
ORIGINAL ARTICLE

V. P. Plagianakos Æ G. D. Magoulas Æ M. N. Vrahatis

Evolutionary training of hardware realizable multilayer perceptrons

Received: 5 November 2004 / Accepted: 31 March 2005 / Published online: 20 October 2005
� Springer-Verlag London Limited 2005

Abstract The use of multilayer perceptrons (MLP) with
threshold functions (binary step function activations)
greatly reduces the complexity of the hardware imple-
mentation of neural networks, provides tolerance to
noise and improves the interpretation of the internal
representations. In certain case, such as in learning sta-
tionary tasks, it may be sufficient to find appropriate
weights for an MLP with threshold activation functions
by software simulation and, then, transfer the weight
values to the hardware implementation. Efficient train-
ing of these networks is a subject of considerable
ongoing research. Methods available in the literature
mainly focus on two-state (threshold) nodes and try to
train the networks by approximating the gradient of the
error function and modifying appropriately the gradient
descent, or by progressively altering the shape of the
activation functions. In this paper, we propose an evo-
lution-motivated approach, which is eminently suitable
for networks with threshold functions and compare its
performance with four other methods. The proposed
evolutionary strategy does not need gradient related
information, it is applicable to a situation where
threshold activations are used from the beginning of the
training, as in ‘‘on-chip’’ training, and is able to train
networks with integer weights.

Keywords Feedforward neural networks Æ
Backpropagation algorithm Æ Neural networks with
threshold activations Æ Integer weight neural networks Æ
Integer programming Æ Steepest descent Æ
Unconstrained optimization Æ Differential evolution

1 Introduction

The multilayer perceptron (MLP) is a widely used neural
network model. MLPs consist of many interconnected
identical simple processing units, also called neurons.
Each unit calculates the inner product of the incoming
signals with its weights, adds the bias to the resultant,
and passes the calculated sum through its activation
function. Units are organized into layers with no feed-
back connections.

Although units with threshold (binary step) activa-
tion functions have been superseded to a large extent by
the more computationally powerful units with analogue
activations, MLPs with threshold activations are
important in that they can handle many of the inherently
binary tasks that neural networks are used for. Their
internal representations are clearly interpretable, they
are computationally simpler to understand than MLPs
with sigmoid units and provide a starting point for the
study of neural networks properties. Furthermore, when
using units with thresholds we can understand the rela-
tionship between the size of the network and the com-
plexity of the training [7] better. In [4], it has been
demonstrated that MLPs with threshold activations and
only one hidden layer, can create any decision region
that can be expressed as a finite union of polyhedral sets
when there is one unit in the input layer. Moreover,
artificially created examples were given where these
networks create non convex and disjoint decision re-
gions. Finally, threshold activation functions facilitate
and reduce the complexity of neural network imple-
mentations in digital hardware and are much less costly
to fabricate.

Various modifications of the gradient descent have
been presented to train MLPs with threshold activations
[2, 5, 6, 12, 25, 28]. However, these methods require to a
certain degree, depending on the case, that the learning
task is static. Thus, the network is trained ‘‘off-line’’ by
applying various problem-dependent heuristics during
simulation and, then, the weights are transferred to the

V. P. Plagianakos (&) Æ M. N. Vrahatis
Computational Intelligence Laboratory, Department
of Mathematics, University of Patras Artificial Intelligence
Research Center–UPAIRC, University of Patras,
GR-26110 Patras, Greece
E-mail: vpp@math.upatras.gr

G. D. Magoulas
School of Computer Science and Information Systems,
University of London, Malet Street, London, WC1E7HX, UK

Neural Comput & Applic (2005) 15: 33–40
DOI 10.1007/s00521-005-0005-y



hardware [6]. But many real-life applications may not be
static, i.e. input data may continue to change even after
the hardware implementation. In such cases an algo-
rithm capable for ‘‘on-chip’’ training is needed.

In this paper, we propose evolution-motivated strat-
egies that provide the potential advantage of continuing
the training process in hardware, when purely threshold
activation functions are used.

The paper is organized as follows. In the next sections
the training problem of MLPs with threshold activation
functions is formulated and current approaches to solve
it are discussed. Then, in Sect. 3 an alternative method is
described. Section 4 presents experiments and compar-
ative results. Finally, Sect. 5 presents concluding
remarks.

2 Training networks with threshold activation functions

Consider an MLP with threshold activations consisting
of L layers, in which the first layer denotes the input, the
last L is the output, and the intermediate layers are the
hidden layers. It is assumed that the (l�1) layer has Nl-1

units. These units operate according to the following
equations:

netlj ¼
XNl�1

i¼1
wl�1;l

ij yl�1
i þ hl

j; ð1Þ

yl
j ¼ rl netlj

� �
; ð2Þ

where netj
l is the network input to the j-th unit at the

l-th layer, wij
l-1,l is the connection weight from the i-th

unit at the (l�1) layer to the j-th unit at the l-th layer, yi
l

denotes the output of the i-th unit belonging to the l-th
layer, hj

l denotes the bias of the j-th unit at the l-th layer,
and r is the activation function.

Multilayer perceptrons are usually based on units
with analogue activation functions, as the well known
sigmoid:

sðnetljÞ ¼
1

1þ e�bnetlj
; ð3Þ

where the factor b is introduced to achieve slope modi-
fication. For high values of b the sigmoid unit approx-
imates the binary threshold unit [13], i.e. rl(netj

l)
=‘‘true’’, if netj

l ‡ 0, and ‘‘false’’ otherwise.
Let us now define the error for an output layer unit:

ej(t)=dj(t) � yj
L(t), for j=1,2,...,NL, where dj(t) is the

desired response at the j-th unit of the output layer for
the input pattern t, and yj

L(t) is the output at the k-th
unit of the output layer L. For a fixed, finite set of input-
output cases, the squared error over the training set
which contains T representative cases is:

E ¼
XT

t¼1
EðtÞ ¼

XT

t¼1

XNL

j¼1
e2j ðtÞ: ð4Þ

The fixed-increment rule and the fractional correction
rule, both described in [15], were the first training
methods for training single layer networks of hard-lim-
iting units. Nowadays, the most common MLP training
algorithm, the backpropagation (BP) [21], that incor-
porates the gradient descent, cannot be applied directly
to networks of units with discrete output states, since
discrete activation functions (such as binary step func-
tion activations) are non-differentiable. Recent research
publications have tried to alleviate this problem by
considering various modifications of the gradient des-
cent, such as the MRII algorithm [28]. Another training
method was proposed by Toms [25], who suggested the
use of hybrid activations that are gradually transformed
during training from analogue (sigmoid) to thresholds
(step functions) depending on the values of a heuristic
parameter b, 0 £ b £ 1. Thus, the hidden unit activa-
tions, rh, are

rhðnetljÞ ¼ uðnetljÞð1� bÞ þ 2

1þ e�net
l
j

� 1

� �
b; ð5Þ

where

uðnetljÞ ¼
1; if netlj � 0

�1; if netlj\0

(
:

Note that in Relation (5), when b=1 the hidden units
are purely analogue having a sigmoid activation, while
for b=0 they become purely discrete with two output
states. For intermediate values the network is a hybrid
with activation functions that are differentiable every-
where except at netj

l. Note that for the units of the
output layer, L, Toms [25] used the activations

roðnetLj Þ ¼
2

1þ e�net
L
j
� 1: ð6Þ

Bartlett and Downs [2] introduced another approach
by defining the weights as random variables with smooth
distribution functions and proposed an algorithm that
uses an approach that is similar to BP to adjust the
parameters of the weights’ distributions. As they
pointout, their method is similar to BP with regard to
computational complexity, but needs additional com-
putations in the estimation of the gradients.

Corwin et al. [6] suggested to train MLPs with pro-
gressively steeper analogue functions to facilitate train-
ing. In their experiments, they used values such as b 2{2,
3, 5, 10} to alter the shape of the sigmoid (c.f. with Eq.
(3)) from time to time during training. The mathematical
analysis behind their method suggests that this approach
is only valid if the network learning error for each par-
ticular value of b is ‘‘small’’ [6].

Finally, Goodman [5] proposed an approximation to
gradient descent, the so-called pseudo-gradient training
method. The pseudo-gradient assumes that units with
two discrete output states are used, i.e. f (or �f) for
‘‘false’’ and t (or +t) for ‘‘true’’, where f, t are real
positive numbers and f< t, instead of the classical 0 and

34



1 (or �1, and +1). Real positive values prevent units
from saturating, give to the logic ‘‘false’’ some power of
influence over the next layer of the network, and help the
justification of the approximated gradient value.

The idea of the pseudo-gradient was first introduced
in training discrete recurrent neural networks [29, 30]
and then extended to MLPs with threshold activations
[5]. The method approximates the true gradient of the
error function with respect to the weights, i.e. � E(w),
by introducing an analogue set of values for the out-
puts of the hidden layer units and the output layer
units.

Thus, it is assumed that (2) can be written as:

yl
j ¼ ~rl sðnetljÞ

� �
; ð7Þ

where ~rðxÞ ¼ ‘‘true’’; if x ‡ 0.5, and ‘‘false‘‘ otherwise, if
s(Æ) is defined in [0, 1]. If s(Æ) is defined in [�1, 1], then
~rðxÞ ¼ ‘‘true’’ if x ‡ 0, and ‘‘false’’ otherwise.

Using the chain rule, the pseudo-gradient is com-
puted:

f@E

@wl�1;l
ij

¼ ~d
l
jy

l�1
i ; ð8Þ

where the approximation of the backpropagating error
signal, ~d; for an output layer unit is

~dL
j ¼ dj � sðnetLj Þ

� �
s0ðnetLj Þ; ð9Þ

and for units of any other layer, i.e. l 2[2,L�1], is
~dl
j ¼ s0ðnetljÞ

X

n

wl;lþ1
jn

~d
lþ1
n : ð10Þ

In Eqns. (9) and (10), the term s¢(netjl) is the derivative of
the analogue activation function.

By using real positive values for ‘‘true’’ and ‘‘false’’ it
is ensured that the pseudo-gradient will not reduce to
zero when the output is ‘‘false’’. Note also that the
method does not use r¢ which is zero everywhere and
non-existent at zero. Instead, s¢, which is always positive,
is used so that ~d

l
j gives an indication of the direction and

magnitude of a step up or down as a function of netj
l on

the surface of the error function E. The justification of
the pseudo-gradient can be found in any one of [5, 29,
30], and is based on the idea of using the gradient of a
sigmoid as a heuristic hint instead of the true gradient.

However, as pointed out in [5] the value of the
pseudo-gradient is not accurate enough, so gradient
descent based training of MLPs with thresholds is con-
siderably slow when compared with BP training of
MLPs with continuous activations.

Based on the idea of the pseudo-gradient, in [12] an
attractive alternative has been proposed. This method
exploits the imprecise information regarding the error
function and the approximated gradient, like the pseu-
do-gradient method does, however it has an improved
convergence speed and is potentially useful in situations
where the pseudo-gradient method fails to converge.

3 Evolution strategies for training MLPs with threshold
activations

In this section we introduce a novel approach based on
evolution strategies (ESs) for training MLPs with purely
threshold units. ESs are adaptive stochastic search methods
which mimic the metaphor of natural biological evolution.
Distinctly different from other adaptive stochastic search
algorithms, evolutionary computation techniques operate
on a set of potential solutions, which is called population,
applying the principle of survival of the fittest to produce
better and better approximations to a solution, and,
through cooperation and competition among the potential
solutions, they find the optimal one. This approach often
helps finding optima in complicated optimization problems
more quickly than traditional optimization methods. The
main differences between ESs and genetic algorithms (GAs)
lie in that the mutation operator is the key self-adaptation
feature of the ESs, while GAs prefer smaller mutation
probability (rate) [1, 22]. A high level description of a
general ES is presented here.

Here, we use the differential evolution (DE) strate-
gies, which have been designed as stochastic parallel
direct search methods that can efficiently handle non
differentiable, nonlinear and multimodal objective
functions, and require few, easily chosen control
parameters [23]. Experimental results have shown that
DE algorithms have good convergence properties, out-
perform other classical or evolutionary methods [16, 17,
23], are able to train MLPs with integer weights [18, 19]
and can be efficiently implemented in parallel [20].

To apply DE algorithms for training MLPs with
thresholds, we start with a fixed number (NP) of N-
dimensional weight vectors, as an initial weight popu-
lation, and evolve them over time. The number of
individuals, NP, is kept fixed throughout the learning

Evolutionary strategy model
{
//initialise the time counter
t := 0;
//initialise the population
InitPopulation(P(t));
//evaluate fitness of all individuals
F_P(t):= Evaluate(P(t));
//test for termination criterion
while not done do
t := t + 1;
//select sub-population
Q(t) := SelectParents(P(t));
//recombine the ‘‘genes’’
R(t) := Recombine(Q(t));
//perturb the mated population
M(t) := Mutate(R(t));
//evaluate the new fitness
F_M(t):= Evaluate(M(t));
//select the survivors
P(t + 1) := Survive(F_P(t), F_M(t));
end
}

35



process and the population is initialized randomly fol-
lowing a uniform probability distribution. As in ESs, at
each iteration of the DE algorithm, called generation,
new weight vectors are generated by the combination of
randomly chosen weight vectors from the current pop-
ulation, using one of the following relations:

wi
gþ1 ¼ wr1

g þ l wr2
g � wr3

g

� �
; ð11Þ

or

wi
gþ1 ¼ wi

g þ l wbest
g � wi

g

� �
þ l wr1

g � wr2
g

� �
; ð12Þ

where wg
best is the best member of the previous genera-

tion, l>0 is a real parameter, called mutation constant,
which regulates the contribution of the difference be-
tween two weight vectors, and

r1; r2; r3 2 1; 2; . . . ; i� 1; iþ 1; . . . ;NPf g

are random integers mutually different and different
from the running index i.

The outcoming weight vectors are then mixed with
another predetermined weight vector, the target weight
vector. This operation, which is called crossover, is used
to further increase the diversity of the mutant weight
vector. Specifically, for each component j of the mutant
weight vector, we randomly choose a real number r in
the interval [0,1]. Then, this number is compared with
the crossover constant q; if r £ q, we replace the j-th
component of the trial vector with the j-th component of
the mutant vector; otherwise, we pick the j-th compo-
nent of the target vector.

The crossover operator yields the so-called trial
weight vector that is accepted for the next generation if
and only if it reduces the value of the error function E.
This last operation is called selection. In algorithm 1, we
illustrate a high level description of the DE training
algorithm.

4 Applications

In this section, we present four sets of experiments
applying the DE algorithms of relation (11), named
DE1, and of relation (12), named DE2, and the algo-
rithms proposed in [5, 6, 12, 25], which are denoted in
the tables below as GZ, GLO, MVGA and T, respec-
tively.

For the DE algorithms, no effort has been made to
tune the mutation and crossover constants, l and q
respectively. We have used the fixed values l=0.5 and
q=0.7, instead.

One thousand simulation runs have been made in
each case and the average performance results reported
below have been validated in all cases using the well-
known t-test for statistical significance at the level
a £ 0.05 (see, for example, [11]), using the SPSS 13 sta-
tistical software package. To this end, we have con-
ducted 1000 more independent runs for each algorithm.
The difference between the original values and the values
computed using the new simulations are not significantly
different, at the significance level a £ 0.05, i.e. the ori-
ginal value is equal to the new one with probability
(1�a)=95%, when those values are indeed equal.

4.1 Training by gradually altering the sigmoid
activations

In this set of experiments, we train MLPs with threshold
activation functions by gradually transforming the sig-
moid activations to thresholds. This approach is adop-
ted by both the GLO and T algorithms and is useful for
learning tasks that do not change over time. In this case,
it may be sufficient to determine the weights by means of
software simulation and, at a later time, transfer these
values to the hardware implementation. Note that this
approach is only applicable to train MLPs with thresh-
old activation functions for which the weights are not
required to be updated in hardware. More specifically,
for the GLO and the T algorithms the activations were
altered according to the guidelines given in [6] and in
[25].

To test the efficiency of the proposed evolutionary
strategies, the DE1, and DE2 algorithms were tested
under the same conditions. When the input patterns
were correctly classified and the network error was
small, the value of the sigmoid gain, b, was altered in the
sequence (1, 10, 20, 30, 40, 50, ¥), in order to increase
the slope of the analogue activation function (sigmoid).

4.1.1 The XOR classification problem [2, 5, 6]

Classification of the four XOR patterns in one of two
classes, {0, 1}, is sensitive to initial weights, presents a
multitude of local minima, and it is known to have solu-
tions for threshold units [21]. We used the 2-2-1 classic
architecture and set the learning rate to 0.1. In all in-

Algorithm 1: Differential evolution

Initialize the population of individuals
Evaluate fitness of all individuals
Repeat
For i=1 to NP
MUTATION(wi

p) fi Mutant_Vector
CROSSOVER(Mutant_Vector) fi Trial_Vector
If E(Trial_Vector) £ E(wi

p),
accept Trial_Vector for the next generation

EndFor
Until the termination criterion is met

Table 1 Results for the XOR Problem

Algorithm Min Mean Max SD Succ. (%)

DE1 270 432.4 1,062 106.6 100
DE2 252 394.0 1,170 111.9 100
GLO 142 335.6 2,303 250.4 84
T 117 192.2 528 66.4 69

36



stances, 1,000 simulations were run and the results are
summarized in Table 1, where the following notation is
used: Mean indicates the mean number of function
evaluations; SD the standard deviation of function eval-
uations; Max the maximum number of function evalu-
ations;Min theminimum number of function evaluations
and Succ. the percentage of successful runs.

When interpreting the results shown in Table 1, the
reader should keep in mind that the GLO and the T
algorithms use at each iteration one gradient and one
error function evaluation to update the weights, while
the DE algorithms do not require gradient evaluations.
This means that in learning the XOR, the algorithms
GLO and T required, in addition to the error function
evaluations shown in Table 1, an average of 335.6 and
192.2 gradient evaluations, respectively. Note that a
gradient evaluation sometimes is considered as having
the cost of three error function evaluations [14].

4.1.2 The 3-bit parity problem [8]

A 3-3-1 MLP receives eight three-dimensional binary
input patterns and must output an ‘‘1’’ if the inputs have
an odd number of ones and ‘‘0’’ if the inputs have an
even number of ones. Geometrically, the input space for
the 3-parity problem is a cube in a three-dimensional
space. This is a very difficult problem for an MLP be-
cause the network must determine the proper parity (the
value at the output) for input patterns which differ only
by Hamming distance 1. The stepsize was equal to 0.5.
The results of 1,000 simulations are summarized in Ta-
ble 2.

From the results of Table 2, it is clear that the GLO
algorithm outperforms all other methods tested. The
success performance of the DE algorithms was signifi-
cantly high (100%), but the average number of error
function evaluations was high as well. This is due to the
population-based nature of the method.

4.2 Training by explicitly using threshold activation
functions

Here, we further expand our experiments to train ‘‘on-
chip’’ MLPs by explicitly using threshold activation
functions. This approach provides the advantage of
training or continuing the training process on hardware,
when purely threshold activation functions are used.

We have compared the GZ and MVGA algorithms,
which are able to train MLPs having only threshold

activations, against the DE2 algorithm which gave the
best performance in the first set of experiments. The
other algorithms tested in the first set of experiments, i.e.
the GLO and the T, are not able to train an MLP when
threshold activations are used from the beginning of the
training.

The DE2 trained the MLP using threshold activation
functions and 5-bit integer weights. The use of integer
weights reduces the amount of memory required for
weight storage in hardware implementations. Addition-
ally, it simplifies the digital multiplication operation,
since multiplying any number with a k-bit integer re-
quires only the following number of basic instructions:
one sign change, (k�1)(k�2)/2 one-step left shifts and
(k�2) additions. Finally, if inputs are restricted to the set
{�1, 1} (bipolar inputs), the units in the first hidden
layer require only sign changes during multiplication
operations, and only integer additions.

Note that the DE2 needs only the values of the error
function to update the weights, while the GZ and
MVGA algorithms are both based on the idea of pseu-
do-gradient to calculate the weight corrections and use
real numbers for the weights [5, 12].

In Table 3, results for the XOR problem are shown.
The performance of the DE2 is significantly high. The
DE2 reveals the highest percentage of success in the
experiments, i.e. 950 successful simulation runs out of
1,000. The MVGA algorithm has better performance
than the original pseudo-gradient method, GZ. How-
ever, when compared to the DE2, the MVGA requires,
an average number of 280.6 gradient evaluations in
addition to the error function evaluations shown in
Table 3.

In Table 4, results from the 3-bit parity problem are
exhibited. The DE2, needing an average of 1,273.1 error
function evaluations and no gradient calculations, con-
verges in 880 out of the 1,000 simulations runs. The
modified pseudo-gradient algorithm, MVGA, trains the
network, needing on the average 702.5 error function
and 702.5 pseudo-gradient evaluations, while the origi-
nal method, GZ, is not able to learn the training set.

Table 2 Results for the 3-bit parity problem

Algorithm Min Mean Max SD Succ. (%)

DE1 672 1,732.8 7,488 825.6 100
DE2 640 1,423.8 9,888 1,195.8 100
GLO 77 1,46.3 372 50.8 96
T 70 114.9 448 45.3 88

Table 3 Results for the XOR problem using threshold activations

Algorithm Min Mean Max SD Succ. (%)

DE2 36 368.3 1,692 345.6 95
GZ 5,202 5,202.7 9,964 3,530.8 5
MVGA 122 280.6 334 56.1 50

Table 4 Results for the 3-bit parity problem using threshold acti-
vations

Algorithm Min Mean Max SD Succ. (%)

DE2 64 1,273.1 3,072 750.9 88
GZ – – – – 0
MVGA 320 702.5 2,964 833.3 55

37



4.3 MONK’s problems and generalization results

In addition to training speed and efficiency, we have also
evaluated the generalization performance of the DE
algorithms. To this end, we have also tested them on the
MONK’s problems [24]. These three problems from the
UCI Machine Learning Repository [3] are difficult bin-
ary classification tasks which have been used for com-
paring the generalization performance of learning
algorithms. They rely on the artificial robot domain, in
which robots are described by six different attributes.
Each one of the six attributes can have one of 3, 3, 2, 3,
4, and 2 values, respectively, which results 432 possible
combinations that constitute the total data set (see [24],
for details). Each possible value for every attribute is
assigned a single bipolar input, resulting 17 inputs.

We have compared the DE1 and DE2 algorithms
utilizing threshold functions and 5-bit integer weights
against the well known backpropagation (BP), the
backpropagation with weight decay (BPWD), and the
cascade correlation (CC) algorithms, using the experi-
mental settings found in [24]. The termination condition
was a training error less than 0.1 and the maximum al-
lowed iterations were 5,000. The BP, the BPWD and the
CC training algorithms use sigmoid activation functions
and compute the gradient of the error function at each
iteration. In Table 6 we exhibit the best generalization
accuracy results of the algorithms on the MONK’s
problems.

It is clear from Table 5 that the DE algorithms gen-
erate MLPs, which are at least as capable as the best
generated by real-weight learning algorithms using sig-
moid activations. Those networks, in all the MONK’s
problems, seem to have learned the concept embedded in
the training data. This is more evident in MONK-3,
where there are 5% deliberate misclassifications and the
networks generated by BP, BPWD, and CC seem to fail
to capture the concept embedded in the training data
and fit to the noise instead.

The topology of the trained networks is shown in
Table 6. It is known that the best generalizers are neither
too complex nor too simple; they exactly match the
complexity of the concept which is embedded in the
training data. We think that the reason why the pro-
posed algorithms, in general, need a larger network to
generate MLPs with good generalization capabilities is
that more integers than real numbers are needed to
match the complexity of the given problem [9].

4.4 Training a neural controller

In this last experiment, an MLP is trained to control a
real-life mechatronic device. A cutting tool, driven by a
servo-motor, is augmented with a force sensor which
returns a signal contaminated by tool chatter and un-
wanted noise to the controller [26, 27].

A 2-4-1 neural controller tries to maintain a constant
force on the tool by varying the material feed rate. The
controller generates a signal to the actuator to get the
necessary optimum feed rate, and, in this way, to achieve
the desired product quality. Feed rate demand is used as
the input to the device, and the cutting force, as mea-
sured by the force sensor on the workpiece, is the device
output. The neural controller is trained using fuzzified
values for the control system error between desired and
actual force ek, and the error change Dek=ek � ek-1. The
controller provides a correction signal Duk (desired
output) which passes through an integrator to give the
control input to the device [10, 27].

The training set consists of thirteen input-output
samples, i.e. {input,output}={(ek, Dek),Duk}, where all
variables take values in the normalized space [�1,+1].
These samples correspond to 13 out of 49 possible
linguistic rules to control the lathe cutting process; the
rest of the rules are used for testing [10]. The encoding of
the linguistic rules and the dataset are described in detail
in (p 186, [10]). The termination condition was a training
error less than 0.1 and the maximum allowed iterations
were 20,000.

Threshold activations and 5-bit integer weights were
used when training with the DE2 algorithm; real num-
bers for the weights were used for all other methods. For
the GLO and T algorithms the activations were altered
according to the guidelines given in [6] and in [25].

In Table 7, we exhibit results for this experiment
using the five methods in 1,000 simulation runs. Only
DE2 and MVGA managed to train the neuro-controller.
All other methods failed in all cases. The DE2 algorithm
is able to train with significant success and provides the

Table 6 Network configuration for the MONK’s problems

Algorithm MONK-1 MONK-2 MONK-3

BP 17:3:1 17:2:1 17:4:1
BPWD 17:2:1 17:2:1 17:2:1
CC 17:1:1 17:1:1 17:3:1
DE1 17:4:1 17:4:1 17:3:1
DE2 17:4:1 17:4:1 17:3:1

Table 5 Comparison of generalization performance on the
MONK’s problems

Algorithm MONK-1 (%) MONK-2 (%) MONK-3 (%)

BP 100 100 93.1
BPWD 100 100 97.2
CC 100 100 97.2
DE1 100 100 100
DE2 100 100 100

Table 7 Results from training the MLP neuro-controller

Algorithm Min Mean Max SD Succ. (%)

DE2 1,020 4,400.6 15,390 2,716.2 93
GLO – – – – 0
T – – – – 0
GZ – – – – 0
MVGA 1,200 2,666.1 11,114 917.2 34

38



advantage of retraining the neuro-controller using
threshold activations. Note that retraining is especially
useful for real-life learning problems and tasks that
slowly change over time.

5 Conclusions

Various methods for training networks with threshold
activations have been proposed in the literature. How-
ever, these methods exhibit slow convergence speed and
low percentage of success compared to networks with
continuous activations. It is known that the hardware
implementation of the backward passes, which compute
the gradient of the error function, is more difficult than
the implementation of the forward passes. Thus, in this
paper, we proposed evolutionary strategies that do not
perform gradient evaluations and are able to train MLPs
with purely threshold activations. The behavior of the
algorithms has been examined by means of experiments
and comparative results have been presented. The per-
formance of the algorithms is promising even when
compared with other methods that require the gradient
approximations of the error function, or train the net-
work by progressively altering the shape of the activa-
tion functions.

Furthermore, the proposed strategies were tested for
training MLPs with threshold activations and integer
weights. MLPs of this type constitute an interesting
alternative class of neural networks, as they require
significantly less amount of memory for the storage of
their weights and uncomplicated digital arithmetic
operations when compared to networks with real
weights and non-linear (sigmoid) activation functions.

In a future communication we intend to present the
behavior and characteristics of the DE algorithms in
training large MLPs with thresholds and big data sets.
Preliminary results are promising, but further work is
needed to optimize the DE algorithms’ performance in
such tasks.

Acknowledgements The authors would like to thank the European
Social Fund, Operational Program for Educational and Vocational
Training II (EPEAEK II), and particularly the Program PY-
THAGORAS for funding the above work. Dr V.P. Plagianakos
and Prof. M.N. Vrahatis acknowledge the financial support of the
University of Patras Research Committee through a ‘‘Karatheod-
oris’’ research grant. We also acknowledge the help of Prof. R.E.
King of the Department of Electrical and Computer Engineering at
the University of Patras, Greece, in the neuro-controller training
experiment. The authors wish to thank the Editor and the referees
for constructive comments and useful suggestions.

References

1. Bäck T, Schwefel HP (1993) An overview of evolutionary
algorithms for parameter optimization. Evol Comput 1:1–23

2. Bartlett PL, Downs T (1992) Using random weights to train
multilayer networks of hard–limiting units. IEEE Trans Neural
Netw 3:202–210

3. Blake CL, Merz CJ (2005) UCI Repository of machine learning
databases. University of California, Irvine, Department of
Information and Computer Sciences, URL: http://www.ics.
uci.edu/�mlearn/MLRepository.html, last accessed 4/2005

4. Gibson GJ, Cowan FN (1990) On the decision regions of multi-
layer perceptrons. Proc IEEE 78:1590–1594

5. Goodman R, Zeng Z (1994) A learning algorithm for multi-
layer perceptrons with hard-limiting threshold units. In: Pro-
ceedings of the IEEE Neural Networks for Signal Processing,
pp 219–228

6. Gorwin EM, Logar AM, Oldham WJB (1994) An iterative
method for training multilayer networks with threshold func-
tions. IEEE Trans Neural Netw 5:507–508

7. Hampson SE, Volper DJ (1990) Representing and learning
boolean functions of multivalued features. IEEE Trans Syst
Man Cybern 20:67–80

8. Hohil ME, Liu D, Smith SH (1999) Solving the N-bit parity
problem using neural networks. Neural Networks 12:1321–
1323

9. Khan AH (1996) Feedforward neural networks with con-
strained weights. PhD Thesis, University of Warwick,
Department of Engineering

10. King RE (1999) Computational Intelligence in Control Engi-
neering. Marcel Dekker Inc., New York

11. Law AM, Kelton WD (2000) Simulation modeling and analy-
sis, 3rd edn. McGraw-Hill, New York

12. Magoulas GD, Vrahatis MN, Grapsa TN, Androulakis GS
(1997) A training method for discrete multilayer neural net-
works. In: Ellacot SW, Mason JC, Anderson IJ (eds) Mathe-
matics of neural networks: models, algorithms & applications,
chapter 41. Kluwer, Operations Research/Computer Science
Interfaces series

13. McCullough W, Pitts WH (1943) A logical calculus of the ideas
imminent in nervous activity. Bull Math Biophys 5:115–133

14. Møller MF (1993) A scaled conjugate gradient algorithm, for
fast supervised learning. Neural Networks 6:525–533

15. Nilsson NJ (1965) Learning Machines. McGraw-Hill, New
York

16. Plagianakos VP, Magoulas GD, Nousis NK, Vrahatis MN
(2001) Training multilayer networks with discrete activation
functions. In: Proceedings of the INNS–IEEE international
joint conference on neural networks (IJCNN2001), Washing-
ton DC, USA, pp 2805–2810

17. Plagianakos VP, Sotiropoulos DG, Vrahatis MN (1998) Inte-
ger weight training by differential evolution algorithms. In:
Mastorakis NE (ed) recent advances in circuits and systems.
World Scientific pp 327–331

18. Plagianakos VP, Vrahatis MN (1999) Training neural networks
with 3-bit integer weights. In: Banzhaf W, Daida J, Eiben AE,
Garzon MH, Honavar V, Jakiela M, Smith RE (eds) Pro-
ceedings of genetic and evolutionary computation conference
(GECCO’99). Morgan Kaufmann, Orlando, pp 910–915

19. Plagianakos VP, Vrahatis MN (1999) Neural network training
with constrained integer weights. In: Angeline PJ, Michalewicz
Z, Schoenauer M, Yao X, Zalzala A (eds) Proceedings of
congress on evolutionary computation (CEC’99). IEEE Press,
Washington DC, pp 2007–2013

20. Plagianakos VP, Vrahatis MN (2002) Parallel evolutionary
training algorithms for ‘hardware-friendly’ neural networks.
Natural Computing 1:307–322

21. Rumelhart DE, McClelland JL (eds) Parallel distributed pro-
cessing: explorations in the microstructure of cognition. MIT
Press, New york1:318–362

22. Srinivas M, Patnaik L (1994) Genetic algorithms: a survey.
IEEE Computer, pp 17–26

23. Storn R, Price K (1997) Differential Evolution—A simple and
efficient heuristic for global optimization over continuous
spaces. J Global Optim 11:341–359

24. Thrun SB, Bala J, Bloedorn E, Bratko I, Cestnik B, Cheng J,
De Jong K, Dzeroski S, Fahlman SE, Fisher D, Hamann R,
Kaufmann K, Keller S, Kononenko I, Kreuziger J, Michalski
RS, Mitchell T, Pachowicz P, Reich Y, Vafaie H, Van de Welde

39



W, Wenzel W, Wnek J, Zhang J (1991) The MONK’s prob-
lems: a performance comparison of different learning algo-
rithms. Technical Report, Carnegie Mellon University, CMU-
CS-91-197

25. Toms DJ (1990) Training binary node feed forward neural
networks by back-propagation of error. Electron Lett 26:1745–
1746

26. Tomizuka M, Zhang S (1988) Modeling and conventional/
adaptive PI control of a lathe cutting process. Trans ASME
110:305–354

27. Tsitouras G, King R (1997) Rule-based neural control of
mechatronic systems. Int J Intelligent Mechatronics 2:1–11

28. WidrowB,WinterR (1988)Neural nets for adaptive filtering and
adaptive pattern recognition. IEEE Computer, March, 25–39

29. Zeng Z, Goodman R, Smyth P (1993) Learning finite state
machines with self-clustering recurrent networks. Neural
Comput 5:976–990

30. Zeng Z, Goodman R, Smyth P (1994) Discrete recurrent neural
networks for grammatical inference. IEEE Trans Neural Net-
woks 5:320–330

40


	Sec1
	Sec2
	Sec3
	Taba
	Sec4
	Sec5
	Sec6
	Tabb
	Tab1
	Sec7
	Sec8
	Tab2
	Tab3
	Tab4
	Sec9
	Sec10
	Tab6
	Tab5
	Tab7
	Sec11
	Ack
	Bib
	CR1
	CR2
	CR3
	CR4
	CR5
	CR6
	CR7
	CR8
	CR9
	CR10
	CR11
	CR12
	CR13
	CR14
	CR15
	CR16
	CR17
	CR18
	CR19
	CR20
	CR21
	CR22
	CR23
	CR24
	CR25
	CR26
	CR27
	CR28
	CR29
	CR30

