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Deterministic Nonmonotone Strategies for Effective
Training of Multilayer Perceptrons

Vassilis P. Plagianakos, George D. Magoulember, IEEEand Michael N. Vrahatis

Abstract—in this paper, we present deterministic nonmonotone that minimizes the error function using the steepest descent
learning strategies for multilayer perceptrons (MLPs), i.e., deter- method [19]
ministic training algorithms in which error function values are al-
lowed to increase at some epochs. To this end, we argue that the
current error function value must satisfy a nonmonotone crite-
rion with respect to the maximum error function value of the M
previous epochs, and we propose a subprocedure to dynamically where » is a heuristically chosen parameter, calledrning
compute M. The nonmonotone strategy can be incorporated in rate. Appropriate learning rate values help avoid convergence
any batch training algorithm and provides fast, stable, and reli- to a saddle point or a maximum. In practice, a small constant

able learning. Experimental results in different classes of problems | - te is ch 0 i der t th
show that this approach improves the convergence speed and suc- earning rate is chosem (< 7 < 1) in order to secure the con-

cess percentage of first-order training algorithms and alleviates the vVergence of the BP training algorithm and avoid oscillations in
need for fine-tuning problem-depended heuristic parameters. a steep direction of the error surface. However, it is well known

Index Terms—Adaptive learning rate algorithms, backpropaga- that this approach tends to be inefficient. For example, this hap-
tion (BP) algorithm, multilayer perceptrons (MLPs), nonmonotone ~ pens when the search space contains long ravines that are char-
minimization, unconstrained minimization. acterized by sharp curvature across them and a gently slopping
floor [28], [62]. Moreover, this approach introduces difficulties
in obtaining convergence of BP training algorithms [33], [38].
Nevertheless, there are theoretical results that guarantee the con-
HE BATCH training of a multilayer perceptron (MLP) isyergence of batch BP algorithms for a constant learning rate. In

consistent with the theory of unconstrained optimizatioghis case, the learning rate should be proportional to the inverse
and can be viewed as the minimization of the functionthat  of the Lipschitz constant which, in practice, is not easily avail-

whtt = wh — nVE(wk) 3)

. INTRODUCTION

is to finding a minimizerw™ = (wy, w3, ..., wy;) € R", such aple [2], [42], [69].
that A variety of approaches adapted from numerical analysis
. . have been applied, in an attempt to use second derivative related
W= M E(w) () information to accelerate the learning process [6], [44], [46],

) ] [53], [68], [72]. However, second-order training algorithms are,
where F is the batch error measure defined as th§ certain cases, computationally intensive for MLPs with sev-
sum-of-squared-differences error function (SSE) over theq| hundred weights [7]. Furthermore, it is not certain that the
entire training set. extra computational cost speeds up the minimization process

Next, we minimizeE by considering the family of gradient- for nonconvex functions when far from a minimizer [12], [50],
based training algorithms having the iterative form as is usually the case with the neural-network training problem
[6]. Therefore, the development of improved gradient-based
training algorithms is a subject of considerable ongoing

ke . . ... research and receives significant attention of neural-network
wherew"” is the current weight vectog” is a search direction

andr” is the learning rate at theth iteration. Various choices of pract|t|.oners. L . -
the directiony” give rise to distinct algorithms. A broad class of Inthis paper, we present deterministic gradient-based training

methods uses the search directigh= —V E(w"), where the algorithms in which error function values are allowed to in-
gradientV E(w) can be obtained by_means o?be{ckpropagatiocrqease at some epochs. In this way, the learning process exhibits
of the error through the layers of the network [62] nonmonotone behavior [14], however, the training procedure is

The most popular training algorithm of this class, which ifsaSt’ stable, and reliable.
Pop g &g f This paper is organized as follows. In Section Il, the class

named batch backpropagation (BP) [62], is a first-order methg first-order BP algorithms with adaptive learning rate is pre-

sented. Monotone learning strategies are briefly described in
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[I. ADAPTIVE LEARNING RATE ALGORITHMS minimized along the current search direction at each epoch, i.e.,
k+1 k i i i i
Research on MLP training usually focuses on BP algorithrt%(w ) < E(w ) To this end, an |ter.at|ve searc_h, Wh'Ch
C',;boﬂen expensive in terms of error function evaluations, is re-

with adaptive learning rate in order to accelerate the trainify It t be noted that the ab imol dition d i
procedure. The following strategies are usually suggested. red. ftmust be noted that the above simple conaition does no
uarantee global convergence for general functions, i.e., con-

1) Startwith a small learning rate and increase it exponential krges to a local minimizer from any initial condition (see [13]

!; suc_ce_sf_swe te poch_s reduce the erroréor;zipldly decreasq&,a general discussion of globally convergent methods).
5 ISta St'gnt'rlcan erlrl(ir mcreasetoccu(;s_ [51, [ ].'t i . In adaptive learning rate algorithms, monotone reduction of
) Start with a small learning rate and increase it, if success error function at each iteration can be achieved by searching

epochs keep gradient direction fairly constant, or rapid local minimum with small weight steps. These steps are usu-

decrease it, if the direction of the gradient varies greatly ﬁﬁy constrained by problem-dependent heuristic leaming pa-
each epoch [11].

3) F h weiaht individual | . te s ai h_ciilmeters. The use of heuristic strategies enforces the mono-
) For each weight, an individual learning rate is given, whi ne decrease of the learning error and secures the convergence

increases iT the_ successive changes in t.he weights are Lnthe training algorithm to a minimizer of. However, the
the same direction and decreases otherwise [28], [54], [6 e of inappropriate values for the heuristic learning parame-

[63]. . ers can considerably slow down the rate of training or even lead
4) Use aclo§ed formulatq caIguIate acommon Iearnlng rate {Brdivergence and to premature saturation [37], [61]; there is a
all th? weights at each 'tefa“on [27], [42], [56] ora d'ﬁerenfradeoﬁ between convergence speed and stability of the training
learning rate for each we|g_ht [15], [43]. . . algorithm. Additionally, the use of heuristics for bounding the
Note that E.i" the above-mentioned strategies employ heu”ﬁtégrning rate prevents the development of efficient algorithms
parameters in an attempt to enforce the decrease of the lear will converge to a local minimizer of the error function

error'at each iteration and secure the converge of the tram@tgrting from any initial weight vector, i.e., globally convergent
algorlt.hm. _ - .. algorithms [13].

A different approach is based on Goldstein's and Armijo’s monotone learning strategy, which does not apply heuris-
work on.steepest-d(_-:‘scent and gradlgnt method;. The mgthoﬁc to bound the length of the minimization step, consists in
Goldstem [20] requires the assumption tiiais twice contin- accepting a positive learning raté along the search direction
uously differentiable o (w?), whereS(w®) = {w: E(w) < o* £ 0, if it satisfies thewolfe conditions
E(w?)} is bounded, for some initial vectar®. It also requires ’
thatn is chosen to satisfy the relatienp || H (w)|| < n~! < oo, E(w" + n*o") — BE(w®) <omn®(VE(W"), oF)  (5)
where H (w) denotes the Hessian &f at w, in some bounded ko R ok
region, where the relatiof(w) < E(w°) holds. However, the (VE(" +n"¢"%), %) 2 02(VE(w"), ¢") 6
manipulation of the full Hessian is too expensive in computgihare < 0, < 0p < 1and(-,-) stands for the usual
tion and storage for MLPs with several hundred weights [7hner product iR, The first inequality ensures that the error
In [36], a technique based on appropriate perturbations of {a&eqy ced sufficiently, and the second prevents the learning rate
weights has been proposed for the online estimation of the Xy peing too small. It can be shown thatf is a descent di-
treme eigenvalues and eigenvectors of the Hessian without G@lstion andr is continuously differentiable and bounded below
culating the full matrixH . According to experiments reported Nalong the ray{w® + ng* |7 > 0}, then there always exists a

[36], the Ial’gest e_igenvalue Ofthe HeSS-ian is mainly determin%ddming rate Satisfying (5) and (6) [13], [50] Relation (6) can
by the MLP architecture, the initial weights and by short-terrgg replaced by
low-order statistics of the training data. This technique can be
used to determing requiring additional presentations of the E(w* +n*o") — E(w®) > oo™ (VE(W"), %) (7)
training set in the early training. ,
Cauchy’s method [2], [10], suggests that the value of tH¥N€reoz € (a1, 1) (see [13]). The strategy based on Wolfe's
learning ratey is related to the value of the Lipschitz constapt conditions provides an efficient and effective way to ensure that
which depends on the morphology of the error surface. In e error function is globally reduced sufficiently. In practice,
case, the BP algorithm takes the form conditions (6) or (7) are generally not needed because the use
1 of a backtracking strategy avoids very small learning rates [43],
W't = wh — — VE(w") (4) [70].
2L An alternative strategy has been proposed in [57]. It is ap-

and converges to the point* which minimizesE (see [2] for . L
" ) Rllcable to any descent directiap and uses two parameters
conditions under which convergence occurs and a convergence

proof). In [42], a local estimation of the Lipschitz constant ha%,; B e (0’ 1. FOIIOng.th'S approach, the Ie_ar_nmg rate s
. . . . = 0™+, wherem,, € Z is any integer that satisfies the con-
been proposed in a learning rate adaptation strategy, which p?ﬁg.—
I

) . ons
vides increased rate of convergence, and guarantees the stability
of the learning process. E(wk + ﬁmk@k) — E(wk) gﬂmka(VE(wk% ¢k) (8)

lIl. M ONOTONE LEARNING STRATEGIES E(w" + g™ tok) — E(w®) > g™ T a(VE(w"), ¢*). (9)

A training algorithm can be made globally convergent by de- To ensure global convergence, monotone strategies that em-
termining the learning rate in such a way that the error is exactoy (5) and (6) or (8) and (9) must be combined with learning
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rate tuning subprocedures. For example, a simple subprocedur8) Use a tuning technique fo* and return to Step 2).

for tuning the length of the minimization step is to decrease theA simple technique to tung® at Step 3) is to decrease the
learning rate by a reduction factdyq, whereqg > 1 [52], s0 |earning rate by a reduction factoyq, whereq > 1, as men-
that it satisfies conditions (5) and (6) at each epoch. Batk- tioned in the previous section. Here, we remark that the selection
tracking strategyhas the effect that the learning rate is decreasegl, is not critical for successful learning; however, it has an in-
by the largest number in the sequer{ge™ }77_,, so that (5) fluence on the number of error function evaluations required to
is satisfied. When seeking to satisfy (5) it is important to eybtain an acceptable weight vector. Thus, some training prob-
sure that the learning rate is not reduced unnecessarily so tegis respond well to one or two reductions in the learning rate
(6) is not satisfied. Since during training, the gradient vector i modest amounts (such as 1/2), while others require many
known only at the beginning of the iterative search for a ne¥(ch reductions, but might respond well to a more aggressive
weight vector, condition (6) cannot be checked directly (thigarning rate reduction (for example, by factors of 1/10, or even
task requires additional gradient evaluations at each epoch), Pi#0). On the other hand, reducing§ too much can be costly

is enforced simply by placing a lower bound on the acceptalifhce the total number of epochs will be increased. The value
values of the learning rate. This bound on the learning rate has: 2 is usually suggested in the literature [2] and, indeed, it was
the same theoretical effect as condition (6) and ensures gloRsind to work effectively and efficiently in the experiments re-

convergence [13]. ported in this paper. The above procedure constitutes an efficient
method of determining an appropriate learning rate without ad-
I[V. NONMONOTONELEARNING STRATEGIES ditional gradient evaluations. As a consequence, the number of

Although monotone learning strategies provide an efficie {adlgnt evaluat_lons is, in general, less than the number of error
nction evaluations.

and effective way to ensure that the error function is reduced s Th i | . trat be i ted i
ficiently, they have the disadvantage that no information, which € nonmonotone fearning strategy can be incorporated in

might accelerate convergence, is stored and used [16]. To a%gy batch training algorithm. It can be used as a subprocedure

viate this situation we propose a nonmonotone learning straté gt secures and ggcelerate; Fhe convergence of a bgtch training
that exploits the accumulated information with regard tothe or!thm.by prowdmg_the ability to handle large learning ratgs,
most recent values of the error function. The following conditioﬁnd’ in this way, learning by neural networks becomes feasible

is used to formulate the new approach and to define a criterigh 2 first-time basis for a given problem.'AddmonaIIy, It aIIQ-
of acceptance of any weight iterate: viates problems generated by poor selection of the user-defined

learning parameters, such as decreased rate of convergence, or
E(w" +1*0") — max {BE(w* )} < v (VE(w"), o) even divergence and premature saturation [37].
0<i<M
(10)

where M is a nonnegative integer, nameatbnmonotone A. Nonmonotone Learning Horizon
learning horizon ~ takes values in the rang®, 1), #* indi-
cates the learning rate, angf is the search direction at the Experimental results, exhibited in [55] and [56], indicate that
kth epoch. The above condition allows for an increase in tiee choice of the parametéf is critical for the implementation
function values, which is regulated by the valueygfwithout and depends on the nature of the problem. Below, we propose
affecting the global convergence properties, as it has begfprocedure to finding estimates of the nonmonotone learning
proved theoretically in [21] and [59]. In practice, a value ohorizonM at each iteratioi that utilizes the notion of the Lip-
0 < v < 1 is suggested [21]. Thus, in our experiments, wechitz constant.
have used a fixed valug = 1077 for all test problems, in It is well known that the Lipschitz constant is related to the
order to test the robustness of our methods in different typesmérphology of a function [2], [10]. For example, the Lipschitz
problems. constant for a function having steep regions is large. On the

Furthermore, it can be shown that the nonmonotone learniogher hand, when the function is flat the Lipschitz constant is
strategy generates a globally convergent sequence for any algeall. However, in neural-network training practice, neither the
rithm that follows search directiop” # 0, provided that two morphology of the error surface nor the value of the Lipschitz

positive numbers;, co exist, such that constant are knowa priori. In order to alleviate this situation
in [42] a local estimation of the Lipschitz constant has been
VEw") " < —e1||[VE(w)|] (11) proposed, which provides information related to the local shape
A i of the error function (see also [69] for the usefulness of this
||<P H <02|IVE(w )H 12) estimate).

) ) . The following procedure provides an elegant way to adapt the
This follows directly from the convergence theorem in [21]. \5)ye of the nonmonotone learning horizon dynamically at the
Next, we summarize the basic steps of the nonmonotopg, iteration:

learning strategy at thith iteration.
1) Update the weights**! = w* + nkk, ' ME1 41 AR < AR-L < AR2
2) If E(w® + n*¢*) — maxogicu{Ew*7)} < k k—1 7 k k—1 k=2
iR (VE(w*), o*), storew**! setk = k + 1 and M® = ¢ M*=1 =1, AP > AP > AR (13)
go to Step 1); otherwise go to Step 3). M*F-1, otherwise
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whereA” is the local estimation of the Lipschitz constant at theate is appropriate to accelerate the convergence. Thus, BPVS
kth iteration [42] updates the weights using (3) where the learning rate is calcu-
, - lated using (16).

k— IVE(w") = VE(wr D] (14) In order to eliminate the possibility of using an unsuitable
[[wh — w1 local estimation of the Lipschitz constant, we combine the

which can be obtained without additional error function or grd3PVS method with the nonmonotone learning strategy. This

dient evaluations. IA* constantly increases during two consec¢ersion of the BPVS, which provides nonmonotone training,

utive epochs, the sequence of the weight vectors approachds gmed NMBPVS.

steep region and the value df* should be decreased to avoid 3) Nonmonotone  Barzilai-Borwein  Backpropagation

overshooting a possible minimum point. On the other handBP): In a previous work [55], we have proposed a neural

when A* constantly decreases at two consecutive epochs, fHEwork training algorithm called BBP, which is based on the

method possibly enters a valley in the weight space, and fRarzilai and Borwein method [4].

value of M* should be increased. This allows the method to ac- In BBP, the search direction is always the negative gradient

cept larger learning rates and move faster out of the flat regi¢hrection and the learning rate is updated using the following

Finally, when the value ak* has a rather random behavior (informula:

creasing or decreasing for only one epoch), the valu@/éf o (oFL aRLy

remains unchanged. T ) (17)

It is evident thatM* has to be positive. Thus, if relation (13) '
gives a nonpositive value in/*, the nonmonotone learningwheres* 1 = w* —wk~1t andy* 1 = VE(w*) -V E(wk1).
horizon is set equal td/* = 1 in order to ensure that the errorThe motivation for this choice is that it provides a two-point

A

function is reduced sufficiently at the current iteration. approximation to the secant equation underlying quasi-Newton
_ o _ methods [57]. The key features of this method are the low
B. Developing Nonmonotone Training Algorithms storage requirements and the inexpensive computations.

Next, we describe a nonmonotone version of the BP wifdoreover, it doesiot guarantee descent in the error function

momentum [28] and [62] (BPM), as well as two nonmonoton&. Our experiments (see also [56]) show that this property is
adaptive learning rate training algorithms. valuable in neural-network training because, very often, the

1) Nonmonotone BPMin [28], [62] a simple, heuristic, method escapes from local minima and flat valleys, whereas
strategy for accelerating the BP algorithm has been proposgtier methods are trapped. To secure the convergence of the
which is based on the use of a momentum term. The momentaiathod, even when the above formula gives unsuitable learning

term can been incorporated in the steepest descent methofegs, we apply the nonmonotone learning strategy. We call this
follows: modified training algorithm NMBBP. The new method retains

- i . i - the ability of BBP to escape from undesirable regions in the
w' = w" = (1 =m)nVE(w") +m(w” —w" ") (15) weight space, as shown in Fig. 1. In the upper part of Fig. 1,
i ) the NMBBP convergence behavior in the eXclusa®e{x0OR)
wherem is the.momer_mljm constant. One d_rawback with tl}?roblem is presented, while in the lower part the learning rate
above scheme is that,sit is set to a comparatively large valueéy o pavior is shown. The method successfully escapes from a
gradient information from previous epochs is more influenti%giOn with almost constant error function vali ~ 0.5,

than the current gradient information in updating the Weightasing large positive as well as negative learning rates. Note

Qne sqlunon Is to increase the Iearn!ng rate_, however, in Prafiat negative learning rates are possible due to the learning rate
tice, this approach frequently proves ineffective and leads to 'lr}deate formula (17)

stability or saturation. Thus, ifx is increased, it may be nec-

essary to make a compensatory reduction to maintain net- C. Adaptive Learning Rate Algorithm Model With
work stability. In the experiment reported in the next sectiolyonmonotone Strategy

we alleviate this problem by combining the BPM with the non- . - o .
: : . Ahigh-level description of a generic first-order algorithm that
monotone learning strategy. This nonmonotone BPM method is .
named NMBPM. mcorporates the nonmon_otone _stratggy ar_ld utilizes a user-de-
2) Nonmonotne 62 wih Vrale Sepsize @pvye P4 Ton00Te o foruon oinec e,
BPVS [42] exploits the local shape of the error surface by es- ' y 9 ’

timating the Lipschitz constant at each epoch, and setting t.eet the maximum number of epochs (ME), the running index

learning rate;* according to the following formula: = 0, the user-defined value of the error gea € (0, 1), the
g rate 9 g ' user-defined integer value éff € [1, ME], and the learning

A 1 |w* — wk1| 16 rate to an arbitrary positive valug.
T AR T 2VE(wF) — VE(wk1)]| (16) 1) Fork = 0, computew! = w® — n°VE(w?). Repetition:
L o . . Fork=1,2,..., ME.
whereA” is the local estimation of the Lipschitz constdnat ~ 2) Compute;* using the learning rate update formula (16) or
the kth epoch. Thus, when the error surface has steep regions, 17).
_A’“ is large, and a small value for the learning rate is appropriagg Update the weight vectar®+! according to the relation
in order to guarantee convergence. On the other hand, when the
error surface has flat regions’ is small and a large learning whtt = wh — PV E(w").
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Fig. 1. xor problem: (a) NMBBP convergence behavior. (b) Adaptive learning rate behavior.

4) If M > kthen setM’ = k, else sef\l’ = M. hypotheses, namegdtest at the significance level < 0.05
5) Check the nonmonotone strategy (see, for example, [34]), using the SPSS 10 statistical software
package.

k_k kyy_ k—g _ k k\|12
B! =V E(w*))~ max (B(w* =)} <" [VEw")]
If this is fulfilled go to Step 7).
6) Set= eta® = n*/2 and go to Step 5.
7) If the convergence criterioR (w**+1) < ¢ is met then ter-

A. Comparative Study

Below, we evaluate the performance of the NMBPVS and
NMBBP algorithms, and compare them with the batch versions
of BP [62], BPM [28], and adaptive BP (ABP) [71]. The BPM

8) :?Il?aie.ME seth = k + 1 and go to Step 2); otherwiseapp"es the weight update rule of (15). A widely used value for
terminate ' o g P <) the momentum term is: = 0.9 and for the learning rate is =

0.1, as discussed in [23], [39]. The ABP applies the following

o , . k1 s _
Termination: Get the final weight vectow and the cor learning rate update formula

responding error valu&(w*+1).

Instead of using a user-defined value for the nonmonotone o1, E(w*) < E(w*=1)

learning horizonV/, the adaptive procedure of relation (13) can E b1 & b1

be applied to dynamically evalualé” at each iteration. m=N AT BR) > pB(wt)
nk=1,  otherwise

V. EXPERIMENTAL RESULTS wherep is the maximum error ratio in two successive iterations,

In this section, we evaluate the performance of the nonmone-> 1 andf < 1 are positive constants, named the learning
tone learning strategy by performing four sets of experimentsite increment and decrement factor, respectively. In our exper-
1) we compare the algorithms NMBPVS and NMBBP witliments we have used the valyes- 1.04, ¢ = 1.05andg = 0.7
some well-known and widely used training algorithms; 2) was suggested in [71].
study the performance of the NMBPVS and NMBBP algorithms We have also performed experiments using the globally
using various values o/, as well as an adaptivd/; 3) we convergent modifications of the conjugate gradient methods:
compare the performance of the training algorithms with aritletcher—Reeves (FR) [18]; Polak—Ribiere (PR) [18]; Polak—Ri-
without the use of the nonmonotone strategy; and 4) we evalubtere (PR) constrained by the FR method (PR-FR) [18].
the generalization capability of the nonmonotone algorithms in For the NMBPVS and NMBBP algorithms, we decided to
five test problems. In all cases, average performance presenisd the same values ¢ (M = 10) and~y (y = 10~°) for all
below was validated using the well-known test for statisticaixperiments in order to verify that the nonmonotone algorithms
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Fig. 2. Three-bit parity problem: Average CPU time for convergence of eagflg. 3. Function approximation problem: Average CPU time for convergence
training algorithm. of each training algorithm.

perform reasonably well to different types of problems withot 140
parameter fine tuning. The same sequence of input patterns g 120
been presented to the MLPs and the weights are updated ¢’y 100 -
after the entire set of the learning patterns has been preser= g |
(batch training). 60 |
Typically, initial weights and biases are initialized to smal g ,, |
random values. Alternatively, techniques for finding the “bes 5
available (in terms of convergence behavior) initial weigt<
distribution range depending on the data set used, the netw
architecture and the activation functions can be used (see [ & & §§2 & Q.fg LK
: ) . Q
for a review on this methods). Unless otherwise noted, tl S
Nguyen—-Widrow method [39], [49] was used in our experi-
ments. This technique helps to prevent premature saturatE
at the hidden neurons by calculating the interval from which
weights connecting input-hidden neurons are taken in acc 400
dance with the number of input neurong) and the number of % 350 |-
hidden neuronsk1). First, the parameteris calculated < 300 -

CPU tim
N A
o

Alphabetic font learning problem: Average CPU time for convergence
ach training algorithm.

o ®

N

a

o
:

p=0.7(M'N) (18)

N
o
1S3

f

|

|

I

and then the methods proceeds to choose a set of weic
w' = (Wi, ..., W), ..., Wi, randomly from the in-
terval(—1, +1). Finally, weights from input to hidden neurons
are in|t|aI|zed using the relation

-

o o

o o
L |

Average CPU time (se
@
o

o
L

T

wg, = Plmm. (19)

nm
[l

Fig. 5. Numeric font learning problem: Average CPU time for convergence of
This process of weight initialization results in distributingeach training algorithm.

the initial weights at the hidden layer in such a way that it is
more likely that each input pattern will cause a hidden neurd®00 trials within the error function evaluations limit. If an al-
to learn efficiently, accelerating convergence and preventiggrithm fails to converge within the error function evaluation
premature saturation [49]. In our experiments we applied thimit, it is considered that it fails to train the MLP but its epochs
Nguyen—-Widrow method. One thousand independent triase not included in the experimental analysis of the algorithm.
have been performed by taking a different set of weightts Figs. 2-5 exhibit the comparative CPU times of all the algo-
for each trial. In order to have a fair comparison of the trainingthms tested.
algorithms, we have used exactly the same initial weights forWe must also note that for the BP, BPM, and ABP each epoch
all algorithms tested. corresponds to one gradient and one error function evaluation.
For each of the four test problems described below, we pres@nt the other hand, the number of error function evaluations
a table summarizing the performance of the algorithms for sif-Es) of the conjugate gradient methods (PR, FR, and PR-FR)
ulations that reached solution within a predetermitigdt of is, in general, larger than the number of gradient evaluations
error function evaluations (specified below). The reported p&GEs). These methods require one GE at each epoch but
rameters aréMin the minimum number of epochg,the mean more than one FEs, due to the use of the inexact line search.
value of epochsMax the maximum number of epochs,the NMBPVS and NMBBP also require additional FEs at each
standard deviation, arflucc.the simulations succeeded out oepoch as they use the nonmonotone strategy. As a consequence,
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TABLE | TABLE I
COMPARATIVE RESULTS FOR THETHREE-BIT PARITY PROBLEM COMPARATIVE RESULTS FOR THEFUNCTION APPROXIMATION PROBLEM
Algorithm Min I Maz o Success Algorithm Min I Mazx o Success
BP * * * * * BP 328 7067 998 1756  13.8%
BPM 246 4854 973 1954  48.0% BPM 332 699.2 993 1748  13.7%
ABP 465 599.2 924 103.9  45.0% ABP 166 628.1 994 2168  26.9%
" " " " " (FE) 44 173.2 474 1333
FR FR (©E) 38 878 164 434 3%
(FE) 189 4653 972 188.2 (FE) 151 5327 954 2324
PR ) 148 3007 836 1792  002% PR (©E) 119 4655 940 2351 1%
B (FE) 201 5209 943 196.8 B (FE) 80 597.5 997 283.3
PR-FR () 170 4323 829 1872  02% PR-FR (@E) 60 5741 o082 2185 0%
(FE) 103 2921 986 161.9 (FE) 64 4439 991 2385
NMBPVS (GE) 98 2855 060 1568 2 NMBPVS (GE) 64 4202 960 2089  008%
(FE) 47 2989 978 2124 (FE) 29 241.7 988 195.1
NMBBP (GE) 37 1819 601 1189 O9% NMBBP (GE) %6 1582 625 1147 22
* the algorithm failed to converge within the crror function evaluations limit
even when NMBPVS and NMBBP fail to converge within the TABLE il
. L . . . COMPARATIVE RESULTS FOR THEALPHABETIC FONT PROBLEM
predetermined limit of error function evaluations, their number
of gradient evaluations is smaller than the corresponding Algorithm Min L Maz o  Success
number of the other methods. Keeping in mind that for some Bp 1098 1561.9 1999 202.8  76.8%
problems, [48], a gradient evaluation is more costly than an BpM 1142 1519.1 1931 169.3 4.9%
error function evaluation (see, for example, [46], where Mgller ABP 1119 1773.1 1999 1689  37.2%
suggests counting gradient evaluations more than error functior R . . . . .
evaluations), one can understand that these methods requit
fewer floating point operations and are actually much faster. (FE) 340 1018.5 1673 275.7
: R ; R 100.0%
From the above discussion, it is clear why, in the tables below, ) 196 936.7 1669 317.1
there are two rows for the conjugate gradient algorithms and pg_pgr =~ *® 388 998.5 1715 285.1 ., oy
the NMBPVS and NMBBP; the first one indicates the statistics (©8) 244 0883 1713 292.0
for the FE and the second one for the GE. NMBPVS 3376694 1112 1349 5, o
. . . (GE) 322 633.3 1041 131.1
1) 3-Bit Parity Problem: The parity problem can be con-
. . o - (FE) 113 182.0 309 335
sidered as a generalize®r problem but it is more difficult. NMBBP o) 73 1194 193 205 100:0%

Here, we have used a more difficult variation, having only two
hidden nodes based on hyperbolic tangent activation functions

and one linear output node. Thus, the task is to train a 3—2-1

MLP (eight weights, three biases) to produce the sum, mod 2,input values are scattered in the inter{@l 2=]. The network

three binary inputs—also known as computing the “odd parity$ trained untilE' < 0.1 within 1000 error function evaluations.
function. The termination condition has beEn< 0.01 within  The MLP is based on hidden neurons of logistic activations
1000 error function evaluations. The results are summarizedand on a linear output neuron. Comparative results are shown
Table I. in Table II.

Despite the effort we have made to fine tune its learning rate, It is worth noticing the performance of the FR method, since it
BP has failed to converge within the error function evaluatiorexhibits the least number of FE and GE, but it has a poor success
limit in all the simulation runs. BPM and ABP algorithmspercentage (17%). The nonmonotone algorithms exhibit very
performed much better, with BPM slightly outperforming ABRyjood average performance, having the best success rate, and an
in the particular implementation of the parity problem with twaverage execution time which is better than all other methods
hidden nodes. The conjugate gradient methods PR and PR-tE&ed except FR (see Fig. 3).
have been more efficient and effective than the first-order 3) Alphabetic Font Learning ProblemEor this problem, 26
methods, i.e., BP, BPM, and ABP, but the FR method has failathtrices with the capital letters of the English alphabet are pre-
to converge within the error function evaluations limit in alsented to a 35-30-26 MLP (1830 weights, 56 biases). Each
the simulation runs. As shown in Table I, the NMBPVS antktter has been defined in terms of binary values on a grid of size
NMBBP algorithms exhibit the best performance since théy x 7. The network is based on hidden neurons of logistic acti-
have the highest success rates, as well as the least avekadg@ns and on linear output neurons. The error function evalua-
number of FE and GE. In addition, they exhibit the fastesibn limit has been set to 2000 and the termination criterion has
execution time, as shown from the results of Fig. 2. beenE < 0.1. The results in Table Il show that the nonmono-

2) Continuous Function Approximation Problen&n tone algorithms greatly outperform all other methods tested in
1-15-1 MLP (30 weights, 16 biases) is trained to approximaterms of FEs and GEs. Furthermore, Fig. 4 shows that the non-
the continuous functiory(z) = sin(x)cos(2z), where the monotone algorithms have the fastest execution time.

* the algorithm failed to converge within the error function evaluations limit
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TABLE IV
COMPARATIVE RESULTS FOR THENUMERIC FONT PROBLEM
Algorithm Min 7 Max o Success
BP 9421 14489.2 19947 2783 66.2%
BPM 5328 10142.1 18756 1943 54.1%
ABP 228  1975.6 13822 2509 91.2%
(FE) 366  2501.2 26560 5632.4
FR G 260 6203 3321 571 220%
(FE) 806  1475.5 5585  763.7
PR (GE) 148 649.7 1099 109.1 96.1%
R (FE) 1498 27235 5737  820.1 o
PR-FR (GE) 533 750.3 1400  120.0 100.0%
(FE) 104 380.4 1902 217.9
NMBPVS (GE) 88 268.9 1034 134.1 100.0%
(FE) 100 3503 1532 182.5 Fig. 6. Twelve texture patterns obtained from the digitizing images found in
NMBBP 100.0% the “Brodatz Album.” Textures: 20, 5, 51, 3, 12, 9, 93, 15, 68, 77, 78, 79.

(GE) 100 346.4 1488 178.5

H =®12 _
4) Numeric Font Learning Problemin this experiment a &1d?, are binary output vectors iR, forp = 1, ..., 120,

64-6-10 MLP (444 weights, 16 biases) is trained to recogniggermining the corresponding training pattern. A 16-8-12
MLP (224 weights, 20 biases) is trained to classify the patterns

8 x 8 pixel machine printed numerals from 0 to 9 in helvetice )
[42]. The network is based on neurons of the logistic activatidRte the 12 texture types. The network is based on neurons of
istic activations with biases and the weights and biases were

model, and the weights and biases are initialized with rand Prg ! ' i
numbers from the interval—1, 1). The termination condition Nitialized with random numbers from the interyat1, 1). The

for all algorithms tested has bedh < 10~3. The results are termination condition is a classification err6ff < 3%; i.e.,

summarized in Table IV. Clearly, the NMBPVS and nvBapBhe network classifies correctly 117 out of the 120 patterns.
methods exhibit the best performance having 100% succesd€tailed results regarding the effect of the nonmonotone

NMBPVS has the lowest average number of gradient eval§2Ming horizonM on the NMBPVS and NMBBP are il-
tions and needs the shortest CPU time (see Fig. 5). lustrated in Figs. 7-10. The curves in these figures show
the dependency of the average number of error and gradient

B. Effect of the Nonmonotone Learning Horizon evaluations from the paramet&f. The case with an adaptive

. . M is drawn as a straight line from left to right, in order to
To study the effect of the nonmonotone learning hori2én ; : .
on the performance of the nonmonotone training algorithms tﬁasny compare it to any of the other test cases. The figures
' ‘Wow that the performance of the NMBPVS and NMBBP with

NMBPVS and NMBBP algorithms have been tested in two ex- . . .
an adaptive nonmonotone horizof is better or equally good

periments. For each algorithm 100 independent simulation runs, ;
. - . 0 the average performance of any predefinéd
have been performed, using the same random initial weights an .
egarding the success percentage of the methods, the

. . . -5
biases for both algorlthm_s. We have fixed the value.@f 10 . l\{MBPVS exhibits 100% success percentage in both experi-
and we have set the maximum nonmonotone learning horizon 10 .
ten ments, independently @i . On the other hand, the performance

i .of the NMBBP depends oi/. In the alphabetic font learning

The first test case concerns the alphabetic font learnin 0
problem mentioned above. The weights and biases have b g%blem, the NMBBP has 100% success percentage for every

initialized following the Nguyen—Widrow method [49] and theexhig?s”ethlg :i]ehgztur:rccelif:fgagfoguzrc%t:semwrggi aneit:odan
termination condition has bedf < 0.1 within 2000 function 9 P 9 9

. adaptiveM, as shown in Fig. 11. In this figure, the lettet,”
evaluations.

The second test case is a texture classification problearlr?ng the horizontal axis, indicates the case where an adaptive

[40]-[42]. A total of 12 Brodatz texture images [9]: 3, 5, 9 12nonmonotone learning horizall is used. In general, it seems
15. 20 5'1 68, 77, 78, 79, 93 (see Fig. 6) of sizé 512512 that the use of the adaptive honmonotone horizon helps the

is acquired by a scanner at 150 dpi. From each texture imatgrg!nmg procedure.

ten subimages of size 12& 128 are randomly selected,
and the cooccurrence method, introduced by Haralick [24]
applied. In the cooccurrence method, the relative frequenciesThe nonmonotone learning strategy can be incorporated in
of gray-level pairs of pixels at certain relative displacemengy training algorithm. Below, we present experimental results,
are computed and stored in a matrix. As it has been suggested compare the performance of three training algorithms with
by other researchers [51], [65], the combination of the neardlseir nonmonotone versions. In all cases an adaptive nonmono-
neighbor pairs at orientations ®5°, 90°, and 135 is used in tone learning horizon has been used and 1000 simulations were
the experiment. A set of ten 16-dimensional training patternsn.

are created from each image. The patterns are presented in ) BPM Algorithm: To test the effectiveness of the proposed
finite sequence” = (ci, ¢, ..., ¢p) Of input—output pairs learning strategy on the BPM algorithm, two experiments have
¢p = (up, t,) Whereu, are the real valued input vectorsii®, been performed. The first experiment refers to the training of

(s Effect of the Nonmonotone Strategy
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an MLP for recognizing 8x 8 pixel machine printed numeralsvided in Section V-A-4. The termination condition for all algo-
from O to 9. Details on the network architecture have been pnithms tested isZ < 107",
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Average Percentage of Success

Value of M

Fig. 11. Texture classification problem: Average percentage of success for the NMBBP method with respect to different ¥alues of

TABLE V
NONMONOTONE BPM APPLIED TO THENUMERIC FONT PROBLEM
Algorithm Gradient Evaluation Function Evaluation Success
i o Min/Mazx m o Min/Maz %
BPM 560.2 684.9 239/3962 560.2 684.9 239/3962 39%

NMBPM 5659 429.1 289/2823 571.6 428.9 295/2827 97%

; 1L
: N W WY

Value of M
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Epochs

Fig. 12. XOR problem: Behavior of the NMBPM algorithm with adaptidé*.

To evaluate the robustness of the proposed strategy, thputs to a single binary output. This simple Boolean function
learning parameters have been set intentionally to high valuissnot linearly separable (i.e., it cannot be solved by a simple
ie.,n = 1.2 andm = 0.9. Detailed results regarding themapping directly from the inputs to the output), and thus the
training performance of the algorithms are presented use of extra hidden units is required to learn the task. Moreover,
Table V, whereu denotes the mean number of gradient or errdtris sensitive to initial weights as well as to learning rate vari-
function evaluations required to obtain convergeneethe ations, and presents a multitude of local minima with certain
corresponding standard deviatidfiin/Max the minimum and weight vectors. An MLP with two hidden neurons of logistic
maximum number of gradient or error function evaluationgictivations with biases, and one linear output neuron with bias
andSucc.denotes the percentage of simulations that converfgx weights, three biases) has been used to solve this classical
to a desired minimum out of 1000. problem. The weights and biases have been initialized by the

The second experiment that we will consider is tker Nguyen-Widrow method [49], and the learning parameters
Boolean function problem. Theor function maps two binary have beenn = 0.4; m = 0.9. The termination criterion has
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TABLE VI
NONMONOTONE BPM APPLIED TO THE XORPROBLEM
Algorithm Gradient Evaluation Function Evaluation Success
W o Min/Max W o  Min/Maz %
BPM 230.2 512.8 13/1764 230.2 512.8 13/1764 11%
NMBPM  187.8 365.1 16/1894 198.9 364.9 17/1903 80%

b
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0 _Hj
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Fig. 13. Alphabetic font learning problem: Convergence behavior of the NMBPVS algorithm.

TABLE VI
NONMONOTONE BPV'S APPLIED TO TEXTURE CLASSIFICATION
Algorithm Gradient Evaluation Function Evaluation Success
o o  Min/Max W o Min/Maz %
BPVS 544.8 274.1  294/2227 519.5 257.7 283/2101 100%

NMBPVS 471.7 116.6 273/888 463.7 113.7  268/870 100%

beenE < 0.1 within 2000 error function evaluations. Thenonmonotone strategy only marginally improves the efficiency
results of the simulation are shown in Table VI. The behaviaf the BPVS method. The NMBPVS error functidi in a
of M during a typical run of the NMBPM algorithm is showntypical run is shown in Fig. 13, where the nonmonotone con-
in Fig. 12. vergence behavior of the NMBPVS method is easily observed.
In both test cases, the use of the nonmonotone strategy sig3) BBP Algorithm: Next, we test the proposed learning
nificantly improves the success percentage of the BPM methattategies in the function approximation problem. Compar-
However, in the numeric font problem (see Table V), since fewative results are exhibited in Table IX. There is a noticeable
runs have converged to a desired minimum for the BPM, the @laprovement of the BBP algorithm when the nonmonotone
gorithm reveals a lower average number of error function atehrning strategy is applied; the BBP algorithm has a success
gradient evaluations for the converged runs. percentage of 79.6%, while the nonmonotone version NMBBP
2) BPVS Algorithm:To show the effect of the proposedhas a success percentage of 92.2%.
learning strategy on the performance of the BPVS, we apply it The second experiment concerns the alphabetic font problem
in two applications: the texture classification problem and thiescribed above. The results are exhibited in Table X. Both the
continuous function approximation problem, both mentioné8BP and the NMBBP have 100% success, however, the non-
previously. The results are exhibited in Tables VIl and VIII. Thenonotone version is clearly faster.
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TABLE VIl
NONMONOTONE BPVS APPLIED TO FUNCTION APPROXIMATION
Algorithm Gradient Evaluation Function Evaluation Success
W o  Min/Max W o  Min/Maz %
BPVS 417.3 220.3 44/943 446.3 236.9 48/994 63.4%
NMBPVS 429.2 228.9 64/960 443.9 2385 64/991 66.8%
TABLE IX
NONMONOTONE BBP APPLIED TO FUNCTION APPROXIMATION
Algorithm Gradient Evaluation Function Evaluation Success
W o  Min/Maz W o  Min/Maz %
BBP 186.4 111.3 27/502 362.1 233.5 39/995 79.6%
NMBBP 158.2 114.7 26/625 241.7 195.1 29/988 92.2%
TABLE X
NONMONOTONE BBP APPLIED TO THEALPHABETIC FONT PROBLEM
Algorithm Gradient Evaluation F ﬁnction Evaluation Success
W o Min/Maz 7 o  Min/Mazx %
BBP 169.8 35.9 90/373 332.6 70.4 167/758 100%
NMBBP 119.4 20.5 73/193 182.0 33.5 113/309 100%
D. Generalization Performance The first experiment concerns the well known MONK's prob-

Generalization performance is a decisive factor when S6MS [66]. These are three bipolar classification tasks, which are
lecting a training algorithm. It is well known that generalizatio@'t Of the UCI Repository of Machine Learning Databases, and
depends on the size of the weights space [17], [35], [67], tAge used as be_nchmark_s for testing the generallzat!on perfor-
noise in the data set [8], [22], [26], [45], the size of the trainin§'a"C® OT I_earnlng _qlgorlthms. The secqnd .problem is a hand-
set [32], and the initial weight distribution [3]. A number ofvritten d|g|t's cIaSS|f|cat|qn problem, which is also part.of the
techniques have been proposed to avoid overfitting and imprddé&’! Repository of Machine Learning Databases, and is char-
generalization [22], [32], such as the usetwb-fold or k-fold acterized by a real-valued training set of approximately 7500

cross-validatior{1] andearly stoppind58]. Results reported in Patterns. The third problem is the texture classification studied

the literature show that these techniques may help in practiP§gviously. This problem is used as an example of practical ap-

applications. However, their success depends on user's choi@i€ation in which training data are real-valued and noisy due

and on fine tuning or optimizing problem-dependent heuristf@ 10w resolution in the acquisition of digital data [40]-[42].

parameters [1], [22], [58]. The fourth problem concerns the machine-printed numeric font

The approach taken with our experiments has sought to milfiarning task described previously. In this case, the number of

mize the difficulty associated with parameter selection. Our aiRtierns in the training setis 45 times smaller than the dimension
is to verify that the nonmonotone strategies will still do reasof?f the weight space [42], [64]. The fifth problem concerns the

ably well in different types of problems without optimizing oridentification of malignant tissue regions extracted from stan-

fine tuning heuristic parameters and that they provide good géﬁ_!fd VHS videotape reco_rd_mgs of e_ndoscopy procedu_res. _In
eralization capability. Hence, below we examine five probleni@is case, a set of 1200 training data is used. Data contain noise
that possess different characteristics, as our goal is to verify ti&€ 1© shading, shadows, lighting conditions, and reflections,
the nonmonotone strategies work reasonably well over a wiglte- [29], [39]-

range of application domains. We decided not to enhance the a/4) MONK's Problems [66]: These problems rely on the ar-
gorithms tested with add-on techniques for improving the gefificial robot domain, in which robots are described by six dif-
eralization as this would require introducing, and fine tuninfgrent attributes. Each problem is given by a logical description
or optimizing additional heuristics depending on the learnirf the class as follows.

task. Despite the fact we fine tuned learning parameters of thdVlONK-1: (Attributel = Attribute2 OR (Attribute5 = 1).
other algorithms tested, we arbitrary set the parameters of tHais problem is in standard disjunctive normal form (DNF). A
nonmonotone strategies to the same fixed values for all exp8et of 124 examples were selected randomly from the data set
iments, i.e.;y was set to 10° and the maximum value for the for training, while the remaining 308 were used for the general-
adaptive nonmonotone learning horizon was set equal to teniZation testing. There were no misclassifications.

order to test the robustness of our methods. Last, we used welMONK-2: (Only two attributes= 1). This problem is similar
studied problems from the UCI Repository of Machine Learning the parity problem mentioned above and is difficult to de-
Databases [47], as well as problems studied extensively by otkeribe in DNF or conjunctive normal form (CNF). A set of 169
researchers and/or ourselves, in an attempt to reduce as mudaxasnples were randomly selected from the data set for training,
possible biases introduced by the size of the weights space.while the rest were used for testing. Again, there was no noise.
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TABLE XI set. The average success percentage of classification for each
RESULTS OFGENERALIZATION IN THE MONK-3 PROBLEM algorithm in 100 independent tests was: BF90.93%; BPM
Algorithm _ Generalization = 91.08%; ABP= 92.02%; FR= 96.76%; PR= 97.11%j;
BP 93.1% PR-FR= 97.25%; NMBPVS= 98.25%; NMBBP= 98.39%.
BPWD 97.9% 3) Texture Classification ProblemThe texture classi-
cC 97.2% fication problem, mentioned in a previous subsection, is
NMBPVS 100% chosen to compare and evaluate the training algorithms, as

an example of practical application, using continuous-valued
training data that contain random noise. On average, BP trained
networks with a 16-8-12 architecture perform better than

MONK-3: (Attribute5 = 3 AND Attribute4 = 1) OR others according to our previous experiments [40], [41]. Thus,

(Attribute5# 4 AND Attribute2 # 3) with added noise. This 1000 trained MLPs of this architecture were tested for their
problem is also in DNF but with 5% deliberate misclassifica@€neralization capability, using test patterns from 20 subimages

tions in the training set, which consists of 122 examples. TIo& Sizeé 128 x 128, randomly selected from each image. To
remaining 310 examples were used for testing. evaluate the average generalization performance of the MLPs

Each one of the six attributes can have one of three, thrélé(,a max rule was u_sed, l.e., a test p_attern is considered to be
two, three, four, and two values, respectively, which results ﬁerectIy classified if the corresponding output neuron has the
432 possible combinations that constitute the total data set (gé%atest Valu? ellmor;g the o;:tput nﬁ urlons_. r-]r he :?Leergg;o /s'uccess
[66], for details). Finally, each possible value for every attribufRSreentage of classification for each aigorithm is: 70,

was assigned a single bipolar input, resulting in 17 inputs. TREM = 90'0(%;; _ABP: 93.5%; FTZ 92.0%; PR= %2'6%;
values of the attributes are shown as follows. PR—FR= 93.5%; NMBPVS= 93.6%; NMBBP= 93.6%. The

nonmonotone algorithms provided marginal improvement with

NMBBP 100%

* Attributel HeadShape {round, square, octagon}. respect to PR—FR but required the least average number of FE
* Attribute2 BodyShapee {round, square, octagon}. and GE to converge.

* Attribute3 IsSmiling € {yes, no}. 4) Numeric Font Problem:Numerals from zero to nine in

* Attribute4 Holding € {sword, balloon, flag}. eight points standard helvetica font form the training patterns for
* Attributes JacketColork {red, yellow, green, blue}. this application example. A 64—6—10 architecture was used as
* Attribute@ HasTie€ {yes, noj. this was found to exhibit better average performance than other

For example, the robot wittAttributel = round,Attribute2= architectures trained with the BP algorithm [42], [64]. After
squareAttribute3= yes Attribute4= flag, Attribute5= blue, being trained, with BP, BPM, ABP, FR, PR, PR-FR, NMBPVS
andAttribute6= no, is encoded as: (1, -1, -1, 1,—-1,1, and NMBBP, as in Section V-A4, MLPs were tested for their
-1,-1,-1,1,-1,-1,-1,1,-1,1). generalization capability using helvetica italic. Note that, the

We have tested the nonmonotone algorithms against the vieBt patterns in italic have 6—14 bit reversed from the training
known BP, BP with weight decay (BPWD), and cascade corrpatterns, and that 100 MLPs were trained for each case. To eval-
lation (CC) methods. In our simulation, we have used the samate the average generalization performancenthe rule was
network topologies as those found in [66] for the BP method.used.

All the tested methods exhibited 100% classification successThe BP and BPM trained MLPs achieved similar generaliza-
in the MONK-1 and MONK-2 problems, but in MONK-3, tion capability as the ABP trained ones, but more epochs were
where there are 5% deliberate misclassifications, the networiecessary in order to converge. The same holds for the FR and
generated by BP, BPWD, and CC seem to fail to capture tR® methods. Thus, in Fig. 14, only the performance of the ABP,
concept embedded in the training data, and fit to the noiB&®k, PR—-FR, NMBPVS, and NMBBP is illustrated.
instead. Table XlI shows that the NMBPVS and NMBBP This figure shows the number of trained MLPs (out of 100
algorithms are excellent generalizers, and manage to correctins) that correctly recognize the numeric symbols, ..., 9
classify all the input patterns in the MONK-3 problem. with respect to the total number of correctly recognized numeric

2) Pen-Based Recognition of Handwritten Digitsymbols. Forexample, 32 outof 100 NMBBP trained MLPs cor-
Problem: The pen-based recognition of handwritten digiteectly recognize six out of the ten numeric symhbalg, ..., 9.
classification problem is also part of the UCI Repository dbn average, there is a higher number of nonmonotone trained
Machine Learning Databases [47]. In this experiment, a didMLPs that correctly recognize five, six, seven, eight, nine, and
database has been assembled by collecting 250 samples ftemnumeric symbols out of the ten in the testing phase. For
44 independent writers. The samples written by 30 writers aggample, approximately 50% of the NMBPVS and NMBBP
used for training, and the rest are used for testing. The trainitrgined MLPs correctly recognize six or more of the numeric
set consists of 7494 real-valued samples and the test sesyhbols), 1, ..., 9. On the other hand, approximately 35% of
3498 real-valued samples. The architecture found to exhiblie PR—FR trained MLPs exhibit a similar performance.
better average performance was a network with 50 hidden5) Abnormalities Detection in Endoscopy Video Se-
neurons. Thus, a 16-50-10 MLP, having hidden neurons basggnces: Detecting malignant regions in video sequences is a
on logistic activations and output neurons based on linear adifficult task due to variations of the environmental conditions
vation functions, was trained. The training procedure stoppddring the endoscopy procedure. Textures from normal and
when the MLP exhibited 2% misclassifications in the trainingbnormal tissue samples have been randomly chosen from four
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Fig. 14. Numeric font learning problem: Number of trained MLPs out of 100 that correctly recognized the numeric $ymbols., 9 in helvetica italic.

TABLE XII TABLE XIIl
RESULTS FOR THEABNORMALITIES DETECTION PROBLEM GENERALIZATION IN THE ABNORMALITIES DETECTION PROBLEM
Algorithm Min p  Maz o Success Algorithm BP BPM ABP NMBBP NMBPVS
BP 7697 8505.5 9314 1143.39 20% Generalization | 78.09% 78.09% 79.10% 83.91% 85.12%
BPM 5685 8500.0 9315  952.58 32%
ABP 453 7341 1055 249.37 9% convergence performance of the tested algorithms for simula-
NMBPVS P 261 3747 515 12908 0 tions that reached solution, out of 100 trials.
(GB) 166 231.6 328 107.81 o .
063 6563 055 29794 To test the generalization performance of the trained MLPs
(FE) . . . .
NMBBP 151 3766 561 10743 100% approximately 16 000 test patterns have been created. This test

set constitutes the whole image region in each of the four frames
and contains normal and abnormal samples. In Table XIil, the

video frames of the same sequence, and used for training &ff1€ralization capability of the algorithms is exhibited.

network to discriminate between malignant and normal regions.
To generate the training set the cooccurrence matrices have

been used. More specifically, the colonoscopic image was sepbeterministic nonmonotone learning strategies for MLP
arated into windows of size 16 pixels by 16 pixels. Then theaining were proposed in this paper. According to this ap-
cooccurrence matrices algorithm was used to gather informatimmach, the error function value must satisfy a nonmonotone
regarding each pixel in an image window [29]-[31]. Cooccueriterion with respect to the maximum error function value of
rence matrices, [25], represent the spatial distribution and te M previous epochs, which constitute the nonmonotone
dependence of the gray levels within a local area (see [29] agdrning horizon.

[30] for further technical details). A procedure for the adaptation of the nonmonotone learning
The feature vectors contain 16 elements each and therefoegizon based on the local estimation of the Lipschitz constant
the first layer of the MLPs will consist of 16 neurons. 100 MLPsvas proposed. The experiments indicate that the use of an adap-
with 16 inputs, 30 hidden, and two output neurons have betve M at each iteration helps to reduce the number of gradient

trained to discriminate between normal and abnormal image esd error function evaluations required to obtain convergence.
gions using 1200 randomly selected patterns from four videoThe nonmonotone strategies can be incorporated in any batch
frames. This network architecture was identified as providirtgaining algorithm, providing stable learning and, therefore, a
on average the best results for the classical BP following prgreater possibility of good performance. The simulation results
liminary experiments reported in [29], [30], [73], and [74]. Thesuggest that the use of the nonmonotone strategies significantly
training procedure stopped when the MLPs exhibited 3% migecelerates the convergence of the first-order training algo-
classifications on the training set. Table XIl summarizes th#hms as measured by the number of error function and gradient

VI. CONCLUSION
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evaluations, and the average CPU time for convergence. Ingj
addition, the nonmonotone training algorithms lead to good
quality solutions, in the sense that final weight vectors providézo]
on the average improved generalization capability with no neegb1]
for fine-tuning problem-dependent heuristic parameters.

The nonmonotone algorithms were compared against SOMe;)
well known conjugate gradient training algorithm, which apply
inexact line search techniques to ensure the monotone decred%8
of the learning error. Numerical evidence shows that the nonp,
monotone strategies improve the efficiency and effectiveness of
the first-order methods. It is worth noting that, in certain cases,,
the nonmonotone methods exhibit faster, or equally fast, Cor{- ]
vergence than the conjugate gradient methods as shown by t(ze]
average CPU time needed for convergence.
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