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Abstract Fuzzy cognitive maps constitute a neuro-fuzzy
modeling methodology that can simulate complex systems
accurately. Although their configuration is defined by experts,
learning schemes based on evolutionary and swarm intelli-
gence algorithms have been employed for improving their
efficiency and effectiveness. This paper comprises an exten-
sive study of the recently proposed swarm intelligence meme-
tic algorithm that combines particle swarm optimization with
both deterministic and stochastic local search schemes, for
fuzzy cognitive maps learning tasks. Also, a new technique
for the adaptation of the memetic schemes, with respect to the
available number of function evaluations per application of
the local search, is proposed. The memetic learning schemes
are applied on four real-life problems and compared with
established learning methods based on the standard particle
swarm optimization, differential evolution, and genetic algo-
rithms, justifying their superiority.
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1 Introduction

Fuzzy cognitive maps (FCMs) are simulation tools that draw
ideas from neural networks and fuzzy logic. Their inherent
ability for abstraction and adaptation that stems from their
neuro-fuzzy representation, renders them a very useful tool
for modeling and studying complex systems. Up-to-date,
FCMs have been used in a plethora of applications in diverse
scientific fields, including simulation of social and organi-
zational systems (Craiger et al. 1996; Taber 1991, 1994),
circuit design and analysis (Styblinski and Meyer 1988),
industrial process control (Papageorgiou et al. 2005; Sty-
lios et al. 1999), supervisory control systems (Groumpos and
Stylios 2000; Stylios et al. 1999; Stylios and Groumpos 1998,
2000) and bioinformatics (Georgopoulos et al. 2003;
Parsopoulos et al. 2004b).

Proper design of FCMs requires deep knowledge of the
simulated system and its operation. For this purpose, a group
of experts is responsible for the determination of the system’s
key concepts as well as their interactions. These features
are represented on a directed graph with nodes and weigh-
ted edges, respectively. The weights on the interconnections
among nodes, represent the magnitude of their interactions.
These weights are computed through a fuzzification–
defuzzification procedure, where the opinions of all experts
are translated from linguistic to numerical values. This pro-
cedure prevents from possible errors that could be introdu-
ced in the weights through direct assignment of numerical
values. However, in some cases the experts’ opinions differ
significantly and the corresponding weight setting does not
result in appropriate simulation of the system (Papageorgiou
et al. 2005). In such cases, learning procedures can be used
to modify the weights properly.

Learning in FCMs is the procedure of modifying the
weights in order to achieve a set of objectives that are usually
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problem-dependent. This is performed through the minimi-
zation of a properly defined objective function. There are
just a few well-studied learning schemes in the literature and
they can be classified in two categories. The first consists of
approaches based on unsupervised neural networks training
methods (Kosko 1997; Papageorgiou 2004b), while the lat-
ter refers to evolutionary computation and swarm intelligence
approaches (Khan et al. 2004; Koulouriotis et al. 2003; Papa-
georgiou et al. 2005; Parsopoulos et al. 2004b; Stach et al.
2005).

Hybrid schemes that combine either two evolutionary
algorithms or an evolutionary and a direct search component
have been proposed and applied successfully in different
applications, such as function optimization (Fan et al. 2004;
Parsopoulos and Vrahatis 2002a,b), and learning in neuro-
fuzzy systems (Juang 2004; Juang and Hsu 2005). Meme-
tic Algorithms (MAs) are hybrid schemes that consist of a
global and a local search component (Dawkins 1976;
Moscato 1999). The global component is usually a stochas-
tic population-based method that is competent to globally
explore the search space (exploration), while the local com-
ponent is responsible for more refined local search (exploi-
tation). MAs have proved to be very efficient in a plethora of
optimization problems. Recently, a Memetic Particle Swarm
Optimization (MPSO) scheme equipped with the Random
Walk with Directional Exploitation method proved to be very
efficient in a plethora of numerical optimization problems
(Petalas et al. 2007b). Also, an MPSO approach has been
applied for FCMs learning (Petalas et al. 2005, 2007a), with
preliminary results indicating its viability. Different learning
methods, such as Differential Evolution (DE), Genetic Algo-
rithms (GAs), and Evolution Strategies, have been also pro-
posed and applied successfully for FCMs learning (Khan
et al. 2004; Koulouriotis et al. 2001; Papageorgiou et al. 2005;
Parsopoulos et al. 2004b; Petalas et al. 2005, 2007a; Stach
et al. 2005).

The present work constitutes an extensive study of the
recently proposed MPSO schemes on four real-life test cases.
Additionally, a new technique for the adaptation of the
number of function evaluations allocated to the local search
component, is proposed. The considered memetic schemes
incorporate the deterministic local search algorithm of Hooke
and Jeeves (Hooke and Jeeves 1961; Rao 1992), as well as the
stochastic method of Solis and Wets (Solis and Wets 1981),
to the Particle Swarm Optimization (PSO) algorithm, which
constitutes the global component. Their performance is com-
pared with that of established PSO, DE and GA approaches,
and the significance of their differences is verified through
statistical tests.

The paper is organized as follows: Sect. 2 provides concise
descriptions of FCMs, PSO, MAs, as well as the employed
local search schemes. The considered MPSO scheme is intro-
duced in Sect. 3. Descriptions of the studied problems are

given in Sect. 4, and experimental results are reported in
Sect. 5. The paper concludes in Sect. 6.

2 Background material

In the following sections, the basic concepts of FCMs, PSO,
MAs as well as the employed local search schemes are briefly
exposed.

2.1 Fuzzy cognitive maps

FCMs were introduced by Kosko (1986) as directional graphs
with feedback. Similarly to traditional causal concept maps,
FCMs consist of nodes that represent key concepts of the
simulated system. The links among concepts are signed either
as positive or negative, to represent their causal relationship.
Feedback equips FCMs with the ability to simulate temporal
causality, thereby providing causal explanation in dynamical
models. On the other hand, determination of specific nume-
rical weights for the interconnections among concepts by
using fuzzy procedures, provides flexibility in the represen-
tation of causality degree among events. A simple FCM with
5 concepts and 7 weights is illustrated in Fig. 1.

Let N be the number of concepts, Ci , i = 1, 2, . . . , N , of
an FCM. Each concept, Ci , assumes a value, Ai ∈ [0, 1], i =
1, 2, . . . , N . An edge with direction from Ci to a different
concept, C j , is characterized by a weight, wi j ∈ [−1, 1].
Positive weights denote positive causality, i.e., an increment
in Ai triggers an increase in A j , while a decrement in Ai

results also in a decrement in A j . On the other hand, negative
weights imply negative causality, i.e., an increment in Ai

results in a decrement in A j , and vice versa. The absence of
interconnection between Ci and C j , can be considered as an
edge with weight wi j = 0. The values of the weights can be
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Fig. 1 A simple FCM with 5 concepts and 7 weights
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organized in a matrix,

W =

⎛
⎜⎜⎜⎝

w11 w12 · · · w1N

w21 w22 · · · w2N
...

...
. . .

...

wN1 wN2 · · · wN N

⎞
⎟⎟⎟⎠ ,

where the i th row represents the causality between concept
Ci and the rest of the concepts in the map.

Both the design as well as the initial setting of the FCM’s
parameters is determined by a group of experts that have
deep knowledge of the modeled system Stylios et al. (1999);
Stylios and Groumpos (2000). Although experts can assign
directly numerical values on concepts and weights, this pro-
cedure is error-prone and usually unnecessary. Instead, they
can use linguistic modifiers, which are then converted into
fuzzy functions, allowing the developer to capture more fine
grain information about the representation. Also, experts can
pose strict bounds on the values of concepts and weights, in
order to retain their physical meaning.

After its initial configuration, the FCM behaves like a dis-
crete dynamical system and it is let to converge to a stable
state, i.e., a state where no further modification of the
concepts’ values is achieved, by applying the equation (Kosko
1997; Stylios and Groumpos 2004)

Ai (t + 1) = f

⎛
⎜⎜⎝Ai (t)+

N∑
k=1
k �=i

wki (t)Ak(t)

⎞
⎟⎟⎠ , (1)

where t denotes the iteration number; Ai (t + 1) is the value
of concept Ci at time t+1; Ak(t) is the value of Ck at time t ;
and f is usually a sigmoid function. After convergence, the
FCM is assumed to be able to simulate the system accura-
tely. However, this is not always achievable. Wide variations
among experts’ opinions can result in weights that do not lead
the FCM to desirable stable states, resulting in undesirable
values of the concepts. For this purpose, learning algorithms
proved to be very useful.

A learning algorithm modifies further the weights of the
FCM, such that the achieved stable state is desirable, with
the concepts and weights lieing within the bounds posed by
the experts. Established learning schemes are based either on
the Hebbian rule for unsupervised neural networks training
(Kosko 1997; Papageorgiou 2004b) or on evolutionary com-
putation and swarm intelligence schemes (Khan et al. 2004;
Koulouriotis et al. 2003; Papageorgiou et al. 2005; Parsopou-
los et al. 2004b; Stach et al. 2005). In the latter case, properly
defined objective functions that penalize weight settings cor-
responding to undesirable steady states, are used (Papageor-
giou et al. 2004a, 2005; Parsopoulos et al. 2004a,b).

2.2 Particle swarm optimization

PSO is a distributed, stochastic optimization algorithm that
exploits a population of individuals to explore the search
space. It belongs to the class of swarm intelligence algo-
rithms, which are inspired from the social dynamics and
emergent behavior in socially organized colonies (Kennedy
and Eberhart 2001). In PSO’s context, the population is cal-
led a swarm and the individuals (i.e., the search agents) are
called particles.

Each particle has three main features: an adaptable velo-
city, a memory where it stores the best position it has ever visi-
ted, and a mechanism of exchanging information with (some
of) the rest of the particles. The swarm dynamic depends on
the information exchange scheme, resulting in two variants
of the algorithm. The local variant assumes that a particle
shares information only with a small number of other par-
ticles that constitute its neighborhood. On the other hand,
global PSO is a generalization of the local variant, where
the whole swarm is considered as the neighborhood of each
particle, i.e., it shares the globally best information.

Neighborhoods are usually defined in the space of par-
ticles’ indices rather than in actual search space, based on
a user-defined neighborhood topology. The reason for this
selection is the alleviation of the heavy computational bur-
den required for the computation of all distances among par-
ticles, as well as the promotion of diversity in the swarm. The
most common neighborhood topology is the “ring topology”
illustrated in Fig. 2 (left), where the particles, x1, . . . , xM ,
are assumed to lie on a ring, having two immediate neigh-
bors each. Thus, a neighborhood of radius r of the particle
xi , would consist of the particles,

{xi−r , xi−r+1, . . . , xi , . . . , xi+r−1, xi+r },

assuming that x1 is the particle that follows immediately after
the last particle of the swarm, xM . In the global variant of
PSO, each particle shares information with the global best,
and it is usually depicted as the “star” neighborhood illustra-
ted in Fig. 2 (right), where only the best particle exchanges
information with all other particles.

Fig. 2 The ring (left) and star (right) neighborhood topology of PSO
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Let S ⊂ R
n be the search space, f : S → R be the objec-

tive function, and S be a swarm consisting of M particles,
S = {x1, . . . , xM }. The i th particle is an n-dimensional vec-
tor,

xi = (xi1, xi2, . . . , xin)� ∈ S.

The velocity of this particle is also an n-dimensional vector,

vi = (vi1, vi2, . . . , vin)�.

The best previous position encountered by the i th particle in
S is denoted by,

pi = (pi1, pi2, . . . , pin)� ∈ S.

Assume gi to be the index of the particle that attained the best
previous position among all the particles in the neighborhood
of xi , i.e.,

f
(

pgi (t)
)

� f
(

p j (t)
)
,

for all neighbors x j of xi , and t to be the iteration counter.
Then, the swarm is manipulated by the equations
(Clerc and Kennedy 2002):

vi j (t + 1) = χ
[
vi j (t)+ c1 r1

(
pi j (t)− xi j (t)

)

+ c2 r2
(

pgi j (t)− xi j (t)
)]

, (2)

xi j (t + 1) = xi j (t)+ vi j (t + 1), (3)

where i = 1, 2, . . . , M ; j = 1, 2, . . . , n; χ is a parameter
called constriction factor; c1 and c2 are two positive constants
called cognitive and social parameter, respectively; and r1,
r2, are random numbers drawn from a uniform distribution in
[0, 1]. The constriction factor is a mechanism for controlling
the magnitude of the velocities. Stability analysis of PSO
provided different configurations of χ with respect to the
parameters c1 and c2 (Clerc and Kennedy 2002; Trelea 2003).

In the global variant of PSO, all particles are attracted
by the same overall best position, converging faster toward
specific points. Thus, the global variant of PSO emphasizes
exploitation over exploration. On the other hand, in the
local variant, the information of the best position of each
neighborhood is transmitted to the other particles of the
swarm through their neighbors. Therefore, the attraction to
specific best positions is weaker, avoiding the swarm from
getting stucked in locally optimal solutions. Thus, the local
variant of PSO emphasizes exploration over exploitation. The
balance between these two properties is crucial for the perfor-
mance of each global optimization algorithm (Parsopoulos
and Vrahatis 2004, 2007; Törn and Žilinskas 1989).

2.3 Memetic algorithms

MAs are metaheuristic search algorithms used for global
optimization tasks. Their name is derived from “meme” that
was first introduced by Dawkins (1976) and represents a unit

of cultural evolution that can exhibit refinement. MAs draw
inspiration from natural adaptation models that combine indi-
vidual evolution and learning within a lifetime. Thus, they
consist of a global search component and a local search
component. The first emulates evolution of the individual,
while personal refinement is encouraged through the latter
(Krasnogor and Smith 2005).

As already mentioned, the trade-off between exploration
and exploitation is crucial for the algorithm’s performance.
MAs strive to balance this trade-off efficiently. For this pur-
pose, evolutionary algorithms are usually employed, com-
bined with local search methods. Early memetic schemes
combined GAs with simulated annealing (Moscato 1989).
Different names that were also used for such algorithms
are Hybrid GAs, Genetic Local Searches, Lamarckian GAs,
and Baldwin GAs. MAs have been used in a wide range
of research areas, including operations research, single and
multi-objective optimization, bioinformatics and machine
learning (Krasnogor and Smith 2005). Also, they have been
applied successfully in NP-hard combinatorial optimization
problems, often achieving better results from evolutionary
algorithms and other metaheuristics (Corne et al. 1999; Kras-
nogor 2002; Land 1998; Merz 1998). Recently, new schemes
that combine PSO with stochastic local search were shown to
be very efficient in solving function optimization problems
(Petalas et al. 2007b). Also, preliminary results for FCMs
learning were shown to be very promising (Petalas et al. 2005,
2007a).

MAs operation follows closely the operation of the
employed evolutionary algorithm. However, after applying
the evolutionary operators and evaluating the population,
some individuals are selected as initial points for the local
search. The obtained solutions usually replace these indivi-
duals in the population, if they improve their function values.
An abstract description of an MA is provided below:

Begin
Initialize Population S
Repeat

Apply evolutionary operators on S
Evaluate S
Select a subpopulation Sloc ⊂ S
Apply local search on each element of Sloc

Evaluate Sloc

Update S
Until stopping criterion is satisfied
Return best solution

End

One of the most active research topics in MAs is the selec-
tion of the position(s) and frequency of local search applica-
tion. Several schemes have been suggested in the literature.
Hart (1994) describes the following basic schemes:
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1. Adaptive selection. This scheme selects the position for
application of local search according to the following
strategies:

(a) Distribution-based strategy: the goal is to favor the
application of local search on solutions that differ
adequately or lie in distant parts of the search space.

(b) Fitness-based strategy: local search is applied on
the best performing individuals, since their proba-
bility of lieing in the neighborhood of the global
minimizer is higher.

2. Non-adaptive selection. According to this scheme, the
individuals that will serve as the initial points for local
search are selected randomly from the population, with
a fixed user-defined probability.

The application of local search at every individual and ite-
ration is rarely used, since it is considered computationally
expensive. A very promising adaptive scheme for tackling
this problem has been proposed in Lozano et al. (2004) for
a GA-based MA. This scheme is fitness-based, with chro-
mosomes generated by crossover and mutation being assi-
gned probabilities based on the improvement they exhibit
compared to the worst performing individual. The provided
results on widely used benchmark functions, and compari-
sons with other memetic approaches, support the claim that
such schemes can be proved very efficient (Lozano et al.
2004).

The employed local search methods play an important
role in the applicability and efficiency of MAs. Gradient-
based local search could be very efficient in well-defined
problems with good mathematical characteristics, while sto-
chastic local search is better choice for problems contamina-
ted by noise and uncertainty, as in most real life applications.
Different local search schemes have been investigated in the
relative literature. Comprehensive reviews, along with tech-
niques for dynamically selecting the local search algorithm
can be found in Krasnogor and Smith (2005) and Ong and
Keane (2004). In the following paragraph, the local search
schemes used in the proposed approach are concisely descri-
bed.

2.4 The employed local search methods

In the proposed memetic algorithm, we utilized the Hooke
and Jeeves (1961) and the Solis and Wets (1981) search tech-
niques. The main criterion for the selection of local search
scheme was the preservation of the derivative-free nature
of the memetic scheme, as well as its simplicity and easy
adaptation on the problem at hand. The aforementioned tech-
niques are characterized by simplicity, flexibility, and minor
assumptions on the objective function (Hooke and Jeeves
1961; Solis and Wets 1981). Therefore, they appear proper

for the FCMs learning task. In the following paragraphs we
sketch their operation.

2.4.1 The Hooke and Jeeves algorithm

Hooke and Jeeves (HJ) is a deterministic pattern search algo-
rithm (Hooke and Jeeves 1961; Rao 1992). It is a direct
search algorithm in the sense that it uses only function eva-
luations and does not need function derivatives. Its main ope-
ration consists of a search along the coordinate axes of the
search space, using a suitable step size, and it is described
below [our implementation follows closely the one reported
in (http://www.netlib.org/opt/hooke.c)].

Let x1 be the initial point and f1 = f (x1) be its func-
tion value. Also, let � be a user-defined initial step length.
The starting point of the local search at each iteration of the
algorithm is called the base point. Therefore, x1 is the first
base point. The first component of the base point is initially
increased by �. If the produced point has lower function
value, then it is assumed as the new trial point and the search
continues with its next component. If there is no decrease,
then the new trial point is produced by subtracting � from
the first component of the base point. Again, if there is an
improvement in the function value, the new point becomes
the trial point. If there is no improvement also in this case, the
search continues with the next component of the base point.

The aforementioned procedure performs a search on all
coordinate directions of the base point. If this search results
in a better point, then it becomes the new basis point, x2,
with function value f2, and a pattern extension step takes
place, otherwise � is reduced and a coordinate search starts
again. The pattern extension step assumes a temporary base
point defined as xtemp = 2x2 − x1. A coordinate search is
performed on xtemp, and, if further improvement in the value
of the base point x2 is produced, then it becomes the new base
point, x3, and the search continues with the pattern extension
step 2x3 − x2. Otherwise, x2 remains the base point, � is
reduced, and the HJ algorithm conducts a coordinate search
about x2. The algorithm is terminated upon the achievement
of user-defined criteria that are usually problem dependent.

2.4.2 The Solis and Wets algorithm

Solis and Wets have proposed several stochastic local search
algorithms. In our approach, we used the algorithm reported
as “Algorithm 1” in Solis and Wets (1981). This algorithm
starts with an initial point, xk , with k = 0. A random point,
ξ , is produced in a region around xk , following a multivariate
normal distribution with center xk + bk and covariance σk ,
where bk is a bias factor that slants sampling toward direc-
tions where the most successes were recorded.

The sampled point becomes the new search point, xk+1,
if it improves its function value. On the other hand, if the
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function value of the sampled point is worse than that of xk ,
then the new point, 2xk − ξ , is produced and evaluated. If
neither this point improves xk , then xk+1 = xk , and a new
sample is generated around it. In each case, bk is modified
properly.

At each iteration of the aforementioned procedure, the
covariances of the distributions are modified based on the
number of successes or failures in generating improving
points. Thus, if new solutions are often improving the func-
tion value, then the search region is expanded, while, in the
opposite case, it is contracted.

3 The proposed memetic learning scheme

The task of learning in FCMs is formulated as an optimization
problem with respect to the FCMs’ weights (Papageorgiou
et al. 2005). In particular, the main goal is the detection of
proper values of the FCM’s weights in order to produce a
desirable behavior of the system. The objective function of
the optimization problem depends on the output concepts of
the FCM. The global minimizers of the objective function
are weight matrices that lead the FCM to a desired steady
state, i.e., a state where the target output concepts lie in their
bounding regions, while the weights fulfill restrictions rela-
ted to their physical meaning, posed by the experts. Evo-
lutionary algorithms proved to be very efficient in FCMs
learning tasks. Learning methods that utilize PSO and DE
have been introduced in Papageorgiou et al. (2005),
Parsopoulos et al. (2004b) and Petalas et al. (2005, 2007a).
GAs (Khan et al. 2004; Stach et al. 2005) and Evolution Stra-
tegies (ES) (Koulouriotis et al. 2001) have also been success-
fully used.

The memetic approach extends the established evolutio-
nary learning algorithms, by combining the (evolutionary)
global search component with a local search method, resul-
ting in a new, memetic learning algorithm. The expected gain
from such a hybrid scheme is a significant decrease in the
number of function evaluations required for the detection of
proper weight matrices, as well as an improvement in the
quality of the obtained solutions.

In our approach, PSO was used as the global search com-
ponent of the memetic algorithm. This choice was based pri-
marily on its efficiency, simplicity and flexibility. A Memetic
PSO (MPSO) with Random Walk with Directional Exploita-
tion has been recently introduced with very promising results
in a plethora of optimization problems (Petalas et al. 2007b).
Convergence in probability has also been proved for this
scheme (Petalas et al. 2007b). Preliminary results of MPSO
with HJ and SW were very promising for FCMs learning
tasks (Petalas et al. 2005, 2007a).

The memetic algorithm applies local search on selected
best positions of the swarm at each iteration of the algorithm,

in order to further improve their position. Previous works
with standard PSO on FCMs, as well as MPSO on optimi-
zation problems Papageorgiou et al. (2005) and Petalas et al.
(2007b) indicated that applying local search only on the best
particle can boost the algorithm’s performance, while impo-
sing a mild computational burden. For these reasons we also
adopted this approach. However, we used more sophisticated
local search schemes, such as the HJ and SW described in the
previous sections. The selection of such schemes was based
on the necessity for derivative-free methods, since the objec-
tive functions in the studied FCMs learning problems are not
always differentiable (Papageorgiou et al. 2005; Parsopoulos
et al. 2004b).

A pseudocode of the generic MPSO approach follows
below:

Input: n (dimension), χ , c1, c2, xmin, xmax (bounds), f (objective function)
Set t = 0.
Initialize xi (t), vi (t) ∈ [xmin, xmax], pi (t)← xi (t), i = 1, . . . , n.
Evaluate f (xi (t)).
Determine the indices gi , i = 1, . . . , n.
While [stopping criterion is not satisfied] Do

Update the velocities vi (t + 1), i = 1, . . . , n, according to Eq. (2).
Set xi (t + 1) = xi (t)+ vi (t + 1), i = 1, . . . , n.
Constrain each particle xi in [xmin, xmax].
Evaluate f (xi (t + 1)), i = 1, . . . , n.
If f (xi (t + 1)) < f (pi (t)) Then pi (t + 1)← xi (t + 1)

Else pi (t + 1)← pi (t).
Update the indices gi .
When [local search is applied] Do

Choose some pq (t + 1), q ∈ {1, . . . , n}.
Apply local search on pq (t + 1) and obtain y.
If f (y) < f

(
pq (t + 1)

)
Then pq (t + 1)← y.

End When
Set t = t + 1.

End While

The number of function evaluations allocated to the local
search is heuristically determined. However, it can be cru-
cial for the performance of the memetic algorithm, since it
influences the outcome of the local search. For this purpose,
we propose an adaptive scheme for modifying it at each ite-
ration. More specifically, the algorithm is initialized with a
budget of 20 function evaluations per application of the local
search. Then, at each iteration, if the local search applied on
the globally best position improves its value, the algorithm
assumes that it may lie in a promising region of attraction,
thereby decreasing the budget for the next iteration. On the
other hand, if local search failed at improving the value of
the best position, the budget is increased for the next applica-
tion. The decrement/increment in our algorithm was assumed
equal to 5.

The aforementioned adaptation scheme works similarly
to the parameter adaptation scheme of the Solis and Wets
algorithm (Solis and Wets 1981). Preliminary experiments
using different strategies for the position and application of
local search, indicated that the application of local search on
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Fig. 3 Illustration of the tank-valves process control problem (left) and
the corresponding FCM (right)

the best particle at each iteration is the most efficient scheme
for FCMs learning, and for this purpose it was adopted in the
proposed approach.

Regarding the implementation difficulty of the algorithm,
it is clearly depending on the selected local search scheme.
PSO is considered one of the simplest population-based algo-
rithms, since it can be implemented in a few lines of code,
as exhibited in Clerc (2006) and Parsopoulos and Vrahatis
(2002b) for C and Matlab. Also, the aforementioned local
search algorithms are very simple in implementation, rende-
ring the proposed MPSO algorithm a very simple. However,
if the user selects more sophisticated local search schemes,
the implementation difficulty will be correspondingly increa-
sed.

4 Descriptions of the studied problems

The proposed method has been applied for FCM learning
in four case studies, namely, two process control problems
concerning the proper operation of industrial systems, a medi-
cal problem related to radiation therapy, and a problem about
pollution in an ecological industrial park. In the following
subsections, brief descriptions for the aforementioned pro-
blems are given.

4.1 The industrial tank-valves problem

A process control problem derived from chemical industry
is used as our first case study (Stylios and Groumpos 1998).
Figure 3 (left) illustrates the process control problem, which
consists of a tank and three valves that control the amount
of liquid in the tank. Two different liquids are poured and
mixed into the tank through valve V1 and valve V2. During
mixing, a chemical reaction takes place in the tank, and a new
liquid is produced. Valve V3 empties the tank as soon as the
amount of the produced liquid reaches a specific level. The

specific gravity of the produced liquid is measured by a sensor
placed inside the tank. When the value, G, of the specific
gravity lies in a range [Gmin, Gmax], the desired liquid has
been produced. There is also a limit on the height, T , of the
liquid in the tank, i.e., it cannot exceed a lower limit, Tmin,
and an upper limit, Tmax.

The constructed FCM for this problem is depicted in Fig. 3
(right) and consists of five concepts,

C1: amount of the liquid in the tank,
C2: state of valve V1,
C3: state of valve V2,
C4: state of valve V3,
C5: specific gravity of the produced liquid in the tank.

For each weight, the overall linguistic variable and its cor-
responding fuzzy set are also determined by the experts. The
ranges of the weights implied by the fuzzy regions are given
in Table 1.

The output concepts of the FCM are C1 and C5, and their
values, A1 and A5, respectively, lie within lower and upper
bounds determined by the experts:
[

Alb
1 , Aub

1

]
= [0.68, 0.70] ,

[
Alb

5 , Aub
5

]
= [0.78, 0.85] .

The objective function defined in Papageorgiou et al. (2005)
was adopted, i.e.,

f (w) = H
(

Alb
1 − A1

)
+ H

(
Alb

5 − A5

)

+H
(

A1 − Aub
1

)
+ H

(
A5 − Aub

5

)
, (4)

where H is the function,

H(x) =
{

0, x � 0,

x, x > 0,

and A1, A5, are the output concepts’ values for the weight
matrix w.

4.2 The radiation therapy problem

The second problem concerns radiotherapy, which is used
for cancer treatment. Radiation therapy is a complex pro-
cess involving a large number of treatment variables. The
objective of radiotherapy is to deliver the highest amount of
radiation dose to the smallest possible volume that encloses
the tumor, while minimizing the exposure of healthy tissues
and critical organs to radiation. Treatment planning, which
is also a complex process and doctor–computer interaction,

Table 1 Ranges of weights for
the tank-valves problem −0.50 � w12 �−0.30 −0.40 � w13 �−0.20 −0.40 � w13 �−0.20

0.10 � w15 � 1.00 0.30 � w21 � 0.40 0.40 � w31 � 0.50

−1.00 � w41 �−0.80 0.10 � w52 � 1.00 0.10 � w54 � 1.00
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C5

C6

C1

C2

C3

C4

Fig. 4 The supervisor FCM for the radiation therapy problem

is needed before the final treatment execution (Parsopoulos
et al. 2004b).

The radiation therapy process can be modeled and analy-
zed through a supervisor-FCM, constructed by experts
(Parsopoulos et al. 2004b). The FCM consists of the fol-
lowing concepts:

C1: tumor localization,
C2: dose prescribed from the treatment planning,
C3: machine factors,
C4: human factors,
C5: patient positioning and immobilization,
C6: final dose received by the target volume,

and it is illustrated in Fig. 4.
The objective of the supervisor-FCM is the maximization

of the final dose, C6, received by the target volume (tumor),
and the dose C2 derived from the treatment planning within
the target region. These objectives are defined by the related
AAPM and ICRP protocols (Khan 1994; Wells and Niederer
1998; Willoughby et al. 1996) for the determination of accep-
ted dose levels for each organ and part of the human body.
The ranges of the weights for the supervisor-FCM model are
given in Table 2.

The objective function defined in Parsopoulos et al.
(2004b) was used,

f (w) = − (A2 + A6) , (5)

where A2 and A6 are the values of the output concepts C2

and C6, respectively, that correspond to the weight matrix

w. The minus signs are used to transform the maximization
problem to a minimization one.

4.3 The heat exchanger problem

The third case study is the heat exchanger FCM model pre-
sented analytically in Stylios and Groumpos (2004). Heat
exchanger is a standard part in the chemical and process
industry. The system is depicted in Fig. 5 (left) and it consists
of a tubular steam/water heat exchanger (denoted as W1) and
a cross-flow water/air exchanger (denoted as W2). The water
in the circuit is heated by means of W1, while it is cooled
in the cross-flow water/air heat exchanger W2 by using cold
air from the environment, which has a temperature Tai. The
environmental temperature cannot be manipulated since it
depends on the weather and season of the year. After passing
the heat exchanger and the fan, the air is blown out back to
the environment. The water temperature, Two, is controlled
by manipulating the fan speed, S f . The control variable Two

depends on the manipulated variable S f and the measurable
disturbances: inlet water temperature, Twi, air temperature,
Tai, and water flow rate, Fw. In most plants, the water flow
rate is usually regulated by a PI-controlled pneumatic valve
and it influences heavily the behavior of the heat exchan-
ger W2. The design of a temperature controller for Two that
can handle widely varied flow rates is considered a major
challenge (Stylios and Groumpos 2004).

The corresponding FCM has five concepts:

C1: fan speed, S f ,
C2: water flow rate, Fw,
C3: water inlet temperature, Twi,
C4: air inlet temperature, Tai,
C5: water outlet temperature, Two, (output concept of the
model).

The ranges of the weights for the FCM model are repor-
ted in Table 3. The output concept C5 was bounded within[
Alb

5 , Aub
5

] = [0.2, 0.4]. The objective function defined in
Sect. 4.1 was employed also in this problem, though for a
single output concept, i.e.,

f (w) = H
(

Alb
5 − A5

)
+ H

(
A5 − Aub

5

)
. (6)

4.4 The ecological industrial park problem

The last test problem concerns an FCM model that is used
for studying the impact of developing an eco-industrial park

Table 2 Ranges of weights for
the radiation therapy problem 0.30 � w16 � 0.50 0.20 � w21 � 0.40 0.50 � w26 � 0.70

−0.40 � w32 �−0.20 −0.40 � w36 �−0.10 −0.50 � w45 �−0.20

−0.50 � w46 �−0.20 −0.60 � w54 �−0.10 0.50 � w56 � 0.80

0.20 � w61 � 0.40 0.60 � w62 � 0.90 0.50 � w65 � 0.90
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Fig. 5 The heat exchanger
system (left) and the
corresponding FCM (right)

W2
W1

Tai

Tao Sf

Two

Twi

 M

M

Fw

C1

C2

C3

C4

C5

Table 3 Ranges of weights for
the heat exchanger problem −0.80 � w15 �−0.50 0.50 � w21 � 0.70 0.00 � w25 � 0.50

0.50 � w31 � 0.75 −0.75 � w32 �−0.50 0.00 � w35 � 0.50

−0.30 � w41 � 0.00 −0.75 � w45 �−0.50 0.50 � w51 � 0.80

−0.80 � w52 �−0.50

(EIP), presented in detail in Fons et al. (2004). EIPs are
characterized by a network of synergistic resource linkages
among facilities within a geographical area. They are desi-
gned such that industrial areas are developed mimicking a
natural ecosystem. Such systems are self-contained, self-
sustaining, and they produce zero waste through complex
interactions of food chains. The studied FCM concerns the
Lloydminster EIP at the Western Canadian plains and it is
depicted in Fig. 6.

The concepts of the FCM model are the following:

C1: pollution,
C2: water disposal,
C3: unutilized byproducts/wastes,
C4: demand,
C5: byproducts/wastes provided by existing facilities,
C6: secondary facilities,
C7: availability,
C8: vehicles,
C9: employment,
C10: property cost,
C11: owned housing,
C12: roads,
C13: population,
C14: available land,
C15: rental cost,
C16: schools and recreation facilities,
C17: service facilities,
C18: byproducts/wastes provided by co-locating facilities.

C1
C2 C3 C4

C5 C6 C7

C8

C9 C10

C11

C12

C18

C16

C13

C15

C14

C17

Fig. 6 The FCM for the ecological industrial park problem. Dashed
lines denote negative causality, while solid lines denote positive causal
relationship

In our study, we considered pollution as the output concept
and our aim was to detect weights that retain it within the
bounds

[
Alb

1 , Aub
1

] = [0.1, 0.2]. For this purpose, the same
type of objective function as in Sect. 4.1 was employed, i.e.,

f (w) = H
(

Alb
1 − A1

)
+ H

(
A1 − Aub

1

)
. (7)

The 40 initial weights lie within the ranges reported in Table 4.
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Table 4 Ranges of weights for the eco-industrial park problem

Range Weights

[0.0, 0.25] w56, w61, w81, w12,6, w17,1, w16,1

[0.0, 0.5] w63, w6,18, w13,8, w13,11, w13,15, w13,17,

w15,11, w16,3, w16,18, w17,3

[0.5, 1.0] w32, w69, w9,13, w13,4, w16,9, w17,9

[−0.5, 0.0] w47, w52, w6,14, w74, w10,6, w10,17,

w11,14, w14,10, w16,14

[−1.0,−0.5] w51, w10,11, w12,14, w17,14, w18,1, w18,2

[0.25, 0.55] w17,18

[0.25, 0.50] w8,12

[0.50, 0.75] w13,16

5 Experimental results

For each one of the four test problems (denoted as TP1–TP4,
respectively) described in the previous sections, we applied
the global and local variant of MPSO with HJ and SW local
search. We denote these variants as PSOHJ

g , PSOSW
g , for the

global case, and PSOHJ
� , PSOSW

� , for the local case, respec-
tively. For each variant, the two schemes described at the
end of Sect. 3 for the maximum number of function evalua-
tions assigned to each local search, were considered. More
specifically, in the first (standard) scheme, a fixed maxi-
mum number, LSst

max, of function evaluations is assigned
to each local search. The value LSst

max = 20 was used for
TP1 and TP2, while LSst

max = 60 was used for TP3 and
TP4, due to their increased difficulty. In the second (adap-
tive) scheme, an initial value LSad

ini = 20 was used, and it
was dynamically modified within the range [5, 100], using

increments or decrements equal to �LS = 5, as described
in Sect. 3. Regarding the PSO component of MPSO, the
default set of parameters due to Clerc and Kennedy (2002),
χ = 0.729, c1, c2 = 2.05, was used. For the local variants,
the ring neighborhood topology of PSO with radius r = 1
was used.

MPSO was compared with three different metaheuristics
that have been proposed for FCMs learning in the relative
literature, namely, the global and local variant of the stan-
dard PSO, denoted as PSOg and PSO�, respectively, as well
a DE-based and a GA-based approach. For PSO, the same
parameters with MPSO were used. For the DE approach, we
considered the six basic operators (Plagianakos and Vrahatis
2002; Storn and Price 1997) with parameters F = 0.6 and
CR = 0.8. This setting was selected among others due to
its enhanced efficiency. Regarding the GAs, the approach
reported in Herrera et al. (1998) and Stach et al. (2005)
was closely followed, with simple crossover, non-uniform
mutation and roulette wheel selection. The crossover rate
was equal to Cr = 0.6, while the mutation rate was equal
to Mr = 0.5. The non-uniform mutation is described in
Michalewicz (1999) and it correlates the magnitude of the
mutation for each component of an individual, with the num-
ber of iterations. As a result, this property favors better explo-
ration in the initial iterations of the GA, and local fine-tuning
in the later stages. This setting was selected among others,
due to its nice performance (Herrera et al. 1998). All algo-
rithms and their parameters are summarized in Table 5.

The desired accuracy in all cases was equal to 10−8. For
each test problem, 100 experiments were performed per algo-
rithm and for different values of the swarm size, equal to 20,
40, 60 and 80, in order to investigate the performance scaling

Table 5 Summary of the
employed algorithms

Algorithm Notation Description Parameters

Memetic PSO PSOHJ
g Global variant of Memetic PSO χ = 0.729

with HJ local search c1 = c2 = 2.05

PSOHJ
� Local variant of Memetic PSO LSst

max = 20, 60
with HJ local search LSad

ini = 20

PSOSW
g Global variant of Memetic PSO 5 � LSad � 100

with SW local search �LS = 5

PSOSW
� Local variant of Memetic PSO

with SW local search

Standard PSO PSOg Global variant of Standard PSO χ = 0.729
PSO� Local variant of Standard PSO c1 = c2 = 2.05

DE DE1 rand/1/bin

DE2 modified rand/1/bin F = 0.6

DE3 best/1/bin CR = 0.8

DE4 rand-to-best/1/bin

DE5 best/2/bin

DE6 rand/2/bin

GA GA Simple crossover, non-uniform Cr = 0.6
mutation with roulette wheel selection Mr = 0.5
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Table 6 Results of MPSO and
PSO for TP1 (industrial
tank-valves problem)

SS PSOg PSOHJ
g PSOSW

g PSO� PSOHJ
� PSOSW

�

20 Suc 77 100/100 100/100 97 100/100 100/100

Mean 153.5 60.5/62.2 117.7/141.5 220.4 62.1/64.9 141.0/134.1

SD 48.5 20.0/30.6 78.7/110.3 70.0 25.0/37.5 84.6/ 98.3

Min 80 47/47 58/57 100 47/47 58/56

Max 340 142/ 174 537/681 460 188/290 417/548

40 Suc 81 100/100 100/100 100 100/100 100/100

Mean 273.1 99.1/105.7 199.5/208.2 368.0 101.1/103.0 198.3/210.0

SD 120.5 22.9/41.7 155.2/ 132.2 91.5 30.3/35.3 100.0/135.0

Min 160 87/87 97/97 200 87/87 97/98

Max 1080 212/ 273 998/658 680 223/ 273 518/760

60 Suc 91 100/100 100/100 100 100/100 100/100

Mean 385.7 143.9/138.8 247.0/250.6 498.0 145.0/154.9 274.0/252.0

SD 162.8 34.9/26.9 136.3/171.4 124.9 41.9/76.2 136.0/143.6

Min 240 127/127 138/137 300 126/126 138/137

Max 1500 302/287 939/1252 900 387/659 620/766

80 Suc 91 100/100 100/100 100 100/100 100/100

Mean 489.7 182.9/179.0 329.9/300.3 599.2 175.6/188.9 334.9/342.2

SD 144.0 42.0/31.8 209.3/144.0 145.4 21.6/74.0 171.1/187.1

Min 320 166/165 178/176 320 165/167 178/178

Max 1120 372/367 1577/894 960 282/667 978/884

Table 7 Results of DE and GAs
for TP1 (industrial tank-valves
problem)

PS DE1 DE2 DE3 DE4 DE5 DE6 GA

20 Suc 100 96 99 94 100 100 100

Mean 396.0 194.6 205.9 408.9 173.0 373.4 428.8

SD 99.6 56.3 103.6 254.7 89.1 104.2 97.2

Min 240 80 80 140 40 120 260

Max 820 360 840 1500 840 660 751

40 Suc 100 100 100 100 100 100 100

Mean 657.6 319.2 256.0 482.0 249.6 663.6 704.8

SD 155.5 75.2 96.5 157.1 84.0 204.9 113.2

Min 280 120 120 240 80 160 474

Max 1000 480 920 1320 480 1120 929

60 Suc 100 100 100 100 100 100 100

Mean 900.6 436.8 322.2 588.6 313.2 810.6 933.9

SD 201.4 108.6 89.7 172.6 92.9 240.7 154.1

Min 360 120 180 300 120 240 609

Max 1380 660 600 1200 660 1260 1394

80 Suc 100 100 100 100 100 100 100

Mean 1116.8 539.2 381.6 696.8 352.0 1043.2 1157.3

SD 248.3 124.9 92.3 214.3 101.1 299.5 176.9

Min 560 240 160 320 240 320 826

Max 1600 880 640 1520 800 1760 1742

under different swarm sizes. Each algorithm was applied for
a maximum of 120,000 function evaluations.

All results are reported in Tables 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17. The first column of each table denotes the

swarm (or population) size, denoted as SS (or PS, respec-
tively). In the rest of the table, and for each algorithm, we
report the number of successful experiments (i.e., where the
desired accuracy was achieved), as well as its mean, standard
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Table 8 Results of Overall Best Algorithms for TP1 (industrial tank-
valves problem)

PS Suc Mean SD Min Max

20 PSO� 97 220.4 70.0 100 460

PSOHJ
g 100 60.5 20.0 47 142

DE5 100 173.0 89.1 40 840

GA 100 428.8 97.2 260 751

40 PSO� 100 368.0 91.5 200 680

PSOHJ
g 100 99.1 22.9 87 212

DE5 100 249.6 84.0 80 480

GA 100 704.8 113.2 474 929

60 PSO� 100 498 124.9 300 900

PSOHJ
g 100 138.8 26.9 127 287

DE5 100 313.2 92.9 120 660

GA 100 933.9 154.1 609 1394

80 PSO� 100 599.2 145.4 320 960

PSOHJ
� 100 175.6 21.6 165 282

DE5 100 352 101.1 240 800

GA 100 1157.3 176.9 826 1742

deviation, minimum and maximum number of required
function evaluations for the successful experiments, inclu-
ding the function evaluations required by the local search.
Unsuccessful experiments were excluded since the expected
behavior of each algorithm was under investigation.

For each memetic algorithm, the statistics of the standard
and the adaptive scheme are given in the same column of
the table, divided by a slash. For example, in Table 6, the
mean number of function evaluations for the global MPSO
with HJ is given in the column under “PSOHJ

g ” and it is equal
to 60.5 for the standard memetic scheme and 62.2 for the
corresponding adaptive memetic scheme. Also, the lowest
mean number and standard deviation that correspond to a
completely successful algorithm (i.e., it did not fail in any
experiment), are boldfaced in the table both for the standard
and the adaptive memetic schemes. The same holds also for
the tables with the DE and GAs results. In order to facilitate
comparisons between the algorithms, Tables 8, 11, 14 and 17
contain the statistical information of the best algorithm per
approach, i.e., best MPSO, best PSO, best DE, and the GA,
for each test problem and population size. Again, the overall
best approach is boldfaced in these tables.

Furthermore, statistical tests were conducted to justify
the significance of the performance differences among the
algorithms. For this purpose, the non-parametric Wilcoxon
rank sum test was used at significance level 99%, for com-
paring the best performing MPSO approach with the best
performing PSO, DE, as well as the GA, one by one, per
problem and swarm size. Again, the best performing algo-
rithm was defined as the algorithm that had 100 successful
experiments and the lowest mean number of function evalua-
tions. For example, in TP1 and for swarm size 20, the best
performing MPSO approach is PSOHJ

g with 100 successful

Table 9 Results of MPSO and
PSO for TP2 (radiation therapy
problem)

SS PSOg PSOHJ
g PSOSW

g PSO� PSOHJ
� PSOSW

�

20 Suc 17 100/100 100/100 44 100/100 100/100

Mean 282.4 99.4/116.3 1860.3/1400.1 563.6 107.5/102.4 1051.6/1072.1

SD 75.5 54.1/73.9 2733.4/1692.7 184.1 87.0/64.2 1684.8/976.9

Min 180 52/58 97/92 240 56/57 58/59

Max 420 396/340 13898/8056 1100 486/340 9736/5432

40 Suc 24 100/100 100/100 91 100/100 100/100

Mean 506.7 173.8/177.8 2448.5/1235.3 1005.7 173.9/184.9 887.1/1085.5

SD 266.6 108.2/89.9 3619.5/1334.1 325.1 127.2/109.7 705.4/827.2

Min 280 96/96 100/100 400 94/96 159/100

Max 1280 534/445 20798/5592 2040 853/582 5858/4245

60 Suc 34 100/100 100/100 94 100/100 100/100

Mean 742.9 232.0/244.2 2579.9/1531.6 1386.4 203.9/254.0 1220.4/1250.9

SD 318.2 111.8/133.7 4850.5/1584.8 401.6 109.7/142.4 670.6/692.6

Min 360 136/136 139/139 600 136/136 140/140

Max 1500 631/615 28138/10240 2940 899/711 4859/3714

80 Suc 30 100/100 100/100 100 100/100 100/100

Mean 920.0 332.9/308.4 3428.7/2087.5 1725.6 367.2/352.1 1249.7/1451.5

SD 518.8 179.4/137.8 6442.6/2437.1 532.6 361.9/244.8 628.1/919.0

Min 480 176/176 179/179 800 176/174 279/180

Max 2720 1012/675 48178/13446 4560 2047/1381 2879/4952
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Table 10 Results of DE and
GAs for TP2 (radiation therapy
problem)

PS DE1 DE2 DE3 DE4 DE5 DE6 GA

20 Suc 99 77 62 8 100 100 100

Mean 1636.4 340.3 1863.5 1775.0 712.2 2109.2 2821.4

SD 216.6 91.7 3438.4 673.3 159.4 324.3 1252.2

Min 1000 180 340 1240 300 1100 1517

Max 2140 820 18460 3340 1400 3160 6341

40 Suc 100 97 98 92 100 100 100

Mean 3211.2 576.1 1318.4 3421.7 1180.0 4848.4 3460.1

SD 365.9 120.6 942.1 3315.3 221.6 550.8 388.9

Min 2280 240 440 1560 480 3400 2794

Max 3960 1080 7600 27120 2120 6320 4381

60 Suc 100 100 100 100 100 100 100

Mean 4971.0 795.0 1164.0 3414.6 1568.4 7209.0 4501.5

SD 520.4 136.0 359.3 1801.6 274.0 831.8 489.3

Min 3300 420 600 2040 660 4620 3365

Max 6000 1140 3000 17040 2280 8820 6347

80 Suc 100 99 100 100 100 100 100

Mean 6623.2 1006.1 1548.0 3713.6 1804.8 9669.6 5421.7

SD 661.9 155.5 771.0 786.6 388.7 1028.5 537.7

Min 4560 640 720 2720 880 5120 3634

Max 8240 1440 5920 7920 2560 11520 6779

Table 11 Results of Overall Best Algorithms for TP2 (radiation therapy
problem)

PS Suc Mean SD Min Max

20 PSO� 44 563.6 184.1 240 1100

PSOHJ
g 100 99.4 54.1 52 396

DE5 100 712.2 159.4 300 1400

GA 100 2821.4 1252.2 1517 6341

40 PSO� 91 1005.7 325.1 400 2040

PSOHJ
g 100 173.8 108.2 96 534

DE5 100 1180.0 221.6 480 2120

GA 100 3460.1 388.9 2794 4381

60 PSO� 94 1386.4 401.6 600 2940

PSOHJ
� 100 203.9 109.7 136 899

DE2 100 795.0 136.0 420 1140

GA 100 4501.5 489.3 3365 6347

80 PSO� 100 1725.6 532.6 800 4560

PSOHJ
� 100 308.4 137.8 176 675

DE3 100 1548.0 771.0 720 5920

GA 100 5421.7 537.7 3634 6779

experiments and mean function evaluations equal to 60.5.
Thus, this approach is tested statistically through the Wil-
coxon rank sum test with PSO�, which is the best perfor-
ming PSO for the same problem and swarm size, as well as
with the best performing DE approach, DE5, and the GA,

independently. The results are reported in Table 18, with the
“+” sign denoting significantly different results between the
memetic approach specified in the row and the corresponding
algorithm at each column. Also, at each row of Table 18, the
MPSO approach that is compared with the rest of the algo-
rithms is reported, with “PSOHJ

g ad.” denoting the adaptive
variant of PSOHJ

g .
In the 8-dimensional industrial control problem (TP1),

MPSO outperformed clearly all standard PSO, DE and GA
methods as reported in Tables 6, 7 and 8. All memetic
schemes were completely successful, requiring the lowest
amount of function evaluations. The global variants were
marginally better than their local counterparts, with HJ-based
schemes requiring significantly lower amounts of function
evaluations than the SW-based schemes. The adaptive
scheme worked favorably only for the HJ-based approaches
and for high swarm sizes, while, for the rest cases, it required
a slightly higher amount of function evaluations to achieve
the desirable accuracy.

Thus, for swarm sizes equal to 20 and 40, PSOHJ
g was the

best algorithm, while for 60 and 80, the adaptive PSOHJ
g was

most efficient, requiring just a small fraction, around 30%,
of the function evaluations required by the established PSO
learning schemes. In some cases, the standard PSO learning
schemes, PSOg and PSO�, suffered search stagnation, espe-
cially when small swarm sizes were used, due to the high desi-
rable accuracy. Regarding DE, the DE5 strategy was the most
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Table 12 Results of MPSO and
PSO for TP3 (heat exchange
problem)

SS PSOg PSOHJ
g PSOSW

g PSO� PSOHJ
� PSOSW

�

20 Suc 7 100/100 100/100 72 100/100 100/100

Mean 177.1 65.5/147.5 969.9/988.8 385.6 66.3/137.2 816.1/827.6

SD 68.7 10.7/100.4 931.3/812.6 148.3 10.6/103.0 660.7/972.3

Min 100 57/57 98/57 100 57/57 98/60

Max 300 95/336 5533/3840 940 95/474 4335/8097

40 Suc 17 100/100 100/100 87 100/100 100/100

Mean 395.3 105.0/173.5 1052.7/1394.3 689.2 102.3/171.3 1004.3/847.9

SD 131.8 9.9/125.9 1012.5/1263.5 255.6 9.1/133.8 673.9/581.2

Min 160 97/97 136/96 200 97/97 136/97

Max 640 120/403 5538/8458 1520 137/620 3338/2784

60 Suc 22 100/100 100/100 97 100/100 100/100

Mean 523.6 142.9/214.8 1265.5/1526.4 968.0 142.0/211.3 1021.4/956.5

SD 231.4 8.8/145.9 1154.0/1360.1 347.9 8.8/151.4 644.0/524.8

Min 240 137/137 174/138 240 137/137 176/140

Max 1260 160/542 5694/6548 1860 160/755 3418/3203

80 Suc 21 100/100 100/100 100 100/100 100/100

Mean 796.2 181.7/254.7 1648.0/1629.6 1230.4 181.6/257.3 1152.2/1226.8

SD 360.0 8.7/173.9 1495.9/1350.7 467.6 8.3/187.2 641.6/771.8

Min 400 177/175 219/179 480 177/177 217/178

Max 1760 216/682 8339/6953 3040 200/866 2599/3966

Table 13 Results of DE and
GAs for TP3 (heat exchange
problem)

PS DE1 DE2 DE3 DE4 DE5 DE6 GA

20 Suc 100 71 79 53 100 99 100

Mean 643.8 269.0 800.8 909.8 341.4 661.6 796.6

SD 182.2 79.6 1733.6 629.5 226.5 152.7 150.5

Min 240 80 100 320 120 180 481

Max 1820 500 13880 3420 2160 1040 1250

40 Suc 100 96 100 98 100 100 100

Mean 1182.4 462.9 679.6 1918.4 446.0 1278.0 1196.9

SD 189.3 94.8 589.7 4011.3 139.4 253.3 189.8

Min 760 240 200 560 160 760 666

Max 1520 640 3680 37800 920 1880 1659

60 Suc 100 100 100 100 100 100 100

Mean 1701.0 654.0 714.0 1487.4 561.6 1770.0 1631.4

SD 295.2 138.2 412.0 923.7 171.5 392.0 198.4

Min 960 300 300 480 240 780 1210

Max 2460 960 3240 7200 1020 2520 2089

80 Suc 100 100 100 100 100 100 100

Mean 2132.8 822.4 754.4 1627.2 664.8 2283.2 1991.3

SD 393.4 182.3 337.0 653.9 189.8 507.8 270.8

Min 960 480 240 800 240 640 1097

Max 3040 1200 2560 5520 1200 3360 2702

efficient for all population sizes, although DE2 and DE3 were
better in terms of robustness, having slightly smaller stan-
dard deviations. The GA was successful in all experiments,
although at the cost of excessive number of function eva-

luations. As expected, the statistical hypothesis tests repor-
ted in Table 18, confirm the significance of the performance
difference among these algorithms and the best performing
MPSO.
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Table 14 Results of Overall Best Algorithms for TP3 (heat exchange
problem)

PS Suc Mean SD Min Max

20 PSO� 72 385.6 148.3 100 940

PSOHJ
g 100 65.5 10.7 57 95

DE5 100 341.4 226.5 120 2160

GA 100 796.6 150.5 481 1250

40 PSO� 87 689.2 255.6 200 1520

PSOHJ
� 100 102.3 9.1 97 137

DE5 100 446.0 139.4 160 920

GA 100 1196.9 189.8 666 1659

60 PSO� 97 968.0 347.9 240 1860

PSOHJ
� 100 142.0 8.8 137 160

DE5 100 561.6 171.5 240 1020

GA 100 1631.4 198.4 1210 2089

80 PSO� 100 1230.4 467.6 480 3040

PSOHJ
� 100 181.6 8.3 177 200

DE5 100 664.8 189.8 240 1200

GA 100 1991.3 270.8 1097 2702

In the 12-dimensional radiation therapy problem (TP2),
the algorithms exhibited similar behavior with TP1, as repor-
ted in Tables 9, 10 and 11. Overall, PSOHJ

g was the best
scheme, with its adaptive counterpart performing better in
cases of high swarm sizes. The local variant, PSOHJ

� , was

better than the rest memetic approaches, only for the case of
swarm size 60.

In contrast to TP1, the SW-based schemes were not also
better than the rest of the algorithms, indicating that the selec-
tion of the local search algorithm can be crucial for the perfor-
mance of memetic algorithms in FCMs learning problems.
However, we must notice the increased efficiency of the adap-
tive SW-based schemes, compared to their standard counter-
parts, which implies the ability of the adaptive scheme to
decrease the required number of function evaluations when
an excessive number is needed from the standard scheme, for
achieving the desirable accuracy. The remarkable difference
in the performance between the two local search methods
can be attributed to their different nature, since HJ is deter-
ministic, while SW is a stochastic algorithm.

Regarding the rest of the algorithms, DE5 was better for
small swarm sizes, while DE2 was the best scheme for higher
swarm sizes. The standard PSO was able to achieve the requi-
red accuracy only for the maximum number of particles,
while GA was always successful, at the cost of increased
number of function evaluations, that were 20–40 times higher
than the best memetic approach. The statistical significance
reported in Table 18 confirm these differences.

The 10-dimensional heat exchange problem (TP3) pro-
ved to be harder than the previous problems, as reported
in Tables 12, 13 and 14. The standard PSOg learning algo-
rithm was not able to compute the solution with the required
accuracy, especially with small swarm sizes. The superiority

Table 15 Results of MPSO and
PSO for TP4 (eco-industrial
park problem)

SS PSOg PSOHJ
g PSOSW

g PSO� PSOHJ
� PSOSW

�

20 Suc 20 100/100 100/100 86 100/100 100/100

Mean 196.0 285.3/776.6 5409.0/8502.5 401.6 359.5/740.1 3161.4/2699.9

SD 88.6 85.9/506.6 7418.1/11048.7 138.4 158.1/305.6 9266.5/5532.7

Min 100 151/126 99/94 120 212/243 100/60

Max 480 768/2252 36415/68384 780 1166/2202 78015/32093

40 Suc 31 100/100 100/100 99 100/100 100/100

Mean 361.3 355.6/852.3 8654.5/8243.2 753.9 462.6/859.0 1447.4/1706.5

SD 160.2 73.4/481.4 11301.3/11136.9 247.7 178.1/232.0 871.3/4923.6

Min 200 195/261 139/99 400 240/320 138/99

Max 840 546/2974 73138/80297 1680 1280/1388 5137/38753

60 Suc 43 100/100 100/100 100 100/100 100/100

Mean 477.2 412.2/1029.9 9898.9/9860.6 1026.6 566.5/1077.2 1413.5/1048.2

SD 152.1 83.5/508.7 15841.1/12749.8 262.6 198.2/267.9 722.2/575.6

Min 240 247/286 180/212 480 287/450 180/213

Max 840 747/3092 102057/67430 1620 1372/1929 3778/2756

80 Suc 36 100/100 99/100 100 100/100 100/100

Mean 657.8 473.7/1031.3 8056.5/11339.9 1295.2 676.8/1245.6 1718.9/1206.0

SD 210.5 77.4/489.7 14051.4/15277.9 307.2 221.8/437.7 844.4/527.7

Min 320 323/367 215/180 640 452/377 219/179

Max 1600 742/3315 67136/60838 2000 1467/3233 4277/3271
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Table 16 Results of DE and
GAs for TP4 (eco-industrial
park problem)

PS DE1 DE2 DE3 DE4 DE5 DE6 GA

20 Suc 100 61 59 16 99 100 100

Mean 1099.4 347.2 2109.8 1733.8 605.9 1252.0 1513.0

SD 221.2 85.8 3380.1 669.8 226.4 234.1 288.2

Min 640 140 340 940 240 800 923

Max 2000 760 16360 3060 1340 2400 2298

40 Suc 100 95 94 96 100 100 100

Mean 2019.6 630.3 1545.1 2985.0 839.2 2529.2 2126.1

SD 228.4 145.5 2304.6 2797.5 215.2 380.8 337.9

Min 1240 360 400 1040 320 1600 1304

Max 2480 1040 20680 23760 1600 3440 3226

60 Suc 100 96 99 100 100 100 100

Mean 2929.2 890.6 1480.0 3474.6 1049.4 3904.2 2710.7

SD 312.8 165.7 1377.7 4473.9 223.1 524.6 294.3

Min 1800 420 480 1140 480 2340 1956

Max 3540 1200 10980 38400 1920 5040 3496

80 Suc 100 99 99 100 100 100 100

Mean 3864.8 1049.7 1695.4 3516.0 1284.0 5297.6 3356.1

SD 480.0 184.7 1448.3 2691.7 286.2 578.5 389.0

Min 2080 640 560 1680 560 3760 2594

Max 4800 1520 10800 20400 2080 6720 4273

Table 17 Results of Overall Best Algorithms for TP4 (eco-industrial
park problem)

PS Suc Mean SD Min Max

20 PSO� 86 401.6 138.4 120 780

PSOHJ
g 100 285.3 85.9 151 768

DE1 100 1099.4 221.2 640 2000

GA 100 1513.0 288.2 923 2298

40 PSO� 99 753.9 247.7 400 1680

PSOHJ
g 100 355.6 73.4 195 546

DE5 100 839.2 215.2 320 1600

GA 100 2126.1 337.9 1304 3226

60 PSO� 100 1026.6 262.6 480 1620

PSOHJ
g 100 412.2 83.5 247 747

DE5 100 1049.4 223.1 480 1920

GA 100 2710.7 294.3 1956 3496

80 PSO� 100 1295.2 307.2 640 2000

PSOHJ
g 100 473.4 77.4 323 742

DE5 100 1248.0 286.2 560 2080

GA 100 3356.1 389.0 2594 4273

of the PSOHJ
g scheme was equalized in this problem by its

local counterpart, due to the requirement for more intense
search. The performance of the HJ-based schemes proved to
be significantly different than the best performing of the rest

algorithms, as reported in Table 18. We must notice that all
HJ-based schemes had very small standard deviations, com-
pared to the rest of the algorithms, with PSOHJ

g being more
robust. Again, the global SW-based scheme proved to be
less efficient, especially for small swarm sizes, although its
local variant had remarkably better results. However, we must
notice that it never failed to achieve the requested accuracy.
Also, the minimum number of function evaluations required
by PSOSW

g was competitive to that of the most efficient HJ-
based schemes. Regarding the rest of the algorithms, DE5

was the best DE approach, while GAs exhibited similar per-
formance to the previous test problems.

In the 40-dimensional eco-industrial park problem (TP4),
PSOHJ

g was again the most efficient scheme, requiring almost
half the function evaluations required by the standard PSO�,
as reported in Tables 15, 16 and 17. This claim is suppor-
ted also by the statistical test reported Table 18. The adaptive
scheme proved to be valuable both for the local and global
SW-based schemes, increasing noticeably its efficiency com-
pared to its standard counterpart. However, the performance
of its global variant was poor, compared with PSO� with large
swarm sizes, as well as with some DE strategies and the GAs.

Overall, the HJ-based memetic schemes were shown to
be the best algorithms for FCMs learning in the studied test
problems. The SW-based schemes were also very effective,
achieving the required accuracy in every case, although at
a higher computational cost. The proposed adaptive scheme

123



Improving fuzzy cognitive maps learning through memetic particle swarm optimization 93

Table 18 Statistical significance tests among the best performing
algorithms per problem and swarm size

Test Problem SS MPSO PSO DE GA

1 20 PSOHJ
g + + +

40 PSOHJ
g + + +

60 PSOHJ
g ad. + + +

80 PSOHJ
g ad. + + +

2 20 PSOHJ
g + + +

40 PSOHJ
g + + +

60 PSOHJ
� + + +

80 PSOHJ
g ad. + + +

3 20 PSOHJ
g + + +

40 PSOHJ
� + + +

60 PSOHJ
� + + +

80 PSOHJ
� + + +

4 20 PSOHJ
g + + +

40 PSOHJ
g + + +

60 PSOHJ
g + + +

80 PSOHJ
g + + +

for the number of function evaluations allocated to the local
search, was shown to be very useful in high swarm sizes,
reducing the total computational burden of the algorithm. The
global memetic variants were more promising than the local
variants, perhaps due to the specific nature of the problems.
The same was observed also for the DE approaches, where
the best performing strategy, DE5, uses the best individual.
Comparisons with established learning algorithms based on
the standard PSO, DE, as well as GAs, confirmed the superio-
rity of the proposed memetic approaches in FCMs learning,
and statistical tests justified the significance of the results.

6 Conclusions

Two different memetic schemes for FCMs learning were stu-
died extensively on four real-life test cases. The first scheme
uses the deterministic local search algorithm of Hooke and
Jeeves, while the second employs the stochastic method of
Solis and Wets. We also proposed a technique for the adapta-
tion of the number of function evaluations performed for each
local search application, based on a success/failure scheme
similar to the parameter adaptation scheme of the Solis and
Wets algorithm. Variants of the aforementioned methods that
utilize local and global PSO as their global search component
were applied on four real life applications, and compared with
standard PSO, DE, and GA-based learning approaches.

Overall, the HJ-based methods proved to be most efficient.
This can be attributed to their deterministic nature that pro-
motes refined local search. Also, the adaptive scheme proved

to be very useful, especially for the less efficient SW-based
variants, mostly in cases with large swarm sizes, while it
exhibited competitive results even for the HJ cases. There-
fore, it can be considered as a promising alternative that can
enhance the performance of mediocre memetic approaches.
None of the rest algorithms was able to outperform the HJ-
based scheme, for all test problems and different swarm sizes.

The improvement that hybrid algorithms can exhibit in
their performance compared to their standard components
is always problem-dependent. Therefore, we do not expect
that a general MA, with a specific setting, will be the best
choice for all optimization problems. However, for the FCMs
learning tasks, our results support the claim that the propo-
sed MAs can be very efficient especially in the cases where
high accuracy is desirable, requiring minor implementation
efforts. Future research will include investigations on dif-
ferent local search algorithms, as well as a more enhanced
technique for the online selection of the position of applica-
tion and frequency of the local search, along with the budget
of function evaluations allocated to it.
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