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A numerical method is proposed for detecting resonances of conservative maps which reduces this task to
an optimization problem. We then solve this problem using evolutionary algorithms, which are methods
for global optimization inspired by biological evolution. The proposed methodology is simple and can be
easily applied to maps of arbitrary dimensions. In this Letter we apply it to several examples of 2- and
4-dimensional conservative maps, with quite promising results concerning integrability, the location of
resonances and the presence of chaotic regions surrounding the island chains that correspond to these
resonances.
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1. Introduction

Conservative maps, especially symplectic ones, are encountered
in many examples of physical significance: Hamiltonian systems,
in the vicinity of their fixed points and periodic orbits, lead
to Poincare maps which are symplectic [1]. Also the motion of
charged particles around magnetic field lines can be described by
symplectic maps [2], while such maps are commonly used to study
the stability of particle beams in high energy accelerators [3,4].

When conservative maps are integrable their phase space is fo-
liated by smooth invariant surfaces (or tori) on which the motion is
always regular (i.e. periodic or quasiperiodic). In most applications,
however, these maps are non-integrable and possess resonances
characterized by chains of islands of regular motion, around which
there are domains where the motion is irregular, or chaotic (i.e.
extremely sensitive to the choice of initial conditions). It is impor-
tant, therefore, to develop methods to determine the location and
width of these resonances, as well as estimate the size and extent
of the chaotic regions around them.
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The methodology proposed in this Letter reduces the problem
of detecting resonances in 2N-dimensional conservative maps to a
global optimization task, which proceeds as follows: It starts from
a central elliptic point of the map (which we translate for conve-
nience to the origin) and considers annular regions around that
point, lying between thin “spherical” shells at consecutively in-
creasing radial distances, r1 < r < r2. Within each of these shells
the method searches for a point whose iteration will result in an
orbit that maximizes a quantity D , representing the difference be-
tween the maximum and minimum distance of the produced orbit
from the origin. Next, a plot is generated of D = D(r), as a function
of the radial distance r, which is well approximated by a contin-
uous curve, for thin enough spherical shells (e.g. r2 − r1 � 0.001
up to 0.005). This curve typically starts from values close to zero
near the origin and increases smoothly further away, as the tori
become more and more “elliptically” asymmetric. The fact that we
use spherically symmetric annular regions in no way limits the ap-
plicability of our method, since all we seek is to follow faithfully
changes in the morphology of the motion as we move away from
the origin and that can be accomplished by annular shells of any
shape.

Let us elaborate somewhat on the dynamical aspects of our ap-
proach: First, by resonances we refer to periodic orbits, which arise
in pairs, one stable and one unstable. Here, we concentrate on the
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stable ones, which are surrounded by “islands” of invariant tori [1].
As soon as the annular region mentioned above enters such an is-
land, D(r) jumps discontinuously to a larger value, as the orbits
suddenly reach considerably larger distances (determined by the
furthest points of the orbits in the islands), while their minimum
distances from the origin are similar to what they were before. En-
larging the radii of the shells, D(r) might be expected to decrease
somewhat near the center of the island and then increase again as
we approach the furthest points of the islands.

As we are plotting, though, the maximum value that D(r) can
attain every time, the passage through the unstable points of the
resonance keeps its value unchanged and is recorded in our graphs
as a “plateau”. When our shells exit the domain of the islands
and enter again a region of tori surrounding the origin, D(r) re-
sumes its smoothly increasing behavior. Thus, plateaus provide
information about the location and approximate width of reso-
nance islands. Since our methodology implicitly identifies the very
existence of resonances, it can also be used to provide evidence
whether a given conservative map is completely integrable or not,
since resonances (especially their simultaneous presence in the
form of chains of different numbers of islands) are generally ob-
served only in non-integrable maps.

Evolutionary Algorithms (EAs) [5,6], are used to accomplish the
above optimization task. As is well known, EAs are stochastic algo-
rithms for global optimization inspired by the biological evolution
of living organisms using analogous ideas in the setup of their al-
gorithmic approach. They first identify a set of possible solutions
of the problem and then evolve them to reach the global optimum
solution. In doing this, EAs use such mechanisms as recombination
(or crossover), mutation and selection as well as an objective func-
tion to evaluate the “fitness” of every current solution identified.
Here, we make use of the Differential Evolution (DE) algorithm
[7,8], which is a member of the class of EAs and, in general, ap-
pears to perform with high efficiency and accuracy.

The Letter is organized as follows. In Section 2 the differen-
tial evolution is presented. In Section 3 our proposed methodology
is described while Section 4 contains numerical results for 2 and
4-dimensional symplectic maps, coming from the application of
the proposed methodology. The Letter ends in Section 5 by pre-
senting concluding remarks.

2. Differential evolution algorithm

Differential Evolution (DE) is a population-based algorithm for
global optimization of multimodal functions. It attains a set of pos-
sible solutions and evolves them in order to find the “best” one
(optimum) among them, according to a well defined set of crite-
ria. The set of possible solutions is called the population of the
DE. Some of the advantages of the DE algorithm are the follow-
ing: (a) It can operate on non-differentiable and/or discontinuous
functions of arbitrary dimensions. (b) It can be applied to func-
tions contaminated by noise or functions that change dynamically
over time. (c) It can be used to study integer, discrete and mixed
programming problems. (d) It can be easily computer-parallelized.

Specifically, the DE algorithm is said to exploit a population of
individuals (N-dimensional vectors). Let ui denote the ith individ-
ual of the population. Then, DE is composed of the following four
steps:

Step 1. Initialization step. Initialize randomly the individuals of
the population. Set the mutation factor, F , and the recombina-
tion (cross-over) factor, CR, to fixed values within the interval
[0,1] and choose an objective function for the problem under
study.
Step 2. Mutation step. Mutate each individual ui
g (called the target

individual) of the population to form a trial vector, vi
g+1, by

applying the following DE algorithm:

vi
g+1 = ur1

g + F
(
ur2

g − ur3
g

) + F
(
ur4

g − ur5
g

)
, (1)

where r1, r2, r3, r4, r5 are randomly chosen integers number-
ing the individuals in the population, such that r1 �= r2 �= r3 �=
r4 �= r5 and F is a mutation factor.

Step 3. Recombination (Crossover) step. For every element of the
trial vector, vi

g+1, obtain a random value, r ∈ [0,1]. If r � CR,

set ui
g+1 = vi

g+1, otherwise set ui
g+1 = ui

g .

Step 4. Selection step. For every individual of the population ui
g+1

evaluate its value through the objective function. If this value
is better than the one of the target individual ui

g , then the

individual ui
g+1 replaces the target individual in the next gen-

eration of the algorithm. Otherwise, the target individual is
retained in the next generation of the DE algorithm. If the ter-
mination criterion is not satisfied, then go to the second step.
As a termination criterion we can use a predefined number of
generations or an error goal value for the objective function.

Of course, there are several other types of DE algorithms sim-
ilar to (1) [9,10]. However, they generally involve fewer than 5 rk
parameters and when we did implement some of them we found
that they did not perform any better than (1). Regarding our choice
of the mutation factor F and the recombination factor CR, we have
found that large values of F produce populations with greater di-
versity and hence slow down convergence of the DE algorithm,
while CR values close to 1 produce new trial points that differ sig-
nificantly from the previous ones. Choosing F = 0.5 and CR = 0.5
gave results that were close to optimal and thus we kept this
choice for all our experiments. We stress that by convergence we
mean that the value of D(r) is stabilized to 4–5 significant dig-
its. Finally, selecting 20 individuals within our spherical shells is
dictated by the need to optimize convergence requirements and
keep computation times to a minimum. We did, of course, run ex-
periments with population sizes of 30 and 40 individuals and the
results for D(r) were quite similar, while computation times were
significantly higher.

3. Proposed methodology

Let us now introduce the methodology for the systematic detec-
tion of resonances in 2-dimensional maps, since the generalization
to the multi-dimensional case is straightforward: We begin with a
central elliptic fixed point of a conservative map T , which is ei-
ther a stable equilibrium, or belongs to a stable m-periodic orbit
of T (hence a fixed point of the map T m), which for convenience
we shift to the origin. Concentric circular shells are then generated
with increasing radii r1 < r2 about this point, with small thickness
(r2 − r1 � 0.001 up to 0.005). The aim is to find an initial condition
in the interior of the annular region enclosed by two such circles,
whose orbit has the maximal difference between the maximum
and minimum distance measured from the central elliptic point.
By doing this, we convert the prescribed problem to the solution
of a maximization problem and make use of the DE algorithm pre-
sented in Section 2.

The population of the DE, in this case, is a set of points initial-
ized randomly within concentric circular regions about the origin.
The computation of the objective function, for all individuals of
the DE, relies on the following procedure: Consider the individual
as an initial condition of the map and iterate it for thousands of
iterations. Then, compute the maximum and minimum distances
between the generated orbit and the central elliptic point. The dif-
ference between these two distances is the value of the objective
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Fig. 1. The phase space of Hénon map with vx = 0.175 is presented in the left panel. On the right D is plotted versus r for the same value of vx , up to about 0.5, beyond
which lies the chaotic domain, where it fails to converge and becomes unbounded.
function which we shall denote as D . The population of the DE is
then evolved following the steps of the algorithm described in Sec-
tion 2. The output of the DE algorithm is a new individual which
has the current maximum value of D . The same procedure is then
carried out for all regions located between consecutive circles, cov-
ering in this way all of phase space. At the end, we output the
results of the above methodology by plotting D versus the distance
from the origin r.

Simple inspection of the plot generated provides useful evi-
dence regarding the existence of resonances of the map under
study. As we will see in Section 4, small “plateaus” on the graph of
D versus r, indicate the regions of phase space of the map where
resonances may be located. Every time we find such behavior we
focus on the particular part of the plot, seeking to magnify its de-
tailed structure. Iterating then the corresponding initial conditions
together with those of other neighboring points yields additional
information about the location and shape of these resonances in
phase space.

Finally, we suggest that this methodology may also be used as
a numerical indicator of whether a given map is integrable or not.
For example, if our plot reveals a smooth, monotonously increasing
function D(r), without any sign of plateaus, this may serve as a
strong indication of the integrability of the map.

4. Applications to 2- and 4-dimensional maps

We have applied the methodology described above to several
examples of 2- and 4-dimensional maps. In all experiments we
select a population of 20 points (initial conditions) and set factors
F and CR equal to 0.5. Using the DE operator (1) everywhere in
the Letter, each map was iterated for 104 iterations.

4.1. The 2-dimensional case

In the experiments of this section we have used the following
five maps:

(a) The 2-dimensional Hénon map [11–14], given by:

x′ = cos(2π vx)x + sin(2π vx)
(

px + x2),
p′

x = − sin(2π vx)x + cos(2π vx)
(

px + x2),
(b) The standard map [2,15]:

x′ =
(

x + y − k

2π
sin(2πx)

)
mod

1

2
,

y′ =
(

y − k

2π
sin(2πx)

)
mod

1

2
,

(c) The McMillan map [16,17]:

x′ = y,

y′ = −x + (2μy)/
(
1 + y2),

(d) The product map [18]:

x′ = (x + 1/x)(1/y),

y′ = x,

(e) And finally the Cohen map [19] given by the equations:

x′ =
√

1 + x2 − y,

y′ = x.

The 2-dimensional Hénon map is a well-known non-integrable
symplectic map, which can be used to describe the 2-dimensional
betatronic motion in a magnetic lattice of an accelerator machine:
(x, px) are the so-called Courant–Snyder coordinates and the lin-
ear part of the map is a rotation by a constant angle ω = 2π vx

[11,13,14]. The standard map is also symplectic with large scale
chaotic behavior becoming evident as k > 0 grows [2]. It is inte-
grable only for k = 0, since in that case the map is linear. On the
other hand, the McMillan map is known to be integrable for all
values of its parameter μ, possessing a family of invariant curves
given by I(x, y) = x2 y2 + x2 + y2 − 2μxy [16,17], while it is not
yet known whether the product and Cohen maps are integrable or
not. What has only been proven is that the Cohen map does not
posses a first algebraic integral [19].

Concerning the radial steps taken in each map for the applica-
tion of our method, their length for the Hénon map was taken
equal to 0.005, for the standard map and the Cohen map was
0.003 while for the McMillan map and the product map the ra-
dial step was equal to 0.002.

In the left panel of Fig. 1 the phase space of Hénon map with
frequency vx = 0.175 is presented and the corresponding plot of
D versus the radial distance r from the origin is exhibited on the
right panel. It is clear that near the approximate radii 0.35 and
0.48 small “plateaus” are observed. After the value of the radius
becomes 0.5, the orbit enters in the chaotic regions of the map,
oscillates wildly at first and then escapes to infinity after a small
number of iterations. These plateaus correspond to two chains of
islands of period 6 and 13 that appear in Fig. 2. These islands were
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Fig. 2. The two chains of islands found in Hénon map with vx = 0.175 by iterating
the map using as initial conditions points that appear at the plateau at radii 0.35
and 0.48 of the right panel of Fig. 1. The initial conditions for these island chains
respectively are (x = −0.27996935, y = 0.20451539) and (x = −0.35738108, y =
0.31484934).

Fig. 3. The plot of the rotation number for Hénon’s map with vx = 0.175.

computed by iterating the Hénon map, with vx = 0.175, using as
initial conditions the output points found by the DE algorithm for
r = 0.35 and 0.48 (see the caption of Fig. 2).

In Fig. 3 we plot the rotation number [15] for Hénon’s map with
vx = 0.175, as a function of the distance from the origin, moving
along the y = −x direction with a small step and executing itera-
tions of the map. The rotation number σ is defined by the limit

σ = lim
n→∞

1

n

n∑
i=1

θi,

where θi are successive angles produced at every iteration i on
the plane of the map and represents the average angle between
the produced points and the central point of the map. As is well
known, for periodic orbits the rotation number is equal to the ra-
tio of two positive integers, for quasiperiodic orbits it is irrational
and is not defined for a chaotic orbit. Proceeding outwards from
a central elliptic point, we find that σ is a smooth, monotonous
function of the radial distance r and generates small plateaus at
locations where islands of periodic orbits appear.

We notice that this approach does recognize the first chain of
islands with rotation number 1/6 as well as the last one with ro-
tation number 1/7 but fails to identify (using the same step size
0.005 as in the DE algorithm), the chain of islands in between with
rotation number 2/13 found by our methodology. When we did
decrease the step size to 0.001, the rotation number detected the
2/13 resonance, indicating its lower sensitivity compared to our
approach. The most serious disadvantage, however, is that the ro-
tation number does not readily extend to the case of more than 2
dimensions.

Next, we apply our method to the standard map and plot D
versus the radial distance from (0,0) in Fig. 4. The radial step size
used was equal to 0.003. The first plateau is located close to a
distance approximately 0.18 from the origin. A last big plateau is
detected starting with radius 0.22 which means that all orbits in
that region have almost the same value of D . Thus, if we use as
initial condition the output point found by the DE algorithm at ra-
dius 0.19 (with x = −0.03810525, y = 0.18686112) and the one at
a radius 0.23 (with x = −0.16142492, y = 0.16315651) and iterate
them through the standard map 103 times, we get two chains of
islands of regular motion presented in Fig. 5 with rotation num-
bers 1/8 and 1/10.

In Fig. 6, on the other hand, we observe that the plot of D ver-
sus r for the McMillan map yields a smooth curve with no plateaus
or fluctuations, until the radius reaches the outer part of the phase
space of the map. As we mentioned before, this map is known to
Fig. 4. The phase space of the standard map with k = 0.9 is presented in the left panel, while on the right D is plotted versus r for the same value of k. Note that, after
forming the second plateau, D ceases to converge and exhibits small fluctuations, as the orbits enter the large chaotic “sea” surrounding the central regular region.
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be integrable and free from resonance islands. This is corroborated
by the fact that the plot produced by the proposed methodology

Fig. 5. Chains of islands found for the standard map with k = 0.9, using as initial
conditions points appearing at the beginning of the plateaus at radii 0.19 and 0.23
of Fig. 4.
shows that there are no visible resonances and hence provides
strong evidence for the integrability of the map.

Finally, Figs. 7 and 8 correspond to the product and the Cohen
maps, respectively. On the right panel of Fig. 7, the plot does not
give any indication for the existence of resonances in the phase
space and hence suggests that the product map is integrable. Our
results about the Cohen map are even more interesting: The plot
produced by the DE algorithm is presented in Fig. 8. Note that,
in the magnification of the right panel of Fig. 8 shown in Fig. 9,
two chains of islands with periods 14 and 23 are discovered very
close to radii 1 and 1.58 respectively. If we use as initial condi-
tions the “best” points found by the DE algorithm at radius 1 (x =
1.38551745, y = 0.01315274) and radius 1.58 (x = −0.11757663,
y = 1.99341441) and iterate them through the Cohen map 103

times, we indeed locate these islands as displayed in Fig. 10.
A further study of the resonances identified in Fig. 9 reveals the

presence of saddle points with eigenvalues very close but not equal
to 1. In particular, for the period 14 orbit we find that the saddle
point is located at x ≈ 1.23590433, y ≈ 1.80320245 with eigenval-
ues λ1 ≈ 1.01226, λ2 = 1/λ1 ≈ 0.98789, while for the period 23
we find that the saddle point x ≈ 1.64966043, y ≈ 2.76893060
has eigenvalues λ1 ≈ 1.01227, λ2 = 1/λ1 ≈ 0.98788. The rota-
tion numbers are 3/14 and 5/23 while the corresponding ellip-
tic points are located at x = 0.02582572, y = −0.39650893 and
x = −0.06696497, y = 2.01814322.
Fig. 6. The phase space of the McMillan map with μ = 0.5 is presented in the left panel and on the right D is plotted versus r for the same μ.

Fig. 7. The phase space of the product map is presented in the left panel, while on the right D is plotted versus r for the same map.
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Fig. 8. The phase space of the Cohen map is presented in the left panel and in the right panel the plot of D versus radius for the same map.

Fig. 9. A magnification of the right panel of Fig. 8 close to radius 1 is presented in the left panel showing the plateau corresponding to the 3/14 orbit, while in the right
panel a magnification of the right panel of Fig. 8 near radius 1.58 is shown demonstrating the presence of the 5/23 resonance.
Fig. 10. The two chains of islands found in the Cohen map using as initial conditions
points that appear at the two plateaus of the Fig. 9.

These results strongly suggest that the Cohen map is not inte-
grable in the sense that it possesses multiple resonances, near the
saddle points of which one expects to find chaotic behavior pre-
cluding the existence of a one parameter family of invariant curves
describing the global dynamics of the map.
Regarding computation times, e.g. in the case of Hénon’s map,
where we proceeded in 20 directions with 50 iterations of the
DE algorithm in each direction, our calculations required approx-
imately 15 min. On the other hand, the rotation number plot of
Fig. 3 (where one proceeds in only one direction), takes 5 min
for 1000 steps, with 105 iterations at each step to achieve con-
vergence. Thus, it is clear that if we wanted to strengthen the
rotation number results by proceeding in more directions, com-
putation times would quickly exceed those needed for the DE al-
gorithm.

4.2. The 4-dimensional case

Let us now apply our methodology to the 4-dimensional Hénon
map [11–13] given by the equations:

x′ = cos(2π vx)x + sin(2π vx)
(

px + (
x2 − y2)),

p′
x = − sin(2π vx)x + cos(2π vx)

(
px + (

x2 − y2)),
y′ = cos(2π v y)y + sin(2π v y)(p y − 2xy),

p′
y = − sin(2π v y)y + cos(2π v y)(p y − 2xy),

as well as to a 4-dimensional McMillan map [20] given by the
equations:
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Fig. 11. The plot of D versus radius for the 4-dimensional Hénon map with frequencies vx = 0.61903, v y = 0.4152 is presented in the left panel and in the right panel we
show the plot of D versus radius for the same map with frequencies vx = 0.28, v y = 0.31.
x′
1 = x2,

x′
2 = −x1 + 2kx2/

(
x2

2 + y2
2 + 1

) + εx2,

y′
1 = y2,

y′
2 = −y1 + 2ky2/

(
x2

2 + y2
2 + 1

) + εy2.

The 4-dimensional Hénon map describes the effects of a parti-
cle’s motion through nonlinear magnetic focusing elements of the
FODO cell type [11–14]. The x, y variables are deviations of the par-
ticle’s motion from the ideal circular trajectory in the horizontal
and vertical direction respectively and px, p y are the correspond-
ing momenta. Variables vx, v y are the so-called tune parameters
of the accelerator machine. For this application, we have used
the pairs of frequencies vx = 0.61903, v y = 0.4152 and vx = 0.28,
v y = 0.31 separately. The produced plots resulting from the appli-
cation of the DE algorithm (where, instead of circles we now use
4-dimensional “spheres” of radius r) are presented in the two pan-
els of Fig. 11. The radius step was set equal to 0.005.

Note, in particular, on the left panel of Fig. 11 that if one starts
applying this procedure at a radius of 0.35, the plot presents non-
smooth behavior showing several small plateaus up to radius 0.5.
Beyond this distance, D oscillates rapidly and then goes to infinity
due to the presence of large scale chaos. Similar results are pre-
sented on the right panel of Fig. 11, at the other pair of parameter
values. Here, the plot loses its smoothness after radius 0.25 and
when the radius becomes nearly equal to 0.27 large scale chaos
appears.

We then investigated further the 4-dimensional Hénon map,
with frequencies vx = 0.61903, v y = 0.4152 and were able to lo-
cate the resonances identified by the DE algorithm. More specif-
ically, we found periodic orbits in the neighborhood of a point
that corresponds to the plateau on the left panel of Fig. 11
near radius 0.41, one of which has period 32 with initial condi-
tions (x = 0.38384187, px = −0.07366717, y = 0.00000005, p y =
−0.14620234). Starting near this point we iterated the map 104

times and obtained the orbit shown in Fig. 12, which looks like
8 isolated tori. Interestingly enough, when projected on the x, px

plane, these look like a chain of 8 islands similar to the ones found
in the 2-dimensional case.

Finally, in Fig. 13 we exhibit the plot of D versus r for the
4-dimensional McMillan map in the case ε = 0, where it is known
to be integrable. The radius step was set to 0.001. We again ob-
serve that the curves of the plot are smooth and similar to the
ones found for the integrable 2-dimensional McMillan map. How-
ever, if we make a small perturbation to the above map, by setting
ε = 0.1, the corresponding plot of D versus r shown in Fig. 14 dis-
Fig. 12. 8 tori produced by the iteration of a point lying close to a period 32 for the
4-dimensional Hénon map, with frequencies vx = 0.61903, v y = 0.4152.

Fig. 13. Plot of D versus radius produced by the proposed methodology for the 4-
dimensional McMillan-like integrable map with k = 0.5 and ε = 0.

plays small plateaus. In this case, the 4-dimensional McMillan map
is not expected to be integrable and this is strongly suggested by
the four small plateaus appearing in the plot (denoted by the cir-
cles around them), providing reliable indication for the existence
of resonances of the map.
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Fig. 14. Plot of D versus r produced by the proposed methodology for the 4-
dimensional McMillan-like map, with k = 0.5 and ε = 0.1.

5. Conclusions

A new methodology has been proposed for the detection of
resonances in conservative maps. It relies on the solution of an
optimization problem, uses evolutionary algorithms and can be
applied to maps of any dimension. Basically, it introduces a func-
tion D(r) of the radial distance r from the origin of the map,
whose smoothness and monotonicity reveal important properties
concerning the dynamics. In this Letter, we applied this methodol-
ogy to various examples of 2- and 4-dimensional symplectic maps
and obtained interesting results showing the effectiveness of our
method in detecting the location and approximate size of reso-
nances, represented by “plateaus” in the graph of D(r) versus r. We
also demonstrated an additional aspect of the proposed method-
ology, i.e. that it can be used to provide evidence regarding the
complete integrability of a given map, since completely integrable
maps generally do not possess multiple chains of different num-
bers of resonance islands.

We wish to emphasize that our aim in this work was not
to propose a new analytical criterion for studying resonances,
similar in rigor and accuracy to other more sophisticated ap-
proaches known in the literature [21–23]. Rather, our purpose was
to present a new practical technique for locating all resonance is-
lands within a prescribed level of resolution, which is efficient,
relatively fast and applies to multi-dimensional conservative dy-
namical systems. It is clear that a solid mathematical basis for our
method is still lacking. Still, encouraged by the results presented
here, we believe that the search for such a justification is worth
pursuing in a future publication.
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