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Deterministic Nonmonotone Strategies for Effective
Training of Multilayer Perceptrons

Vassilis P. Plagianakos, George D. Magoulas, Member, IEEE, and Michael N. Vrahatis

Abstract—In this paper, we present deterministic nonmonotone
learning strategies for multilayer perceptrons (MLPs), i.e., deter-
ministic training algorithms in which error function values are al-
lowed to increase at some epochs. To this end, we argue that the
current error function value must satisfy a nonmonotone crite-
rion with respect to the maximum error function value of the
previous epochs, and we propose a subprocedure to dynamically
compute . The nonmonotone strategy can be incorporated in
any batch training algorithm and provides fast, stable, and reli-
able learning. Experimental results in different classes of problems
show that this approach improves the convergence speed and suc-
cess percentage of first-order training algorithms and alleviates the
need for fine-tuning problem-depended heuristic parameters.

Index Terms—Adaptive learning rate algorithms, backpropaga-
tion (BP) algorithm, multilayer perceptrons (MLPs), nonmonotone
minimization, unconstrained minimization.

I. INTRODUCTION

T HE BATCH training of a multilayer perceptron (MLP) is
consistent with the theory of unconstrained optimization

and can be viewed as the minimization of the function; that
is to finding a minimizer , such
that

(1)

where is the batch error measure defined as the
sum-of-squared-differences error function (SSE) over the
entire training set.

Next, we minimize by considering the family of gradient-
based training algorithms having the iterative form

(2)

where is the current weight vector, is a search direction
and is the learning rate at theth iteration. Various choices of
the direction give rise to distinct algorithms. A broad class of
methods uses the search direction , where the
gradient can be obtained by means of backpropagation
of the error through the layers of the network [62].

The most popular training algorithm of this class, which is
named batch backpropagation (BP) [62], is a first-order method
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that minimizes the error function using the steepest descent
method [19]

(3)

where is a heuristically chosen parameter, calledlearning
rate. Appropriate learning rate values help avoid convergence
to a saddle point or a maximum. In practice, a small constant
learning rate is chosen ( ) in order to secure the con-
vergence of the BP training algorithm and avoid oscillations in
a steep direction of the error surface. However, it is well known
that this approach tends to be inefficient. For example, this hap-
pens when the search space contains long ravines that are char-
acterized by sharp curvature across them and a gently slopping
floor [28], [62]. Moreover, this approach introduces difficulties
in obtaining convergence of BP training algorithms [33], [38].
Nevertheless, there are theoretical results that guarantee the con-
vergence of batch BP algorithms for a constant learning rate. In
this case, the learning rate should be proportional to the inverse
of the Lipschitz constant which, in practice, is not easily avail-
able [2], [42], [69].

A variety of approaches adapted from numerical analysis
have been applied, in an attempt to use second derivative related
information to accelerate the learning process [6], [44], [46],
[53], [68], [72]. However, second-order training algorithms are,
in certain cases, computationally intensive for MLPs with sev-
eral hundred weights [7]. Furthermore, it is not certain that the
extra computational cost speeds up the minimization process
for nonconvex functions when far from a minimizer [12], [50],
as is usually the case with the neural-network training problem
[6]. Therefore, the development of improved gradient-based
training algorithms is a subject of considerable ongoing
research and receives significant attention of neural-network
practitioners.

In this paper, we present deterministic gradient-based training
algorithms in which error function values are allowed to in-
crease at some epochs. In this way, the learning process exhibits
nonmonotone behavior [14], however, the training procedure is
fast, stable, and reliable.

This paper is organized as follows. In Section II, the class
of first-order BP algorithms with adaptive learning rate is pre-
sented. Monotone learning strategies are briefly described in
Section III. In Section IV, the notion of nonmonotone learning is
introduced and new nonmonotone training algorithms are pre-
sented. Experimental results are reported in Section V to eval-
uate the performance of the nonmonotone algorithms and com-
pare them with several other methods. Section VI presents the
conclusions.
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II. A DAPTIVE LEARNING RATE ALGORITHMS

Research on MLP training usually focuses on BP algorithms
with adaptive learning rate in order to accelerate the training
procedure. The following strategies are usually suggested.

1) Start with a small learning rate and increase it exponentially,
if successive epochs reduce the error, or rapidly decrease it,
if a significant error increase occurs [5], [71].

2) Start with a small learning rate and increase it, if successive
epochs keep gradient direction fairly constant, or rapidly
decrease it, if the direction of the gradient varies greatly at
each epoch [11].

3) For each weight, an individual learning rate is given, which
increases if the successive changes in the weights are in
the same direction and decreases otherwise [28], [54], [60],
[63].

4) Use a closed formula to calculate a common learning rate for
all the weights at each iteration [27], [42], [56] or a different
learning rate for each weight [15], [43].

Note that all the above-mentioned strategies employ heuristic
parameters in an attempt to enforce the decrease of the learning
error at each iteration and secure the converge of the training
algorithm.

A different approach is based on Goldstein’s and Armijo’s
work on steepest-descent and gradient methods. The method of
Goldstein [20] requires the assumption thatis twice contin-
uously differentiable on , where

is bounded, for some initial vector . It also requires
that is chosen to satisfy the relation ,
where denotes the Hessian of at , in some bounded
region, where the relation holds. However, the
manipulation of the full Hessian is too expensive in computa-
tion and storage for MLPs with several hundred weights [7].
In [36], a technique based on appropriate perturbations of the
weights has been proposed for the online estimation of the ex-
treme eigenvalues and eigenvectors of the Hessian without cal-
culating the full matrix . According to experiments reported in
[36], the largest eigenvalue of the Hessian is mainly determined
by the MLP architecture, the initial weights and by short-term
low-order statistics of the training data. This technique can be
used to determine requiring additional presentations of the
training set in the early training.

Cauchy’s method [2], [10], suggests that the value of the
learning rate is related to the value of the Lipschitz constant,
which depends on the morphology of the error surface. In this
case, the BP algorithm takes the form

(4)

and converges to the point which minimizes (see [2] for
conditions under which convergence occurs and a convergence
proof). In [42], a local estimation of the Lipschitz constant has
been proposed in a learning rate adaptation strategy, which pro-
vides increased rate of convergence, and guarantees the stability
of the learning process.

III. M ONOTONELEARNING STRATEGIES

A training algorithm can be made globally convergent by de-
termining the learning rate in such a way that the error is exactly

minimized along the current search direction at each epoch, i.e.,
. To this end, an iterative search, which

is often expensive in terms of error function evaluations, is re-
quired. It must be noted that the above simple condition does not
guarantee global convergence for general functions, i.e., con-
verges to a local minimizer from any initial condition (see [13]
for a general discussion of globally convergent methods).

In adaptive learning rate algorithms, monotone reduction of
the error function at each iteration can be achieved by searching
a local minimum with small weight steps. These steps are usu-
ally constrained by problem-dependent heuristic learning pa-
rameters. The use of heuristic strategies enforces the mono-
tone decrease of the learning error and secures the convergence
of the training algorithm to a minimizer of . However, the
use of inappropriate values for the heuristic learning parame-
ters can considerably slow down the rate of training or even lead
to divergence and to premature saturation [37], [61]; there is a
tradeoff between convergence speed and stability of the training
algorithm. Additionally, the use of heuristics for bounding the
learning rate prevents the development of efficient algorithms
that will converge to a local minimizer of the error function
starting from any initial weight vector, i.e., globally convergent
algorithms [13].

A monotone learning strategy, which does not apply heuris-
tics to bound the length of the minimization step, consists in
accepting a positive learning rate along the search direction

, if it satisfies theWolfe conditions

(5)

(6)

where and stands for the usual
inner product in . The first inequality ensures that the error
is reduced sufficiently, and the second prevents the learning rate
from being too small. It can be shown that if is a descent di-
rection and is continuously differentiable and bounded below
along the ray , then there always exists a
learning rate satisfying (5) and (6) [13], [50]. Relation (6) can
be replaced by

(7)

where (see [13]). The strategy based on Wolfe’s
conditions provides an efficient and effective way to ensure that
the error function is globally reduced sufficiently. In practice,
conditions (6) or (7) are generally not needed because the use
of a backtracking strategy avoids very small learning rates [43],
[70].

An alternative strategy has been proposed in [57]. It is ap-
plicable to any descent direction and uses two parameters

. Following this approach, the learning rate is
, where is any integer that satisfies the con-

ditions

(8)

(9)

To ensure global convergence, monotone strategies that em-
ploy (5) and (6) or (8) and (9) must be combined with learning
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rate tuning subprocedures. For example, a simple subprocedure
for tuning the length of the minimization step is to decrease the
learning rate by a reduction factor , where [52], so
that it satisfies conditions (5) and (6) at each epoch. Thisback-
tracking strategyhas the effect that the learning rate is decreased
by the largest number in the sequence , so that (5)
is satisfied. When seeking to satisfy (5) it is important to en-
sure that the learning rate is not reduced unnecessarily so that
(6) is not satisfied. Since during training, the gradient vector is
known only at the beginning of the iterative search for a new
weight vector, condition (6) cannot be checked directly (this
task requires additional gradient evaluations at each epoch), but
is enforced simply by placing a lower bound on the acceptable
values of the learning rate. This bound on the learning rate has
the same theoretical effect as condition (6) and ensures global
convergence [13].

IV. NONMONOTONELEARNING STRATEGIES

Although monotone learning strategies provide an efficient
and effective way to ensure that the error function is reduced suf-
ficiently, they have the disadvantage that no information, which
might accelerate convergence, is stored and used [16]. To alle-
viate this situation we propose a nonmonotone learning strategy
that exploits the accumulated information with regard to the
most recent values of the error function. The following condition
is used to formulate the new approach and to define a criterion
of acceptance of any weight iterate:

(10)
where is a nonnegative integer, namednonmonotone
learning horizon, takes values in the range , indi-
cates the learning rate, and is the search direction at the

th epoch. The above condition allows for an increase in the
function values, which is regulated by the value of, without
affecting the global convergence properties, as it has been
proved theoretically in [21] and [59]. In practice, a value of

is suggested [21]. Thus, in our experiments, we
have used a fixed value for all test problems, in
order to test the robustness of our methods in different types of
problems.

Furthermore, it can be shown that the nonmonotone learning
strategy generates a globally convergent sequence for any algo-
rithm that follows search direction , provided that two
positive numbers exist, such that

(11)

(12)

This follows directly from the convergence theorem in [21].
Next, we summarize the basic steps of the nonmonotone

learning strategy at theth iteration.

1) Update the weights .
2) If

, store , set and
go to Step 1); otherwise go to Step 3).

3) Use a tuning technique for and return to Step 2).
A simple technique to tune at Step 3) is to decrease the

learning rate by a reduction factor , where , as men-
tioned in the previous section. Here, we remark that the selection
of is not critical for successful learning; however, it has an in-
fluence on the number of error function evaluations required to
obtain an acceptable weight vector. Thus, some training prob-
lems respond well to one or two reductions in the learning rate
by modest amounts (such as 1/2), while others require many
such reductions, but might respond well to a more aggressive
learning rate reduction (for example, by factors of 1/10, or even
1/20). On the other hand, reducing too much can be costly
since the total number of epochs will be increased. The value

is usually suggested in the literature [2] and, indeed, it was
found to work effectively and efficiently in the experiments re-
ported in this paper. The above procedure constitutes an efficient
method of determining an appropriate learning rate without ad-
ditional gradient evaluations. As a consequence, the number of
gradient evaluations is, in general, less than the number of error
function evaluations.

The nonmonotone learning strategy can be incorporated in
any batch training algorithm. It can be used as a subprocedure
that secures and accelerates the convergence of a batch training
algorithm by providing the ability to handle large learning rates,
and, in this way, learning by neural networks becomes feasible
on a first-time basis for a given problem. Additionally, it alle-
viates problems generated by poor selection of the user-defined
learning parameters, such as decreased rate of convergence, or
even divergence and premature saturation [37].

A. Nonmonotone Learning Horizon

Experimental results, exhibited in [55] and [56], indicate that
the choice of the parameter is critical for the implementation
and depends on the nature of the problem. Below, we propose
a procedure to finding estimates of the nonmonotone learning
horizon at each iteration that utilizes the notion of the Lip-
schitz constant.

It is well known that the Lipschitz constant is related to the
morphology of a function [2], [10]. For example, the Lipschitz
constant for a function having steep regions is large. On the
other hand, when the function is flat the Lipschitz constant is
small. However, in neural-network training practice, neither the
morphology of the error surface nor the value of the Lipschitz
constant are knowna priori. In order to alleviate this situation
in [42] a local estimation of the Lipschitz constant has been
proposed, which provides information related to the local shape
of the error function (see also [69] for the usefulness of this
estimate).

The following procedure provides an elegant way to adapt the
value of the nonmonotone learning horizon dynamically at the

th iteration:

otherwise

(13)
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where is the local estimation of the Lipschitz constant at the
th iteration [42]

(14)

which can be obtained without additional error function or gra-
dient evaluations. If constantly increases during two consec-
utive epochs, the sequence of the weight vectors approaches a
steep region and the value of should be decreased to avoid
overshooting a possible minimum point. On the other hand,
when constantly decreases at two consecutive epochs, the
method possibly enters a valley in the weight space, and the
value of should be increased. This allows the method to ac-
cept larger learning rates and move faster out of the flat region.
Finally, when the value of has a rather random behavior (in-
creasing or decreasing for only one epoch), the value of
remains unchanged.

It is evident that has to be positive. Thus, if relation (13)
gives a nonpositive value in , the nonmonotone learning
horizon is set equal to in order to ensure that the error
function is reduced sufficiently at the current iteration.

B. Developing Nonmonotone Training Algorithms

Next, we describe a nonmonotone version of the BP with
momentum [28] and [62] (BPM), as well as two nonmonotone
adaptive learning rate training algorithms.

1) Nonmonotone BPM:In [28], [62] a simple, heuristic,
strategy for accelerating the BP algorithm has been proposed,
which is based on the use of a momentum term. The momentum
term can been incorporated in the steepest descent method as
follows:

(15)

where is the momentum constant. One drawback with the
above scheme is that, if is set to a comparatively large value,
gradient information from previous epochs is more influential
than the current gradient information in updating the weights.
One solution is to increase the learning rate, however, in prac-
tice, this approach frequently proves ineffective and leads to in-
stability or saturation. Thus, if is increased, it may be nec-
essary to make a compensatory reduction into maintain net-
work stability. In the experiment reported in the next section,
we alleviate this problem by combining the BPM with the non-
monotone learning strategy. This nonmonotone BPM method is
named NMBPM.

2) Nonmonotone BP With Variable Stepsize (BPVS):The
BPVS [42] exploits the local shape of the error surface by es-
timating the Lipschitz constant at each epoch, and setting the
learning rate according to the following formula:

(16)

where is the local estimation of the Lipschitz constantat
the th epoch. Thus, when the error surface has steep regions,

is large, and a small value for the learning rate is appropriate
in order to guarantee convergence. On the other hand, when the
error surface has flat regions, is small and a large learning

rate is appropriate to accelerate the convergence. Thus, BPVS
updates the weights using (3) where the learning rate is calcu-
lated using (16).

In order to eliminate the possibility of using an unsuitable
local estimation of the Lipschitz constant, we combine the
BPVS method with the nonmonotone learning strategy. This
version of the BPVS, which provides nonmonotone training,
is named NMBPVS.

3) Nonmonotone Barzilai–Borwein Backpropagation
(BBP): In a previous work [55], we have proposed a neural
network training algorithm called BBP, which is based on the
Barzilai and Borwein method [4].

In BBP, the search direction is always the negative gradient
direction and the learning rate is updated using the following
formula:

(17)

where and .
The motivation for this choice is that it provides a two-point
approximation to the secant equation underlying quasi-Newton
methods [57]. The key features of this method are the low
storage requirements and the inexpensive computations.
Moreover, it doesnot guarantee descent in the error function

. Our experiments (see also [56]) show that this property is
valuable in neural-network training because, very often, the
method escapes from local minima and flat valleys, whereas
other methods are trapped. To secure the convergence of the
method, even when the above formula gives unsuitable learning
rates, we apply the nonmonotone learning strategy. We call this
modified training algorithm NMBBP. The new method retains
the ability of BBP to escape from undesirable regions in the
weight space, as shown in Fig. 1. In the upper part of Fig. 1,
the NMBBP convergence behavior in the eXclusive-OR (XOR)
problem is presented, while in the lower part the learning rate
behavior is shown. The method successfully escapes from a
region with almost constant error function value ,
using large positive as well as negative learning rates. Note
that negative learning rates are possible due to the learning rate
update formula (17).

C. Adaptive Learning Rate Algorithm Model With
Nonmonotone Strategy

A high-level description of a generic first-order algorithm that
incorporates the nonmonotone strategy and utilizes a user-de-
fined nonmonotone learning horizon is outlined below.

Initialization: Randomly initialize the weight vector , and
set the maximum number of epochs (ME), the running index

, the user-defined value of the error goal, , the
user-defined integer value of ME , and the learning
rate to an arbitrary positive value .

1) For , compute Repetition:
For ME .

2) Compute using the learning rate update formula (16) or
(17).

3) Update the weight vector according to the relation
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Fig. 1. XOR problem: (a) NMBBP convergence behavior. (b) Adaptive learning rate behavior.

4) If then set , else set .
5) Check the nonmonotone strategy

If this is fulfilled go to Step 7).
6) Set and go to Step 5.
7) If the convergence criterion is met then ter-

minate.
8) If ME , set and go to Step 2); otherwise

terminate.
Termination: Get the final weight vector and the cor-

responding error value .
Instead of using a user-defined value for the nonmonotone

learning horizon , the adaptive procedure of relation (13) can
be applied to dynamically evaluate at each iteration.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the nonmono-
tone learning strategy by performing four sets of experiments:
1) we compare the algorithms NMBPVS and NMBBP with
some well-known and widely used training algorithms; 2) we
study the performance of the NMBPVS and NMBBP algorithms
using various values of , as well as an adaptive ; 3) we
compare the performance of the training algorithms with and
without the use of the nonmonotone strategy; and 4) we evaluate
the generalization capability of the nonmonotone algorithms in
five test problems. In all cases, average performance presented
below was validated using the well-known test for statistical

hypotheses, named-test at the significance level
(see, for example, [34]), using the SPSS 10 statistical software
package.

A. Comparative Study

Below, we evaluate the performance of the NMBPVS and
NMBBP algorithms, and compare them with the batch versions
of BP [62], BPM [28], and adaptive BP (ABP) [71]. The BPM
applies the weight update rule of (15). A widely used value for
the momentum term is and for the learning rate is

, as discussed in [23], [39]. The ABP applies the following
learning rate update formula:

otherwise

where is the maximum error ratio in two successive iterations,
and are positive constants, named the learning

rate increment and decrement factor, respectively. In our exper-
iments we have used the values , and
as suggested in [71].

We have also performed experiments using the globally
convergent modifications of the conjugate gradient methods:
Fletcher–Reeves (FR) [18]; Polak–Ribiere (PR) [18]; Polak–Ri-
biere (PR) constrained by the FR method (PR–FR) [18].

For the NMBPVS and NMBBP algorithms, we decided to
use the same values for ( ) and ( ) for all
experiments in order to verify that the nonmonotone algorithms
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Fig. 2. Three-bit parity problem: Average CPU time for convergence of each
training algorithm.

perform reasonably well to different types of problems without
parameter fine tuning. The same sequence of input patterns has
been presented to the MLPs and the weights are updated only
after the entire set of the learning patterns has been presented
(batch training).

Typically, initial weights and biases are initialized to small
random values. Alternatively, techniques for finding the “best”
available (in terms of convergence behavior) initial weight
distribution range depending on the data set used, the network
architecture and the activation functions can be used (see [39]
for a review on this methods). Unless otherwise noted, the
Nguyen–Widrow method [39], [49] was used in our experi-
ments. This technique helps to prevent premature saturation
at the hidden neurons by calculating the interval from which
weights connecting input-hidden neurons are taken in accor-
dance with the number of input neurons () and the number of
hidden neurons ( ). First, the parameter is calculated

(18)

and then the methods proceeds to choose a set of weights
randomly from the in-

terval . Finally, weights from input to hidden neurons
are initialized using the relation

(19)

This process of weight initialization results in distributing
the initial weights at the hidden layer in such a way that it is
more likely that each input pattern will cause a hidden neuron
to learn efficiently, accelerating convergence and preventing
premature saturation [49]. In our experiments we applied the
Nguyen–Widrow method. One thousand independent trials
have been performed by taking a different set of weights
for each trial. In order to have a fair comparison of the training
algorithms, we have used exactly the same initial weights for
all algorithms tested.

For each of the four test problems described below, we present
a table summarizing the performance of the algorithms for sim-
ulations that reached solution within a predeterminedlimit of
error function evaluations (specified below). The reported pa-
rameters are: the minimum number of epochs,the mean
value of epochs, the maximum number of epochs,the
standard deviation, andSucc.the simulations succeeded out of

Fig. 3. Function approximation problem: Average CPU time for convergence
of each training algorithm.

Fig. 4. Alphabetic font learning problem: Average CPU time for convergence
of each training algorithm.

Fig. 5. Numeric font learning problem: Average CPU time for convergence of
each training algorithm.

1000 trials within the error function evaluations limit. If an al-
gorithm fails to converge within the error function evaluation
limit, it is considered that it fails to train the MLP but its epochs
are not included in the experimental analysis of the algorithm.
Figs. 2–5 exhibit the comparative CPU times of all the algo-
rithms tested.

We must also note that for the BP, BPM, and ABP each epoch
corresponds to one gradient and one error function evaluation.
On the other hand, the number of error function evaluations
(FEs) of the conjugate gradient methods (PR, FR, and PR–FR)
is, in general, larger than the number of gradient evaluations
(GEs). These methods require one GE at each epoch but
more than one FEs, due to the use of the inexact line search.
NMBPVS and NMBBP also require additional FEs at each
epoch as they use the nonmonotone strategy. As a consequence,
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TABLE I
COMPARATIVE RESULTS FOR THETHREE-BIT PARITY PROBLEM

even when NMBPVS and NMBBP fail to converge within the
predetermined limit of error function evaluations, their number
of gradient evaluations is smaller than the corresponding
number of the other methods. Keeping in mind that for some
problems, [48], a gradient evaluation is more costly than an
error function evaluation (see, for example, [46], where Møller
suggests counting gradient evaluations more than error function
evaluations), one can understand that these methods require
fewer floating point operations and are actually much faster.
From the above discussion, it is clear why, in the tables below,
there are two rows for the conjugate gradient algorithms and
the NMBPVS and NMBBP; the first one indicates the statistics
for the FE and the second one for the GE.

1) 3-Bit Parity Problem: The parity problem can be con-
sidered as a generalizedXOR problem but it is more difficult.
Here, we have used a more difficult variation, having only two
hidden nodes based on hyperbolic tangent activation functions
and one linear output node. Thus, the task is to train a 3–2–1
MLP (eight weights, three biases) to produce the sum, mod 2, of
three binary inputs—also known as computing the “odd parity”
function. The termination condition has been within
1000 error function evaluations. The results are summarized in
Table I.

Despite the effort we have made to fine tune its learning rate,
BP has failed to converge within the error function evaluations
limit in all the simulation runs. BPM and ABP algorithms
performed much better, with BPM slightly outperforming ABP
in the particular implementation of the parity problem with two
hidden nodes. The conjugate gradient methods PR and PR–FR
have been more efficient and effective than the first-order
methods, i.e., BP, BPM, and ABP, but the FR method has failed
to converge within the error function evaluations limit in all
the simulation runs. As shown in Table I, the NMBPVS and
NMBBP algorithms exhibit the best performance since they
have the highest success rates, as well as the least average
number of FE and GE. In addition, they exhibit the fastest
execution time, as shown from the results of Fig. 2.

2) Continuous Function Approximation Problem:An
1–15–1 MLP (30 weights, 16 biases) is trained to approximate
the continuous function , where the

TABLE II
COMPARATIVE RESULTS FOR THEFUNCTION APPROXIMATION PROBLEM

TABLE III
COMPARATIVE RESULTS FOR THEALPHABETIC FONT PROBLEM

input values are scattered in the interval . The network
is trained until within 1000 error function evaluations.
The MLP is based on hidden neurons of logistic activations
and on a linear output neuron. Comparative results are shown
in Table II.

It is worth noticing the performance of the FR method, since it
exhibits the least number of FE and GE, but it has a poor success
percentage (17%). The nonmonotone algorithms exhibit very
good average performance, having the best success rate, and an
average execution time which is better than all other methods
tested except FR (see Fig. 3).

3) Alphabetic Font Learning Problem:For this problem, 26
matrices with the capital letters of the English alphabet are pre-
sented to a 35–30–26 MLP (1830 weights, 56 biases). Each
letter has been defined in terms of binary values on a grid of size
5 7. The network is based on hidden neurons of logistic acti-
vations and on linear output neurons. The error function evalua-
tion limit has been set to 2000 and the termination criterion has
been . The results in Table III show that the nonmono-
tone algorithms greatly outperform all other methods tested in
terms of FEs and GEs. Furthermore, Fig. 4 shows that the non-
monotone algorithms have the fastest execution time.
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TABLE IV
COMPARATIVE RESULTS FOR THENUMERIC FONT PROBLEM

4) Numeric Font Learning Problem:In this experiment a
64–6–10 MLP (444 weights, 16 biases) is trained to recognize
8 8 pixel machine printed numerals from 0 to 9 in helvetica
[42]. The network is based on neurons of the logistic activation
model, and the weights and biases are initialized with random
numbers from the interval 1, 1 . The termination condition
for all algorithms tested has been . The results are
summarized in Table IV. Clearly, the NMBPVS and NMBBP
methods exhibit the best performance having 100% success.
NMBPVS has the lowest average number of gradient evalua-
tions and needs the shortest CPU time (see Fig. 5).

B. Effect of the Nonmonotone Learning Horizon

To study the effect of the nonmonotone learning horizon
on the performance of the nonmonotone training algorithms, the
NMBPVS and NMBBP algorithms have been tested in two ex-
periments. For each algorithm 100 independent simulation runs
have been performed, using the same random initial weights and
biases for both algorithms. We have fixed the value of
and we have set the maximum nonmonotone learning horizon to
ten.

The first test case concerns the alphabetic font learning
problem mentioned above. The weights and biases have been
initialized following the Nguyen–Widrow method [49] and the
termination condition has been within 2000 function
evaluations.

The second test case is a texture classification problem
[40]–[42]. A total of 12 Brodatz texture images [9]: 3, 5, 9, 12,
15, 20, 51, 68, 77, 78, 79, 93 (see Fig. 6) of size 512512
is acquired by a scanner at 150 dpi. From each texture image,
ten subimages of size 128 128 are randomly selected,
and the cooccurrence method, introduced by Haralick [24] is
applied. In the cooccurrence method, the relative frequencies
of gray-level pairs of pixels at certain relative displacements
are computed and stored in a matrix. As it has been suggested
by other researchers [51], [65], the combination of the nearest
neighbor pairs at orientations 0, 45 , 90 , and 135 is used in
the experiment. A set of ten 16-dimensional training patterns
are created from each image. The patterns are presented in a
finite sequence of input–output pairs

where are the real valued input vectors in ,

Fig. 6. Twelve texture patterns obtained from the digitizing images found in
the “Brodatz Album.” Textures: 20, 5, 51, 3, 12, 9, 93, 15, 68, 77, 78, 79.

and are binary output vectors in , for ,
determining the corresponding training pattern. A 16–8–12
MLP (224 weights, 20 biases) is trained to classify the patterns
into the 12 texture types. The network is based on neurons of
logistic activations with biases and the weights and biases were
initialized with random numbers from the interval1, 1 . The
termination condition is a classification error 3%; i.e.,
the network classifies correctly 117 out of the 120 patterns.

Detailed results regarding the effect of the nonmonotone
learning horizon on the NMBPVS and NMBBP are il-
lustrated in Figs. 7–10. The curves in these figures show
the dependency of the average number of error and gradient
evaluations from the parameter . The case with an adaptive

is drawn as a straight line from left to right, in order to
easily compare it to any of the other test cases. The figures
show that the performance of the NMBPVS and NMBBP with
an adaptive nonmonotone horizon is better or equally good
to the average performance of any predefined.

Regarding the success percentage of the methods, the
NMBPVS exhibits 100% success percentage in both experi-
ments, independently of . On the other hand, the performance
of the NMBBP depends on . In the alphabetic font learning
problem, the NMBBP has 100% success percentage for every

, while in the texture classification problem the method
exhibits the highest percentage of success when using an
adaptive , as shown in Fig. 11. In this figure, the letter “,”
along the horizontal axis, indicates the case where an adaptive
nonmonotone learning horizon is used. In general, it seems
that the use of the adaptive nonmonotone horizon helps the
training procedure.

C. Effect of the Nonmonotone Strategy

The nonmonotone learning strategy can be incorporated in
any training algorithm. Below, we present experimental results,
and compare the performance of three training algorithms with
their nonmonotone versions. In all cases an adaptive nonmono-
tone learning horizon has been used and 1000 simulations were
run.

1) BPM Algorithm: To test the effectiveness of the proposed
learning strategy on the BPM algorithm, two experiments have
been performed. The first experiment refers to the training of
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Fig. 7. Alphabetic font learning problem: Average number of error function and gradient evaluations for the NMBBP method with respect to different values of
M .

Fig. 8. Texture classification problem: Average number of error function and gradient evaluations for the NMBBP method with respect to different values ofM .

an MLP for recognizing 8 8 pixel machine printed numerals
from 0 to 9. Details on the network architecture have been pro-

vided in Section V-A-4. The termination condition for all algo-
rithms tested is .
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Fig. 9. Alphabetic font learning problem: Average number of error function and gradient evaluations for the NMBPVS method with respect to different values
of M .

Fig. 10. Texture classification problem: Average number of error function and gradient evaluations for the NMBPVS method with respect to different values ofM .
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Fig. 11. Texture classification problem: Average percentage of success for the NMBBP method with respect to different values ofM .

TABLE V
NONMONOTONEBPM APPLIED TO THENUMERIC FONT PROBLEM

Fig. 12. XOR problem: Behavior of the NMBPM algorithm with adaptiveM .

To evaluate the robustness of the proposed strategy, the
learning parameters have been set intentionally to high values,
i.e., and . Detailed results regarding the
training performance of the algorithms are presented in
Table V, where denotes the mean number of gradient or error
function evaluations required to obtain convergence,the
corresponding standard deviation, the minimum and
maximum number of gradient or error function evaluations,
andSucc.denotes the percentage of simulations that converge
to a desired minimum out of 1000.

The second experiment that we will consider is theXOR

Boolean function problem. TheXOR function maps two binary

inputs to a single binary output. This simple Boolean function
is not linearly separable (i.e., it cannot be solved by a simple
mapping directly from the inputs to the output), and thus the
use of extra hidden units is required to learn the task. Moreover,
it is sensitive to initial weights as well as to learning rate vari-
ations, and presents a multitude of local minima with certain
weight vectors. An MLP with two hidden neurons of logistic
activations with biases, and one linear output neuron with bias
(six weights, three biases) has been used to solve this classical
problem. The weights and biases have been initialized by the
Nguyen–Widrow method [49], and the learning parameters
have been: ; . The termination criterion has
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TABLE VI
NONMONOTONEBPM APPLIED TO THE XORPROBLEM

Fig. 13. Alphabetic font learning problem: Convergence behavior of the NMBPVS algorithm.

TABLE VII
NONMONOTONEBPVS APPLIED TOTEXTURE CLASSIFICATION

been within 2000 error function evaluations. The
results of the simulation are shown in Table VI. The behavior
of during a typical run of the NMBPM algorithm is shown
in Fig. 12.

In both test cases, the use of the nonmonotone strategy sig-
nificantly improves the success percentage of the BPM method.
However, in the numeric font problem (see Table V), since fewer
runs have converged to a desired minimum for the BPM, the al-
gorithm reveals a lower average number of error function and
gradient evaluations for the converged runs.

2) BPVS Algorithm:To show the effect of the proposed
learning strategy on the performance of the BPVS, we apply it
in two applications: the texture classification problem and the
continuous function approximation problem, both mentioned
previously. The results are exhibited in Tables VII and VIII. The

nonmonotone strategy only marginally improves the efficiency
of the BPVS method. The NMBPVS error function in a
typical run is shown in Fig. 13, where the nonmonotone con-
vergence behavior of the NMBPVS method is easily observed.

3) BBP Algorithm: Next, we test the proposed learning
strategies in the function approximation problem. Compar-
ative results are exhibited in Table IX. There is a noticeable
improvement of the BBP algorithm when the nonmonotone
learning strategy is applied; the BBP algorithm has a success
percentage of 79.6%, while the nonmonotone version NMBBP
has a success percentage of 92.2%.

The second experiment concerns the alphabetic font problem
described above. The results are exhibited in Table X. Both the
BBP and the NMBBP have 100% success, however, the non-
monotone version is clearly faster.
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TABLE VIII
NONMONOTONEBPVS APPLIED TOFUNCTION APPROXIMATION

TABLE IX
NONMONOTONEBBP APPLIED TOFUNCTION APPROXIMATION

TABLE X
NONMONOTONEBBP APPLIED TO THEALPHABETIC FONT PROBLEM

D. Generalization Performance

Generalization performance is a decisive factor when se-
lecting a training algorithm. It is well known that generalization
depends on the size of the weights space [17], [35], [67], the
noise in the data set [8], [22], [26], [45], the size of the training
set [32], and the initial weight distribution [3]. A number of
techniques have been proposed to avoid overfitting and improve
generalization [22], [32], such as the use oftwo-foldor -fold
cross-validation[1] andearly stopping[58]. Results reported in
the literature show that these techniques may help in practical
applications. However, their success depends on user’s choices,
and on fine tuning or optimizing problem-dependent heuristic
parameters [1], [22], [58].

The approach taken with our experiments has sought to mini-
mize the difficulty associated with parameter selection. Our aim
is to verify that the nonmonotone strategies will still do reason-
ably well in different types of problems without optimizing or
fine tuning heuristic parameters and that they provide good gen-
eralization capability. Hence, below we examine five problems
that possess different characteristics, as our goal is to verify that
the nonmonotone strategies work reasonably well over a wide
range of application domains. We decided not to enhance the al-
gorithms tested with add-on techniques for improving the gen-
eralization as this would require introducing, and fine tuning
or optimizing additional heuristics depending on the learning
task. Despite the fact we fine tuned learning parameters of the
other algorithms tested, we arbitrary set the parameters of the
nonmonotone strategies to the same fixed values for all exper-
iments, i.e., was set to 10 and the maximum value for the
adaptive nonmonotone learning horizon was set equal to ten, in
order to test the robustness of our methods. Last, we used well
studied problems from the UCI Repository of Machine Learning
Databases [47], as well as problems studied extensively by other
researchers and/or ourselves, in an attempt to reduce as much as
possible biases introduced by the size of the weights space.

The first experiment concerns the well known MONK’s prob-
lems [66]. These are three bipolar classification tasks, which are
part of the UCI Repository of Machine Learning Databases, and
are used as benchmarks for testing the generalization perfor-
mance of learning algorithms. The second problem is a hand-
written digits classification problem, which is also part of the
UCI Repository of Machine Learning Databases, and is char-
acterized by a real-valued training set of approximately 7500
patterns. The third problem is the texture classification studied
previously. This problem is used as an example of practical ap-
plication in which training data are real-valued and noisy due
to low resolution in the acquisition of digital data [40]–[42].
The fourth problem concerns the machine-printed numeric font
learning task described previously. In this case, the number of
patterns in the training set is 45 times smaller than the dimension
of the weight space [42], [64]. The fifth problem concerns the
identification of malignant tissue regions extracted from stan-
dard VHS videotape recordings of endoscopy procedures. In
this case, a set of 1200 training data is used. Data contain noise
due to shading, shadows, lighting conditions, and reflections,
etc. [29], [30].

1) MONK’s Problems [66]: These problems rely on the ar-
tificial robot domain, in which robots are described by six dif-
ferent attributes. Each problem is given by a logical description
of the class as follows.

MONK-1: (Attribute1 Attribute2) OR (Attribute5 1).
This problem is in standard disjunctive normal form (DNF). A
set of 124 examples were selected randomly from the data set
for training, while the remaining 308 were used for the general-
ization testing. There were no misclassifications.

MONK-2: (Only two attributes 1). This problem is similar
to the parity problem mentioned above and is difficult to de-
scribe in DNF or conjunctive normal form (CNF). A set of 169
examples were randomly selected from the data set for training,
while the rest were used for testing. Again, there was no noise.
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TABLE XI
RESULTS OFGENERALIZATION IN THE MONK-3 PROBLEM

MONK-3: (Attribute5 3 AND Attribute4 1) OR
(Attribute5 4 AND Attribute2 3) with added noise. This
problem is also in DNF but with 5% deliberate misclassifica-
tions in the training set, which consists of 122 examples. The
remaining 310 examples were used for testing.

Each one of the six attributes can have one of three, three,
two, three, four, and two values, respectively, which results in
432 possible combinations that constitute the total data set (see
[66], for details). Finally, each possible value for every attribute
was assigned a single bipolar input, resulting in 17 inputs. The
values of the attributes are shown as follows.

• Attribute1: HeadShape {round, square, octagon}.
• Attribute2: BodyShape {round, square, octagon}.
• Attribute3: IsSmiling {yes, no}.
• Attribute4: Holding {sword, balloon, flag}.
• Attribute5: JacketColor {red, yellow, green, blue}.
• Attribute6: HasTie {yes, no}.

For example, the robot with:Attribute1 round,Attribute2
square,Attribute3 yes, Attribute4 flag, Attribute5 blue,
andAttribute6 no, is encoded as: (1,1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1).
We have tested the nonmonotone algorithms against the well

known BP, BP with weight decay (BPWD), and cascade corre-
lation (CC) methods. In our simulation, we have used the same
network topologies as those found in [66] for the BP method.

All the tested methods exhibited 100% classification success
in the MONK-1 and MONK-2 problems, but in MONK-3,
where there are 5% deliberate misclassifications, the networks
generated by BP, BPWD, and CC seem to fail to capture the
concept embedded in the training data, and fit to the noise
instead. Table XI shows that the NMBPVS and NMBBP
algorithms are excellent generalizers, and manage to correctly
classify all the input patterns in the MONK-3 problem.

2) Pen-Based Recognition of Handwritten Digits
Problem: The pen-based recognition of handwritten digits
classification problem is also part of the UCI Repository of
Machine Learning Databases [47]. In this experiment, a digit
database has been assembled by collecting 250 samples from
44 independent writers. The samples written by 30 writers are
used for training, and the rest are used for testing. The training
set consists of 7494 real-valued samples and the test set of
3498 real-valued samples. The architecture found to exhibit
better average performance was a network with 50 hidden
neurons. Thus, a 16–50–10 MLP, having hidden neurons based
on logistic activations and output neurons based on linear acti-
vation functions, was trained. The training procedure stopped
when the MLP exhibited 2% misclassifications in the training

set. The average success percentage of classification for each
algorithm in 100 independent tests was: BP90.93%; BPM

91.08%; ABP 92.02%; FR 96.76%; PR 97.11%;
PR–FR 97.25%; NMBPVS 98.25%; NMBBP 98.39%.

3) Texture Classification Problem:The texture classi-
fication problem, mentioned in a previous subsection, is
chosen to compare and evaluate the training algorithms, as
an example of practical application, using continuous-valued
training data that contain random noise. On average, BP trained
networks with a 16–8–12 architecture perform better than
others according to our previous experiments [40], [41]. Thus,
1000 trained MLPs of this architecture were tested for their
generalization capability, using test patterns from 20 subimages
of size 128 128, randomly selected from each image. To
evaluate the average generalization performance of the MLPs
the rule was used, i.e., a test pattern is considered to be
correctly classified if the corresponding output neuron has the
greatest value among the output neurons. The average success
percentage of classification for each algorithm is: BP90.0%;
BPM 90.0%; ABP 93.5%; FR 92.0%; PR 92.6%;
PR–FR 93.5%; NMBPVS 93.6%; NMBBP 93.6%. The
nonmonotone algorithms provided marginal improvement with
respect to PR–FR but required the least average number of FE
and GE to converge.

4) Numeric Font Problem:Numerals from zero to nine in
eight points standard helvetica font form the training patterns for
this application example. A 64–6–10 architecture was used as
this was found to exhibit better average performance than other
architectures trained with the BP algorithm [42], [64]. After
being trained, with BP, BPM, ABP, FR, PR, PR–FR, NMBPVS
and NMBBP, as in Section V-A4, MLPs were tested for their
generalization capability using helvetica italic. Note that, the
test patterns in italic have 6–14 bit reversed from the training
patterns, and that 100 MLPs were trained for each case. To eval-
uate the average generalization performance the rule was
used.

The BP and BPM trained MLPs achieved similar generaliza-
tion capability as the ABP trained ones, but more epochs were
necessary in order to converge. The same holds for the FR and
PR methods. Thus, in Fig. 14, only the performance of the ABP,
PR, PR–FR, NMBPVS, and NMBBP is illustrated.

This figure shows the number of trained MLPs (out of 100
runs) that correctly recognize the numeric symbols
with respect to the total number of correctly recognized numeric
symbols. For example, 32 out of 100 NMBBP trained MLPs cor-
rectly recognize six out of the ten numeric symbols .
On average, there is a higher number of nonmonotone trained
MLPs that correctly recognize five, six, seven, eight, nine, and
ten numeric symbols out of the ten in the testing phase. For
example, approximately 50% of the NMBPVS and NMBBP
trained MLPs correctly recognize six or more of the numeric
symbols . On the other hand, approximately 35% of
the PR–FR trained MLPs exhibit a similar performance.

5) Abnormalities Detection in Endoscopy Video Se-
quences:Detecting malignant regions in video sequences is a
difficult task due to variations of the environmental conditions
during the endoscopy procedure. Textures from normal and
abnormal tissue samples have been randomly chosen from four
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Fig. 14. Numeric font learning problem: Number of trained MLPs out of 100 that correctly recognized the numeric symbols0; 1; . . . ; 9 in helvetica italic.

TABLE XII
RESULTS FOR THEABNORMALITIES DETECTION PROBLEM

video frames of the same sequence, and used for training the
network to discriminate between malignant and normal regions.

To generate the training set the cooccurrence matrices have
been used. More specifically, the colonoscopic image was sep-
arated into windows of size 16 pixels by 16 pixels. Then the
cooccurrence matrices algorithm was used to gather information
regarding each pixel in an image window [29]–[31]. Cooccur-
rence matrices, [25], represent the spatial distribution and the
dependence of the gray levels within a local area (see [29] and
[30] for further technical details).

The feature vectors contain 16 elements each and therefore
the first layer of the MLPs will consist of 16 neurons. 100 MLPs
with 16 inputs, 30 hidden, and two output neurons have been
trained to discriminate between normal and abnormal image re-
gions using 1200 randomly selected patterns from four video
frames. This network architecture was identified as providing
on average the best results for the classical BP following pre-
liminary experiments reported in [29], [30], [73], and [74]. The
training procedure stopped when the MLPs exhibited 3% mis-
classifications on the training set. Table XII summarizes the

TABLE XIII
GENERALIZATION IN THE ABNORMALITIES DETECTION PROBLEM

convergence performance of the tested algorithms for simula-
tions that reached solution, out of 100 trials.

To test the generalization performance of the trained MLPs
approximately 16 000 test patterns have been created. This test
set constitutes the whole image region in each of the four frames
and contains normal and abnormal samples. In Table XIII, the
generalization capability of the algorithms is exhibited.

VI. CONCLUSION

Deterministic nonmonotone learning strategies for MLP
training were proposed in this paper. According to this ap-
proach, the error function value must satisfy a nonmonotone
criterion with respect to the maximum error function value of
the previous epochs, which constitute the nonmonotone
learning horizon.

A procedure for the adaptation of the nonmonotone learning
horizon based on the local estimation of the Lipschitz constant
was proposed. The experiments indicate that the use of an adap-
tive at each iteration helps to reduce the number of gradient
and error function evaluations required to obtain convergence.

The nonmonotone strategies can be incorporated in any batch
training algorithm, providing stable learning and, therefore, a
greater possibility of good performance. The simulation results
suggest that the use of the nonmonotone strategies significantly
accelerates the convergence of the first-order training algo-
rithms as measured by the number of error function and gradient
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evaluations, and the average CPU time for convergence. In
addition, the nonmonotone training algorithms lead to good
quality solutions, in the sense that final weight vectors provide
on the average improved generalization capability with no need
for fine-tuning problem-dependent heuristic parameters.

The nonmonotone algorithms were compared against some
well known conjugate gradient training algorithm, which apply
inexact line search techniques to ensure the monotone decrease
of the learning error. Numerical evidence shows that the non-
monotone strategies improve the efficiency and effectiveness of
the first-order methods. It is worth noting that, in certain cases,
the nonmonotone methods exhibit faster, or equally fast, con-
vergence than the conjugate gradient methods as shown by the
average CPU time needed for convergence.
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