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The detection of periodic orbits bears signi�cance for the study of nonlinear mappings, since
they can reveal crucial information on their dynamics. Recently, population�based stochastic
optimization algorithms were introduced to address problems where traditional gradient�based
approaches failed. The e�ciency of these approaches in applications, triggered further research
towards the development of more e�cient variants. This work presents the principal concepts of
applying concurrent stochastic population�based approaches for the detection of periodic orbits,
and also reports new results attained by the application of Memetic Algorithms on well�known
chaotic maps for periodic orbits with high period.
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1. Introduction

The wide application of dynamical systems for
the description and modeling of systems in di�erent
scienti�c disciplines has boosted the relative research
signi�cantly during the past years. In this framework,
nonlinear mappings have been used extensively
to model conservative or dissipative dynamical
systems [1�10]. A crucial role in the study of such
mappings is played by their periodic orbits, since
they can provide useful information regarding the
geometric and dynamical properties of the mapping,
especially in cases of chaotic behavior [11].

The detection of periodic orbits is a very
challenging task, since analytic expressions are
available only in a limited number of cases that refer
mostly to polynomial mappings of low degree. For this
purpose, traditional root �nding algorithms, such as
the Newton�family methods, have been widely applied
for computing periodic orbits numerically. However,
such algorithms fail in cases where the mapping
lacks of nice mathematical characteristics, such as
continuity and di�erentiability.

Recently, population�based stochastic
optimization algorithms have been introduced as
an alternative tool for computing periodic orbits
of nonlinear mappings, through the transformation
of the corresponding root �nding problem to an
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equivalent global minimization problem [12, 13]. The
requirement of function values solely, along with
their ability to perform better global search than
traditional gradient�based approaches, renders these
algorithms a very appealing alternative. Applications
on well�known mappings, as well as on galactic
potentials, justi�ed their wide applicability and
e�ciency [12�14].

Population�based algorithms can also be
equipped with a local search component that
enhances their search ability, especially when further
�ne�tuning of the already detected solutions is
required in order to achieve higher accuracy of the
solutions. This class of algorithms is named Memetic
Algorithms (MAs) and it has been shown to be very
e�cient in di�erent application �elds [14�16]. Usually,
MAs consist of a global component that performs a
rough search of the search space and a local search
algorithm that is evoked occasionally to re�ne the
already detected promising solutions. This e�ect can
be very useful when high accuracy of the solutions is
required.

In this paper, we present the established
framework for detecting periodic orbits using
population�based stochastic optimization algorithms.
We also demonstrate the application of two popular
algorithms, namely Particle Swarm Optimization
(PSO) and Di�erential Evolution (DE), along with
their memetic counterparts, for detecting long
periodic orbits of well�known mappings. In the
memetic approaches, the Solis and Wets algorithm is
used as the local search component, along with an
entropy�based variant that has been shown to be very
e�cient in di�erent applications [14].

The rest of the paper is organized as follows:
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the general framework of detecting periodic orbits of
nonlinear mappings through optimization algorithms
is presented in Section 2, while the considered
algorithms as well as their memetic variants are
roughly described in Section 3. Experimental results
on well�known mappings are reported in Section 4,
and the paper concludes in Section 5.

2. The established optimization
framework

Let Φ(X) be an n�dimensional mapping,

Φ(X) =
(
Φ1(X), . . . , Φn(X)

)>
: Rn → Rn.

Then, a point X = (x1, . . . , xn)> ∈ Rn, is called a
�xed point of order p or periodic orbit of period p of
Φ(X), if

X = Φp(X) ≡ Φ(Φ(. . . Φ(Φ(X)) . . .))︸ ︷︷ ︸
p times

, (1)

i.e., p consecutive applications of the mapping on the
point X, produce the same initial point X.

Let Θn = (0, . . . , 0)> be the origin of Rn. Then,
Eq. (1) implies that [1]

Φp(X)−X = Θn ⇒





Φp
1(X)− x1 = 0,

...
Φp

n(X)− xn = 0.

(2)

Therefore, detecting a periodic orbit of period p of the
mapping Φ(X), is equivalent to �nding the solutions
of the nonlinear system de�ned by Eq. (2).

The aforementioned problem can be transformed
to an equivalent global minimization problem, by
applying the following transformation [17]:

f(X) =
n∑

i=1

(
Φp

i (X)− xi

)2

. (3)

The produced function f(X) is non-negative and all
its global minimizers, for which f(X) = 0, are periodic
orbits of period p of the mapping Φ. Thus, minimizing
f is equivalent to computing the periodic orbits of
Φ(X).

An advantage of bringing the problem into an
optimization framework is the exploitation of the
existence of chaos to the bene�t of the employed
optimization algorithm. This is due to the nature of
the objective function de�ned by Eq. (3), which is
steeper in the neighborhood of periodic orbits within

chaotic regions, since signi�cantly high function values
are assumed by points very close to the periodic
orbit, producing steep, narrow valleys around it that
can help the optimizer to converge rapidly towards
the periodic orbit. Moreover, the transformation to
an optimization problem permits the application of
a wide variety of both deterministic and stochastic
optimization algorithms. Also, the application of
techniques such as De�ection and Stretching [17]
that can sequentially detect periodic orbits of the
same period but di�erent stability features is possible
through the transformation to an optimization
problem.

Although a di�erentiable norm was used for the
derivation of Eq. (3) in [17], this is not obligatory
since stochastic optimization algorithms can solve the
optimization problem e�ciently, requiring only the
value of the objective function f(X), which can be
even discontinuous. Thus, any `q�norm, for a real
number q > 1, which is de�ned as

‖Φp(X)‖q =

(
n∑

i=1

|Φp
i (X)−Xi|q

)1/q

,

‖Φp(X)‖∞ = max
16i6n

|Φp
i (X)−Xi|,

can be used instead of the squared `2�norm of Eq. (3).
Recently, such approaches that use population�based
algorithms were proposed. Most works considered
concurrent population�based stochastic optimization
algorithms, instead of the traditional single�point
point stochastic approaches (such as Simulated
Annealing) [12, 13, 18]. This choice was based on their
ability to evolve concurrently many search points,
performing better exploration, while they can be
parallelized easily, exhibiting remarkable e�ciency in
applications where the mapping evaluation is time�
consuming (e.g., multiple integrations are required for
computing the mapping) [12].

Such promising algorithms that have already
been used to tackle the optimization problem
successfully, along with their memetic variants that
will be illustrated in the experiments, are described in
the following sections.

3. The considered algorithms

In this section we describe the Particle
Swarm Optimization and the Di�erential Evolution
algorithm, along with their memetic counterparts that
incorporate the Solis and Wets local search algorithm.
The workings of these algorithms will be illustrated
later for the detection of long periodic orbits of well�
known nonlinear mappings.
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3.1. Particle swarm optimization

PSO is a stochastic population�based
optimization algorithm that exploits a population
of individuals to explore the search space [19]. Its
development was initially inspired by the �ocking
behavior of living organisms as well as particle
physics, therefore it is categorized as a swarm
intelligence algorithm [20]. In PSO's framework, the
population is called a swarm and the individuals (i.e.,
the search points) are called particles.

Each particle moves with an adaptable velocity
(position shift) within the search space, while it stores
into a memory the best position it has ever visited.
Also, it exchanges information with the rest of the
particles (or just a portion of the swarm). This group
of communicating particles are called its neighborhood
and the communicated information is the best position
ever achieved by the whole neighborhood. In the
optimization framework, such good positions are
characterized by lower function values. The case where
the whole swarm is considered as the neighborhood for
each particle is called the global PSO variant, while
smaller neighborhoods de�ne local PSO variants.

The neighborhoods are usually de�ned in the
space of particles' indices rather than in actual search
space, based on a user�de�ned neighborhood topology.
The reason for this selection is the alleviation of
the heavy computational burden required for the
computation of all distances among particles, as well
as the promotion of diversity in the swarm. The most
common neighborhood topology is the �ring topology�,
where the particles are assumed to lie on a ring, having
two immediate neighbors each. This topology was also
adopted in our experiments.

Let S ⊂ Rn be the search space, f : S → R be
the objective function, and S be a swarm consisting
of M particles, S = {X1, . . . , XM}, with Xi ∈ S, i =
1, 2, . . . , M . The velocity of this particle is also an n�
dimensional vector, Vi, and the best previous position
encountered by the i�th particle in S is denoted by
Pi ∈ S. Assume gi to be the index of the particle
that attained the best previous position among all the
particles in the neighborhood of Xi, i.e., f (Pgi(t)) 6
f (Pj(t)), for all neighbors Xj of Xi, and t to be the
iteration counter. Then, the swarm is manipulated by
the equations [21]:

Vi(t + 1) = χ
[
Vi(t) + c1 r1

(
Pi(t)−Xi(t)

)

+ c2 r2

(
Pgi(t)−Xi(t)

)]
, (4)

Xi(t + 1) = Xi(t) + Vi(t + 1), (5)

where i = 1, 2, . . . ,M ; χ is a parameter called
constriction factor; c1 and c2 are two positive

constants called cognitive and social parameter,
respectively; and r1, r2, are random numbers
drawn from a uniform distribution in [0, 1]. All
vector operations are performed componentwise. The
constriction factor is a mechanism for controlling the
magnitude of the velocities. Stability analysis of PSO
provided di�erent con�gurations of χ with respect to
the parameters c1 and c2 [21].

In the global variant of PSO, all particles are
attracted by the same overall best position, converging
faster towards speci�c points. Thus, the global variant
of PSO emphasizes exploitation over exploration.
On the other hand, in the local variant, the
information of the best position of each neighborhood
is transmitted to the other particles of the swarm
through their neighbors. Therefore, the attraction
to speci�c best positions is weaker, hindering the
swarm from getting stuck in locally optimal solutions.
Thus, the local variant of PSO emphasizes exploration
over exploitation. The balance between these two
properties is crucial for the performance of each global
optimization algorithm [17, 22, 23].

3.2. The di�erential evolution algorithm

The DE algorithm was developed by Storn and
Price [24]. It is a direct numerical search method,
which utilizes M , n�dimensional parameter vectors
Xi, i = 1, 2, . . . , M , to probe the search space. The
initial population is taken to be uniformly distributed
in the search space. At each iteration (generation) of
the algorithm, two operators, namely mutation and
recombination, are applied on the individuals, and a
new population arises. Then, selection takes place,
and the best M individuals from the old and the
new populations are selected to comprise the next
generation.

According to the mutation operator, for each
vector Xi(t), i = 1, 2, . . . , M , at iteration t, a mutant
vector is produced by

Vi(t + 1) = Xr1(t) + K
(
Xr2(t)−Xr3(t)

)
,

where r1, r2, r3 ∈ {1, 2, . . . , M} are mutually di�erent
random indices and K ∈ (0, 2]. The indices r1, r2, r3,
also need to di�er from the current index, i, and,
consequently, mutation can be applied only if M > 4.

Following the mutation phase, the recombination
operator is applied on the population. Thus, a trial
vector ,

Ui(t + 1) =
(
Ui1(t + 1), Ui2(t + 1), . . . , Uin(t + 1)

)
,

is generated, where
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Uij(t + 1) =
{

Vij(t + 1), if Rj 6 CR or j = RI(i),
Xij(t), if Rj > CR and j 6= RI(i),

where j = 1, 2, . . . , n; Rj is the j�th evaluation of a
uniform random number generator in the range [0, 1];
CR is the (user speci�ed) crossover constant within
[0, 1]; and RI(i) is a randomly chosen index within
{1, 2, . . . , n}.

To decide whether or not the vector Ui(t + 1)
should be a member of the population comprising the
next generation, it is compared to the initial vector
Xi(t), and

Xi(t + 1) =





Ui(t + 1), if f(Ui(t + 1))
< f(Xi(t)),

Xi(t), otherwise,

where f is the objective function under consideration.
The procedure described above is considered as

the standard variant of the DE algorithm, denoted as
DE/rand/1/bin, and it was used in our experiments.
Di�erent kinds of mutation and crossover operators
have also been applied on minimization problems with
promising results [24].

3.3. Memetic algorithms

MAs draw inspiration from natural adaptation
models that combine individual evolution and learning
within a lifetime [25]. They consist of a global and a
local search component. The �rst emulates evolution
of the individual, while personal re�nement is
encouraged through the latter [25]. Thus, MAs strive
to balance the trade�o� between exploration and
exploitation, e�ciently. For this purpose, evolutionary
algorithms are usually employed, combined with local
search methods.

MAs operation follows closely the operation of
the employed evolutionary algorithm. However, after
applying the evolutionary operators and evaluating
the population, S, a subset, Sloc, is selected as initial
points for the local search. The obtained solutions
replace these individuals in the population, if they
improve their function values.

The selection of Sloc as well as the frequency of
application of the local search is considered a topic
of crucial importance in the �eld of MAs and it is
usually problem dependent [26]. The employed local
search methods play also an important role in the
applicability and e�ciency of MAs. While gradient�
based local search can be very e�cient in well�de�ned

Table 1. Results of PSO for TP1

Norm SS Max Min Mean StD Suc
`2 40 83680 1760 11827.1 16968.8 93

60 78360 3780 11070.0 11929.7 100

`1 40 94680 2560 9222.7 13852.9 97

60 64740 3240 9003.1 7057.1 98

`∞ 40 65880 2440 7279.2 7669.1 97

60 66300 4440 9118.2 8140.7 100

M`∞ 40 9408 598 2774.9 1602.8 100

problems with good Mathematical characteristics,
stochastic local search is considered more appropriate
for problems contaminated by noise and uncertainty,
as in most real life applications. Di�erent local search
schemes have been used in MAs and results are
reported in relative literature [25].

In the proposed memetic algorithm, we utilized
the Solis and Wets (SW) [27] local search technique.
The main criterion for the selection of this scheme was
the preservation of the derivative�free nature of the
memetic scheme, as well as its simplicity and �exibility
for adaptation on the problem at hand. Solis and Wets
proposed several stochastic local search algorithms.
In our approach, we used the algorithm reported as
�Algorithm 1� in [27].

In the MAs that we investigated on the
problems of detecting periodic orbits, PSO and DE
were used as the global search component of the
memetic algorithm, with SW employed as the local
search component. Regarding the frequency of the
local search application, two di�erent schemes were
considered, namely, a simple scheme that admits local
search at each iteration of the algorithm, and a
more sophisticated scheme that applies local search
only if, after a prespeci�ed number of iterations,
the entropy of the population falls under a user�
de�ned value [14]. In both cases, SW was applied on
the best positions of the particles (in PSO) or the
individuals (in DE) with a prespeci�ed probability [14,
15]. Regarding the implementation di�culty of the
algorithms, it clearly depends on the selected local
search scheme. PSO and DE are both considered
very simple population�based algorithms and they can
be implemented in a few lines, as exhibited in [28�
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30] for di�erent programming languages. Also, the
aforementioned local search algorithms are very simple
in implementation, rendering the considered memetic
schemes very simple.

4. Experimental results

The following mappings were considered in our
experiments:
Test Problem 1 (TP1) [1, 5, 31] (H�enon 2�
dimensional map). This mapping is de�ned by the
following equation:

Φ(X) =

(
cos α − sin α

sin α cos α

)(
X1

X2 −X2
1

)
,

where α is the rotation angle. We investigated this
problem for period p = 10368, and X1 ∈ [0.85, 0.87],
X2 ∈ [0.12, 0.14], cos α = 0.24 [1].
Test Problem 2 (TP2) [32] (H�enon 4�dimensional
symplectic map). This mapping describes the e�ects
of a particle's motion through nonlinear magnetic
focusing elements of the FODO cell type, and it is
de�ned by the following equation:




Φ1(X)
Φ2(X)
Φ3(X)
Φ4(X)


 =

(
R(α1) O
O R(α2)

)

×




X1

X2 + X2
1 −X2

3

X3

X4 − 2X1X3


 ,

where R(α), O, are de�ned as [1]:

R(α) =

(
cosα − sin α

sin α cosα

)
, O =

(
0 0
0 0

)
.

and α1 = 0.61903, α2 = 0.4152 are the
frequencies [32]. We investigated this problem for
period p = 14606, and for X1 ∈ [0.26, 0.30], X2 ∈
[0.07, 0.11], X3 ∈ [0.51, 0.55], and X4 ∈ [0.13, 0.17].

Test Problem 3 (TP3) [33] (Driven Du�ng
Oscillator). This is a continuous conservative
dynamical system, de�ned as

Ẍ = X −X3 + α cos ωt,

where α = 0.05 and ω = 2. We investigated this
problem for period p = 663 and X ∈ [0.42, 0.56],

Table 2. Results of DE for TP1

Norm SS Max Min Mean StD Suc
`2 100 42301 10801 24814.4 6552.2 97

150 90901 19201 47665.0 13473.9 100

`1 100 53401 10801 24968.7 6489.9 99

150 81301 21151 46519.2 10121.5 99

`∞ 100 36301 10201 24584.8 6217.1 99

150 73951 23101 43984.0 11624.8 100

M`∞ 100 9464 759 3111.7 1713.8 100

Table 3. Results of PSO for TP2

Norm SS Max Min Mean StD Suc
`2 100 93000 13900 31480.6 15296.0 98

150 79200 24900 38134.5 11229.2 100

`1 100 83800 16400 28944.7 12013.0 94

150 94350 21900 39392.4 12955.6 99

`∞ 100 76700 16700 31254.7 12951.1 95

150 88950 18750 37898.4 12451.2 96

ME`2 80 92946 11680 25911.9 15489.4 100

Table 4. Results of DE for TP2

Norm SS Max Min Mean StD Suc
`2 100 44401 17201 26744.5 5336.9 92

150 68401 24601 45452.5 8442.5 99

`1 100 36901 18001 26528.4 4148.6 95

150 66451 25501 44855.6 8047.4 97

`∞ 100 50801 17601 27904.2 5673.1 93

150 84001 30001 45696.7 9770.2 94

M`2 80 67584 4505 25829.4 13402.4 100

Ẋ ∈ [−0.05, 0.15] [33]. For each test problem, the PSO
and DE algorithms described in Section 3 were applied
on the mapping within the corresponding search
ranges. Our target was to illustrate the performance
of these algorithms on di�erent test problems and
for objectives functions de�ned by di�erent norms, as
stated in Section 2. For this purpose, we investigated
the most common norms, namely, `2, `1 and `∞. More
speci�cally, each algorithm was applied 100 times on
each test problem for each norm. At every experiment,
the success of the algorithm in achieving a target
minimum objective function equal to 10−8 as well
as the required number of function evaluations, were
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recorded. If the target was not achieved within a
budget of 105 function evaluations, then the algorithm
was terminated recording a failure.

Since the e�cacy of a population�based
algorithm stems from the interactions among
population (swarm) members, it is an open question
what the swarm size shall be for a speci�c problem.
In most cases, this cannot be determined but
experimentally. In order to investigate the behavior
of the proposed approaches under population size
scaling, we repeated all experiments for two di�erent
population sizes, denoted as SS, that were dependent
on the algorithm and the problem at hand, based on
our previous experience [12�16].

Moreover, in TP1 and TP2, where PSO and DE
needed a signi�cant computational e�ort to detect the
periodic orbits, their memetic counterparts were also
applied for each norm. The SW local search algorithm
was used in the memetic approaches. As mentioned
in Section 3 3.3, two di�erent memetic schemes were
considered, namely, an entropy�based scheme, and a
simpler one that applies local search at each iteration.
For each test problem and algorithm, only the best
performing memetic scheme was recorded.

Regarding TP1, PSO was applied for swarm sizes
40 and 60 and the results are reported in Table 1.
More speci�cally, for each norm and swarm size, the
maximum, minimum, mean and standard deviation
of the required function evaluations, along with the
number of successes (out of 100 experiments), are
reported. Also, the best performing memetic scheme,
which, in this case, is the one with the `∞ norm and
application of the local search at each iteration on each
best position with probability 0.1, is reported (and
denoted as M`∞). SW was let to perform 100 function
evaluations per application. As we observe, although
the standard PSO exhibit high success rate, the
memetic approach reduces signi�cantly the required
number of function evaluations, while retaining its
e�ciency. As a general trend, higher population size
can be associated with better performance.

The corresponding results for the DE algorithm
on TP1, are reported in Table 2. However, DE required
larger population sizes to achieve success rates similar
to PSO. This can be attributed to the greedy nature of
the DE implied by its inherent selection that �lters the
population at each iteration. This characteristic makes
DE prone to get stuck in local minima, especially when
high accuracy in the solutions is required. Regarding
the memetic approach, the same scheme as for PSO
exhibited the best performance, reducing signi�cantly
the mean number of function evaluations. Overall,
higher population sizes in DE correspond to higher
number of function evaluations (in contrast to PSO).
In TP2, PSO and DE assumed the same population

Table 5. Results of PSO for TP3

Norm SS Max Min Mean StD Suc
`2 40 9880 3600 6008.9 1357.1 100

`1 40 12120 2680 6240.8 1570.8 100

`∞ 40 14160 3320 6541.1 2010.7 97

Table 6. Results of DE for TP3.

Norm SS Max Min Mean StD Suc
`2 40 8921 1641 3479.8 1303.1 100

`1 40 8721 1681 3667.8 1419.1 100

`∞ 40 5721 1761 2971.0 860.8 100

sizes, equal to 100 and 150, with similar performance,
as reported in Tables 3 and 4. However, the memetic
PSO approach with entropy outperformed the rest
memetic PSO schemes (denoted as ME`2 in Table 3).
On the other hand, the simple memetic DE approach
with application of SW at each iteration and on
each individual with probability 0.2, was the best
among the di�erent memetic DE schemes. Also, in
this case, SW was allowed to perform a maximum
of 200 function evaluations, both for PSO and DE.
This modi�cation was necessary due to the higher
dimensionality of TP2, compared to TP1 where 100
evaluations were su�cient.

Finally, TP3 was solved relatively easier than
TP1 and TP2. For this purpose, only a single swarm
size equal to 40 was considered, without the need for
applying memetic approaches, both for PSO and DE.
Regarding the norms, `2 was the best choice for PSO,
while `∞ was the best for DE. We must notice that
the basin of convergence of the deterministic Newton
method for the speci�c orbit is signi�cantly degraded
as illustrated in [33].

5. Conclusions

This paper provides an overview of recently
proposed approaches for detecting periodic orbits of
nonlinear mappings using population�based stochastic
optimization algorithms. The transformation of the
problem to an equivalent optimization task provides
the advantage of exploiting the existence of chaos to
the bene�t of the employed optimization algorithm,
while it makes a wide variety of algorithms available
to the user.

Putting comparisons aside, two di�erent
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algorithms, namely PSO and DE, were illustrated
on three typical mappings for the detection of long
periodic orbits. Also, in cases where computational
burden was relatively heavy, memetic approaches
of the two algorithms were applied successfully,
extending the established approaches. The results
imply that stochastic optimization can be a very
useful alternative tool, and it has the advantage of
wide applicability, even in cases where traditional
gradient�based algorithms fail or cannot be applied
straightforwardly, e.g., cases of discontinuous or
nondi�erentiable mappings, even for long periodic
orbits. The required number of function evaluations

is in direct relevance with the desired accuracy,
while the scaling in higher dimensions does not pose
signi�cant computational burden in properly selected
memetic schemes.

Also, experiments reveal the heavy dependence
of each algorithm's performance on the problem at
hand as well as other factors, such as the selected norm
and population size. Further research can provide
intuition regarding the most appropriate choice per
case as well as further aspects of each algorithm's
behavior that can help towards the design of more
specialized operators for this kind of problems.
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