum
distance from the origin and by a green line its maximum
distance from the origin.
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(a) Plots of the maximum distance (from the origin) of the points produced by EEDS together with points of the

corresponding objects obtained by direct iteration of the 2D Hénon map. Note that at this level of resolution the two plots
are indistinguishable. (b) Similarly for the points at minimum distance from the origin.

are practically identical, we conclude that our evo-
lutionary approach achieves indeed very accurate
predictions for the last invariant curve, compared
to what is found by inspection of the phase space
of the map.

4.2. Application of EEDS to the
4D Hénon map

We now turn to the 4D Hénon map. Here, EEDS
was applied using as starting point the tunes v, =
0.61903 and v, = 0.4152, which we had found in
an earlier publication [Vrahatis et al., 1997]. The
remaining parameters of EEDS (DE, SALI, bisec-
tion settings) are the same as in the 2D case. The
population was set to be 20 and the number of iter-
ations of the 4D map used in the SALI method was
1000. Thirty experiments in total were performed.
Again, as in the 2D case, the goal of the DE algo-
rithm is to find the minimum distance between the
elliptic point (or origin of the map) and the “object”
of the 4D Hénon map, in the sense explained in the
earliest sections.

After the estimation of the last point, the map
was iterated for 5 x 10° iterations with this point
as initial condition. For the produced “object”, we
also computed its maximum, minimum and mean

distances from the central elliptic point, as well as
its correlation dimension. In 20 out of a total of
30 experiments, the resulting “object” was an orbit
that remained bounded for 5 x 10° iterations with-
out escaping to infinity. Due to the stochastic nature
of the algorithm, and the complexity of phase space,
in each experiment we notice that a different geo-
metric “object” is produced.

In Table 1, statistical results are presented
concerning the minimum, maximum and mean
distances calculated in the above mentioned 20
experiments. Note that the minimum distances are
especially characterized by the smallest standard
deviation. This observation agrees well with a sim-
ilar one made earlier in the 2D case and leads to
the conclusion that it is preferable to estimate the
minimum distance of the “object” with respect to
the central point, in every case.

Table 1. Statistics for the distances of the points of
the “object” of the 4D Hénon map from the central
elliptic point.

Values Max Min Mean St. Dev.
Minimum distance 0.54 0.50 0.52 0.01
Maximum distance 1.13  0.92 1.04 0.06
Mean distance 0.82 0.67 0.74 0.05
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Table 2.

The associated last points (first—fourth column), Correlation Dimension

(C.D.) with 5 x 10~2 accuracy (fifth column) and Mean Distances (M.D.) from
the central elliptic point (sixth column) of the 20 experiments that did not escape
up to 5 x 10° iterations for the 4D Hénon map produced by EEDS for the pair
of tunes vz = 0.61903 and vy = 0.4152. The columns of the table are sorted in
increasing order of magnitude of the Mean Distances.

x Pz y Py C.D. M.D.
—0.609705 0.130127 —0.010712 0.002023 0.94 0.8199
—0.598295 0.143924 0.035110 —0.014355 0.90 0.8139
—0.626369 0.108863 —0.035885 0.024461 0.89 0.8138
—0.596637 0.142641 —0.012402 0.026018 0.92 0.8100

0.395261 0.246253 —0.265755 —0.364423 2.89 0.7423
0.382272 0.193950 —0.197602 —0.470238 2.93 0.7407
0.387442 0.229748 —0.234129 —0.412568 2.81 0.7393
0.376212 0.276229 —0.264512 —0.381121 2.92 0.7349
0.400782 0.195349 —0.274080 —0.406305 2.74 0.7292
0.387985 0.275856 —0.294545 —0.341922 2.18 0.7217
0.384996 0.308129 —0.285890 —0.297610 2.18 0.7214
0.382419 0.282068 —0.270252 —0.328869 2.19 0.7204
0.376927 0.260405 —0.274911 —0.381446 2.74 0.7193
0.364460 0.262546 0.257946 0.418398 2.23 0.7163
0.402795 0.231527 —0.243043 —0.337608 2.05 0.7146
0.397762 0.231556 —0.186804 —0.343580 2.06 0.6965
0.385228 0.292131 0.237883 0.321652 2.03 0.6890
0.387955 0.241097 —0.191632 —0.366308 2.06 0.6772
0.397729 0.260177 —0.223117 —0.317848 2.36 0.6719
0.404900 0.114807 —0.122447 —0.457707 2.13 0.6684

In Table 2, we exhibit results concerning the
initial conditions of the last points (first—fourth col-
umn), correlation dimension with 5 x 1073 accu-
racy (fifth column) and mean distances from the
central elliptic point (sixth column) for all orbits
that did not lead to escape up to 5 x 10° itera-
tions for the 4D Hénon map for v, = 0.61903 and
vy = 0.4152. The columns of the table are sorted
in increasing order of magnitude of the mean dis-
tances. Thus, we can identify three groups of objects
with respect to their correlation dimension: There
are four objects with correlation dimension around
1, ten objects with correlation dimension around
2 and the remaining six objects have correlation
dimension greater than 2.7.

4.2.1.

Let us now study one example from each of the
above three categories, which for convenience we
shall call objects 1-3. Object 1 corresponds to the
first line of Table 2, object 2 to the 17th line
and object 3 to the 13th line of the same table.
In Figs. 3(a)-3(c), the three-dimensional projec-
tion x, p,,y of the 4D map and its two-dimensional

A study of three examples

projections are exhibited respectively for objects
1-3.

The correlation dimension of each object was
calculated using the TISEAN package of time series
analysis [Hegger et al, 1999]. In Figs. 4(a)-4(c),
the plot logy C§(r)/logs r versus log, r is presented
while in Figs. 5(a)-5(c) logy C%(r) versus log,r,
where C¢(r) is the correlation integral and r — 0.
The first 10° points of the object were used with
embedding dimension m = 8 and delay 7 = 1, while
the Theiler window was set to be 60 as in [Vrahatis
et al., 1997].

In Figs. 4(a)-4(c) the correlation dimension
is estimated from a horizontal straight line cor-
responding to the so-called “plateau” of the fig-
ure. This plateau is located by searching for an
interval that is horizontal with the minimum pos-
sible standard deviation whose mean value is the
output of the estimated correlation dimension. In
Figs. 5(a)-5(c), the same correlation dimension is
also estimated by the slope of the diagram. This
slope was numerically approximated by the method
of linear fitting corresponding to embedding dimen-
sions m > 4. Thus, from both figures we deduce
that the correlation dimension for object 1 is about
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(a) 3D and 2D projections of object 1 of the 4D Hénon map produced by EEDS, with tunes v, = 0.61903 and

vy = 0.4152. (b) Alike for object 2. (c) Similarly for object 3. In all cases, the vertical column corresponds to the scaling of

the fourth coordinate py of the 4D Hénon map.

0.94, for object 2 it is nearly 2.03, while the cor-
relation dimension for object 3 is approximately
2.74.

Let us now discuss these results in more detail:
Object 1 does not escape to infinity for 10% itera-
tions of the map, and is located at a bigger distance
from the origin than objects 2 and 3. However, since
its dimension is close to 1 it corresponds to a single
orbit and is hence of little importance in our search
for a “final frontier” of bounded motion.

Object 2 does not escape to infinity for nearly
1.9 x 10% iterations of the map. Its correlation
dimension is almost equal to 2, which implies that
it must be close to an invariant torus. Indeed,
we tried different orbits in its neighborhood and
found that perturbing its p, coordinate by —7.5 x
1072 leads to a new “object” which has correla-
tion dimension 2.001, average distance from the
origin 0.66 with maximum distance 0.83 and min-
imum 0.50. It is invariant up to 10® iterations
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Fig. 4. (a) Estimation of the correlation dimension plotting the slope = logy C$(r)/logs 7 versus logy - for object 1 of the

4D Hénon map produced by EEDS. The horizontal black line is the slope ~ 0.94. (b) Similarly for object 2 of the 4D Hénon
map. The horizontal black line is the slope ~ 2.03. (c¢) Similarly for object 3 the horizontal black line is the slope &~ 2.74. In

all cases, the tunes are vy = 0.61903 and vy = 0.4152.

of the map and thus represents a much better
approximation of the desired “object”. In Fig. 6,
its 3D projection and the corresponding 2D dimen-
sions are shown, while in Figs. 7(a) and 7(b) we
present plots for the estimation of its correlation
dimension.

Object 3 escapes to infinity after 621776 itera-
tions of the map. As it is evident from Fig. 3(c),

it has the structure of a dense fractal set and
surrounds object 2. Its shape is similar to that of
a torus, but is, in fact, so close to a chaotic orbit,
that it finally escapes to infinity.

From the above analysis we can draw the fol-
lowing conclusions: The application of EEDS for
the 4D map leads in most cases to the discovery of
objects which are close to invariant tori. Also very
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(a) Estimation of the correlation dimension plotting logs C’g(r) versus log, 7 for object 1 of the 4D Hénon map

produced by EEDS for the tunes vz = 0.61903 and vy = 0.4152. The black line corresponds to the linear fitting with slope
~ 0.94. (b) Similarly for object 2. The black line corresponds to the linear fitting with slope & 2.03. (¢) Similarly, for object 3.
The black line corresponds to the linear fitting with slope &~ 2.74.

close to these tori, EEDS can locate objects which
are dense fractal sets (remaining bounded up to
6 x 10° iterations) and whose correlation dimension
is approximately very close to 3. These results agree
very well with a previous study [Vrahatis et al.,
1997], where invariant tori were found whose small
perturbations led to fractal sets with correlation
dimension nearly 3.

4.3. Application of EFO to the
estimation of dynamaic aperture

4.3.1. The case of the 2D Hénon map

The number of individuals of the DE algorithm used
in the EFO method are set to 8 and the frequency
vy of the 2D map lies in the interval [0.01,0.45].
All frequencies produced during the execution of
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3D and 2D projections of the perturbation of object 2 of the 4D Hénon map produced by EEDS for tunes v, = 0.61903

and vy = 0.4152. The vertical column corresponds to the scaling of the fourth coordinate py of the 4D Hénon map.

EFO are restricted to lie in this interval, since the
dynamic aperture for the 2D Hénon map near the
tune v, = 0.5 goes to infinity. Thus we start using
EEDS with a population of ten individuals for the
DE algorithm and setting its factors, F, CR equal

to 0.5. The chaotic threshold for the SALI method
was set at the value 1078, while for the bisection
method the threshold was set to 107%. The goal of
the DE is to find the minimum distance between the
elliptic point and the computed domain of stability
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Fig. 7. (a) Estimation of the correlation dimension using the plot slope = logy C4(r)/ logy 7 versus logy 7 for object 2 of the

4D Hénon map produced by EEDS for tunes v; = 0.61903 and vy = 0.4152. The horizontal black line is the slope ~ 2.0. (b)
Complementary estimation of the correlation dimension making direct use of the plot of logy C4(r) versus logy r. The black

line corresponds to the linear fitting with slope & 2.03.
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3D and the corresponding 2D projections of the “object” produced by EFO in the case of the 4D Hénon map for

tunes vy = 0.596857, vy = 0.500648. The vertical column corresponds to the scaling of the fourth coordinate py of the 4D

Hénon map.

of the 2D map. The objective function used here
has the biggest weight in the second factor (see
Sec. 3.2). The best frequency resulting from the pre-
scribed methodology was found to be v, = 0.45
[see Figs. 2(a) and 2(b)], a result also confirmed by
directly iterating the 2D map.

4.3.2. The case of the 4D Hénon map

In the experiments concerning the 4D Hénon map,
the number of individuals of DE used in EFO is
set to 8 and the mutation and crossover factors
are 0.5. The tunes are chosen to lie in the inter-
vals v, = [0.1,0.8] and v, = [0.2,0.6] respectively.
Our aim is to examine how the EFO method per-
forms in this case. To this end, we choose ran-
domly v.,v, tunes very close to the values used
in Sec. 4.2. In realistic accelerator applications, of
course one has to take into account the technologi-
cal constraints required to apply EFO. The settings
for EEDS require a population of ten individuals
for the DE algorithm. The chaotic threshold for the
SALI method is fixed at 10~8, while for the bisection
method it is 1076, The number of iterations of the
map used in the computation of the SALI method
was 5000 and when SALI was used combined with
the bisection method it was 1000. Again, the goal of
the DE used in EEDS is to find the minimum dis-
tance between the elliptic point and the computed
“object”, following the approach described in the
previous sections.

In several EEDS experiments of the 4D map,
we noticed that, for the same frequencies, differ-
ent objects were produced with different correlation
dimensions. For this reason, for every individual fre-
quency we applied our approach as many times as
needed to obtain an “object” with the maximum
possible correlation dimension for the necessary
computations of the objective function. Ten points
were selected randomly from this “object” to pro-
vide the perturbations. Each point was perturbed
from 107% to 107! with six steps, each multi-
plied by 10. The maximum number of map iter-
ations for the perturbed points was set to 10%.
The first and second factors of the objective func-
tion are normalized in the interval [0,1]. In the
objective function, the first factor occurs with the
biggest weight, while the other two have smaller
weights.

Thus, we discovered that the output frequen-
cies of the EFO method are v, = 0.596857 and
vy = 0.500648, while the coordinates of the last
point are

z = —0.738012,
y = 0.006851,

ps = —0.081621,
py = 0.036232,

yielding an orbit that remains stable up to 10% iter-
ations. The mean distances of this orbit from the
central point is 1.32 with standard deviation 0.29
and the dimension found for this “object” is close
to 2.91.
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Fig. 9. (a) Estimation of the correlation dimension using the plot slope = logs C’g(r)/logg r versus logy 7 for the “object”
produced by EFO in the case of the 4D Hénon map for the tunes vy = 0.596857, vy = 0.500648. The horizontal black line
indicates a “plateau” of the original plot, which constitutes an estimation of the correlation dimension at the slope & 2.91. (b)
Estimation of the correlation dimension using the plot logg C’g (r) versus logy 7 for the “object” produced by EFO in the case
of the 4D Hénon map for tunes vy = 0.596857, vy = 0.500648. The slope ~ 2.91 of the line is an estimation of the correlation

dimension.

It is worth mentioning that when we truncate
the output pair of tunes to the values v, = 0.597
and v, = 0.501, the resulting “object” remains
again stable up to 10® iterations having also, prac-
tically, the same correlation dimension as the ini-
tial result. However, the mean distance now is 1.14
with standard deviation 0.23. These observations
lead to the conclusion that the output frequencies of
EFO are robust under significant perturbations and
retain the properties of the initial output “object”.
This is of crucial importance to the experimentalists
who can only adjust the frequencies of the machine
up to few significant decimal digits, thus achiev-
ing the long term stability of the “object” produced
by EFO.

In Fig. 8, a 3D projection of this “object” is
shown along with the corresponding 2D projections
for v, = 0.596857 and v, = 0.500648. The estima-
tion of the correlation dimension is calculated with
the help of the plots appearing in Figs. 9(a) and
9(b). In the first of them, the correlation dimen-
sion is estimated from the “plateau” that appears
in the horizontal line, having a value around 2.91.
In the second figure, the slope of the lines for
m >4 is the estimation of the correlation dimension.

The application of the linear fitting method also
gives for this slope a value close to 2.91.

5. Conclusions

In this paper, we proposed first the method of the
Evolutionary Estimation of the Domain of Stability
(EEDS) to numerically approximate the dynamic
aperture, or stability domain which contains the
maximum possible “volume” of bounded orbits in
symplectic mapping models of accelerator dynam-
ics. Its application to the FODO cell maps was
presented and was shown to yield very satisfac-
tory results. In the 2D case, where we could check
our predictions more easily, the dynamic aperture
approximated by the proposed method was found to
be quite close to the “last invariant curve” found by
straightforward inspection methods. Furthermore,
in the 4D case we found objects very close to a two-
dimensional “last” invariant torus of the map and
also objects nearby with fractal dimension close to
3, “surrounding” the last invariant torus.

Finally, global stability results were obtained by
the second method proposed in this paper, called
the Evolutionary Frequency Optimization (EFO),



which searches over large intervals of values of the
frequency (ies) of the map, using EEDS to estimate
the corresponding dynamical aperture. The best
such “object” was achieved for v, = 0.596857,v, =
0.500648, having correlation dimension close to 2.9
and yielding bounded orbits up to 10® iterations of
the map.

It is important to note that the proposed meth-
ods are not restricted to symplectic maps. They can
also be applied to volume preserving maps which
are not symplectic as well as to continuous dynam-
ical systems (flows) and can also be generalized to
treat conservative dynamical systems of any dimen-
sion. Furthermore, the EEDS method can be used,
with minor modifications, to approximate the sta-
bility domain of any interior region of phase space
surrounded by chaos.

In a future publication we intend to apply the
proposed methods to accelerator maps with dimen-
sion greater than 4, taking into account also the
motion of the particles in the longitudinal direction.
Finally, we also plan to study maps which model
more realistic beams, where periodic modulations
of the tunes, due e.g. to the so-called space charge
effects [Bountis & Skokos, 2006b], need to be taken
into consideration.
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