
Journal of Computational and Applied Mathematics 133 (2001) 545–554
www.elsevier.com/locate/cam

Locating and computing in parallel all the simple roots of
special functions using PVM

V.P. Plagianakos ∗, N.K. Nousis, M.N. Vrahatis
Department of Mathematics, University of Patras, U.P. Arti�cial Intelligence Research Center-UPAIRC, GR-26500

Patras, Greece

Received 2 November 1999; received in revised form 16 June 2000

Abstract

An algorithm is proposed for locating and computing in parallel and with certainty all the simple roots of any twice
continuously di0erentiable function in any speci1c interval. To compute with certainty all the roots, the proposed method
is heavily based on the knowledge of the total number of roots within the given interval. To obtain this information we
use results from topological degree theory and, in particular, the Kronecker–Picard approach. This theory gives a formula
for the computation of the total number of roots of a system of equations within a given region, which can be computed
in parallel. With this tool in hand, we construct a parallel procedure for the localization and isolation of all the roots by
dividing the given region successively and applying the above formula to these subregions until the 1nal domains contain
at the most one root. The subregions with no roots are discarded, while for the rest a modi1cation of the well-known
bisection method is employed for the computation of the contained root. The new aspect of the present contribution is
that the computation of the total number of zeros using the Kronecker–Picard integral as well as the localization and
computation of all the roots is performed in parallel using the parallel virtual machine (PVM). PVM is an integrated set
of software tools and libraries that emulates a general-purpose, 7exible, heterogeneous concurrent computing framework on
interconnected computers of varied architectures. The proposed algorithm has large granularity and low synchronization,
and is robust. It has been implemented and tested and our experience is that it can massively compute with certainty
all the roots in a certain interval. Performance information from massive computations related to a recently proposed
conjecture due to Elbert (this issue, J. Comput. Appl. Math. 133 (2001) 65–83) is reported. c© 2001 Elsevier Science
B.V. All rights reserved.

MSC: 33C10; 68Q22; 65H05; 65D20; 47H11; 55M25; 65Y05; 65Y10; 68M10

Keywords: Elbert’s conjecture; Special functions; Bessel functions; Computation of special functions; Construction of
tables of special functions; Parallel and distributed algorithms; Parallel virtual machine; Zero isolation; Kronecker–Picard
theory; Topological degree theory; Computing simple roots; Bisection method

∗ Corresponding author.
E-mail address: vpp@math.upatras.gr (V.P. Plagianakos).

0377-0427/01/$ - see front matter c© 2001 Elsevier Science B.V. All rights reserved.
PII: S 0377-0427(00)00675-0

546 V.P. Plagianakos et al. / Journal of Computational and Applied Mathematics 133 (2001) 545–554

1. Introduction

Many problems in di0erent areas of science, such as mechanics, physical sciences, statistics,
operation research, etc., are reduced to the problem of 1nding all the roots or the extrema of a
function f: [a; b]⊂R → R; in a given interval. The importance of the problem has attracted the
attention of many research e0orts and as a result many di0erent approaches to the problem exist.
Regarding the special functions, Lozier and Olver [8,10] have provided a survey of algorithms
and software for the numerical evaluation of special functions. They have pointed out that the
currently available software for special functions (including the zero1nding approach) exhibits gaps
and defects in comparison to the needs of modern high-performance computing and also, surprisingly,
in comparison to what could be constructed from current algorithms (see for example [14,21]). In
particular the software regarding the zeros of Bessel functions has a low cumulative score in [8,
p. 351] and thus the computation of the zeros of special functions is an area of particular need.

On the other hand, parallel processing, i.e., the method of having many small tasks solve one large
problem, has emerged as a key enabling technology in modern computing [9]. The past several
years have witnessed an ever-increasing acceptance and adoption of parallel processing, both for
high-performance scienti1c computing and for more “general-purpose” applications, as a result of
the demand for higher performance, lower cost, and sustained productivity. The acceptance has been
facilitated by two major developments: massive parallel processors (MPPs), and the widespread use
of distributed computing.

The most important factor in distributed computing is the high cost of the hardware. Large MPPs
typically cost more than $10 million. In contrast, users see very little cost in running their problems
on a local set of existing computers. The parallel virtual machine (PVM) is a de facto standard
message passing interface. It is an integrated set of software tools and libraries that emulates a
general-purpose, 7exible, heterogeneous concurrent computing framework on interconnected comput-
ers of varied architectures. PVM is designed to link computing resources and provide users with
a parallel platform for running their computer applications, irrespective of the number of di0erent
computer architectures they use and where those computers are located. It is capable of harnessing
the combined resources of typically heterogeneous networked computing platforms to deliver high
levels of performance and functionality. Its key concept is that it makes a collection of computers
to appear as one large virtual machine, hence its name [3].

In this paper we propose an algorithm for locating and computing in parallel and with certainty
all the simple roots of any twice continuously di0erentiable function in any given interval. The rest
of the paper is organized as follows: In Section 2, we brie7y review the notion of topological degree
and the Picard and Kronecker approach. In Section 3, we apply the results of the previous section
to twice continuously di0erentiable functions of one variable and in the next section we present the
modi1ed bisection method. In Section 5 we propose an algorithm to locate and compute all the
simple roots in parallel. Experiments and simulation results are presented in Section 6. Finally, the
paper ends with some concluding remarks and a short discussion for further work.

2. The topological degree for the localization of zeros

To obtain the total number of roots within any predetermined interval we use results from topo-
logical degree theory and in particular the Kronecker–Picard approach [12,13]. This theory gives a

V.P. Plagianakos et al. / Journal of Computational and Applied Mathematics 133 (2001) 545–554 547

formula for the computation of the total number of roots of a system of equations within a given
region.

To de1ne the topological degree we suppose that the solutions of the equation:

Fn(x) = On ≡ (0; 0; : : : ; 0); (2.1)

where Fn=(f1; : : : ; fn): PD
n⊂Rn → Rn is twice continuously di0erentiable in the open and bounded

domain Dn, are not located on the boundary b (Dn) of Dn and they are simple, i.e., the Jacobian
determinant of Fn at these roots is non-zero.

The topological degree of Fn at On relative to Dn is denoted by deg[Fn;Dn;On] and can be de1ned
by the following sum:

deg[Fn;Dn;On] =
∑

x∈F−1
n (On)

sgn JFn(x); (2.2)

where JFn indicates the determinant of the Jacobian matrix and sgn de1nes the well-known three-valued
sign function. The notion of topological degree can be generalized when Fn is only continuous [1,11].
Kronecker’s theorem states that Eq. (2.1) has at least one root in Dn if deg[Fn;Dn;On] �= 0.

The de1nition of the topological degree actually indicates that its value is equal to the number of
simple solutions of Eq. (2.1) for which the determinant of the Jacobian matrix is positive, minus
the number of simple roots for which the Jacobian determinant is negative. Evidently, if all of them
give the same Jacobian determinant sign, then the total number Nr of simple roots of Fn(x) can
be obtained by the value of deg[Fn;Dn;On]. To retain the same sign of the Jacobian determinant,
Picard has considered the following extensions of the function Fn and the domain Dn:

Fn+1 = (f1; : : : ; fn; fn+1) :Dn+1 ⊂Rn+1 → Rn+1; (2.3)

where fn+1 = y JFn and Dn+1 is the direct product of the domain Dn with an arbitrary interval of
the real y-axis containing the point y = 0. Then the following system of equations:

fi(x1; x2; : : : ; xn) = 0; i = 1; : : : ; n;

y JFn(x1; x2; : : : ; xn) = 0; (2.4)

possesses the same simple roots with Fn(x), provided y=0. Also, it is easily seen that the Jacobian
determinant of (2.4) is equal to J 2

Fn which is always positive. So, we conclude that the total number
Nr of solutions of Eq. (2.1) is

Nr = deg[Fn+1;Dn+1;On+1]: (2.5)

Thus, the total number of zeros can be obtained by the value of the topological degree. The topo-
logical degree can be computed by the Kronecker integral:

deg[Fn;Dn;On] =
1
n

∫ ∫
b(Dn)

· · ·
∫ ∑n

i=1 Ai dx1 · · · dxi−1 dxi+1 · · · dxn
(f2

1 + f2
2 + · · ·+ f2

n)n=2
; (2.6)

where Ai de1ne the following determinants:

Ai = (−1)n(i−1)|Fn @1Fn · · · @i−1Fn @i+1Fn · · · @nFn |;
while @jFn de1nes the column vector (@f1=@xj; : : : ; @fn=@xj) and n denotes the surface of a hyper-
sphere in Rn with radius unity, i.e., n = 2�n=2=�(n=2).

548 V.P. Plagianakos et al. / Journal of Computational and Applied Mathematics 133 (2001) 545–554

3. Computing the number of simple roots

To study the real zeros of special functions, we focus on the problem of calculating the total
number of simple roots of a real twice continuously di0erentiable function f(x), de1ned in a pre-
determined interval [a; b], where a and b are arbitrarily chosen so that f(a)f(b) �= 0. According
to Picard’s extension we consider the function F2 = (f1; f2): P2 ⊂R2 → R2 and the corresponding
system:

f1(x; y) = f(x) = 0; f2(x; y) = yf′(x) = 0; (3.1)

where the prime denotes di0erentiation and P2 is the rectangular parallelepiped [a; b] × [− �; �]
in the (x; y)-plane with � an arbitrary positive constant. Since the roots are simple, which means
f′(x) �= 0 for x ∈ f−1(0), it is easily seen that the solutions of system (3.1) in P2 and these of
f(x) = 0 in (a; b) are the same. Also, since JF2 =f′2, the total number of simple zeros Nr of f(x)
in (a; b) are given by

Nr = deg[F2;P2;O2]: (3.2)

For the computation of the topological degree of F2 we apply Kronecker integral (2.6) for n = 2.
Using the relations dfj = (@fj=@x1) dx1 + (@fj=@x2) dx2; j = 1; 2 we obtain

Nr =
1
2�

∮
b(P2)

f1 df2 − f2 df1

f2
1 + f2

2
= 2

1
�

∮
b(P2)

d arctan
(
f2

f1

)
: (3.3)

Replacing f1 and f2 by virtue of (3.1) and performing the integration in (3.3) we 1nally get

Nr =−1
�

[
�
∫ b

a

f(x)f′′(x)− f′2(x)
f2(x) + �2f′2(x)

dx − arctan
(
�f′(b)
f(b)

)
+ arctan

(
�f′(a)
f(a)

)]
: (3.4)

Note that it has been explicitly shown in [12,13] that relation (3.4) is independent of the value
of �.

4. The modi�ed bisection method

Having isolated one root of the function within an interval, we can use a modi1ed version of the
bisection method to compute it [17,18] which is based on the nonzero value of the topological degree
(or alternatively Bolzano’s criterion) [19]. To compute a solution of f(x)=0 where f : [a; b]⊂R→
R is continuous, the following iterative formula can be used:

xi+1 = xi + c sgnf(xi)=2i+1; i = 0; 1; : : : (4.1)

with x0 = a and c = sgnf(a) (b − a). Iterations (4.1) converge to a root r ∈ (a; b) if for some
xi; i = 1; 2; : : : , the following holds:

sgnf(x0) sgnf(xi) =−1:

The number of iterations �, which are required to obtain an approximate root r∗ such that |r−r∗|6�
for some � ∈ (0; 1), is given by

�=
log2((b− a)�−1)�; (4.2)

where the notation
·� refers to the smallest integer not less than the real number quoted.

V.P. Plagianakos et al. / Journal of Computational and Applied Mathematics 133 (2001) 545–554 549

Alternatively, any one-dimensional root1nding method can be used. The reason for choosing the
bisection method is that it always converges within the given interval and it is a globally convergent
method. Moreover, it has a great advantage since it is optimal, i.e., it possesses asymptotically the
best-possible rate of convergence [15]. Also, using relation (4.2) it is easy to have beforehand the
number of iterations that are required for the attainment of an approximate root to a predetermined
accuracy. Furthermore, it requires only the algebraic signs (one bit of information) of the function
values to be computed, as it is evident from (4.1), thus it can be applied to problems with imprecise
function values. As a consequence for problems where the function value follows as a result of an
in1nite series (e.g., Bessel or Airy functions) it can be shown [20,22,23] that the sign stabilizes after
a relatively small number of terms of the series and the calculations can be sped up considerably.
Finally, the bisection method can be parallelized easily and e0ectively.

5. The algorithms

With these tools in hand, one can construct a parallel procedure for the isolation and computation
of all the simple roots using a divide-and-conquer technique, i.e., by dividing the given region
successively and applying the above formula to these subregions until the 1nal domains contain
at most one root. The subregions with no roots are discarded, while for the rest the modi1ed
bisection method is employed for the computation of the contained root for the reasons explained
previously. To isolate and compute all the simple roots using PVM, we have used the “master–slave”
computational model. We have used 10 Beowulf-style [16] slave nodes and one master.

5.1. The algorithm of the master

In the beginning, the master adds the slaves to the PVM, subdivides the initial interval [a; b] into
subintervals, one for each slave, and sends them to the slaves. While there are slaves that work,
the master receives an interval and the corresponding number of roots. If the number of roots is
equal to one, then it stores the root, otherwise it “pushes” the interval and the number of roots to
a “stack”. Now, while there are idle slaves and the stack is not empty, it “pops” an interval from
the stack and sends it to an idle slave. When all the roots are found, the master sends termination
signals to all the slaves and shuts the PVM down.

procedure master
initializeAllSlaves
h:= (b-a) / numOfSlaves
for slave := 1 to numOfSlaves do

SendInterval(slave, a, a + h, 0)
a:= a+h

while numOfIdleSlaves ¡¿ numOfSlaves do
RcvInterval(slave, a, b, numOfRoots, posRoot)
if numOfRoots =1 then print(posRoot, f(posRoot))
if numOfRoots ¿ 1 then StackPush(a, b, numOfRoots)

550 V.P. Plagianakos et al. / Journal of Computational and Applied Mathematics 133 (2001) 545–554

while (numOfIdleSlaves ¿ 0) and not EmptyStack do
StackPop(a, b, numOfRoots)
SendIterval(FindIdleSlave(), a, b, numOfRoots)

ShutdownAllSlaves

5.2. The algorithm of the slaves

Each slave receives an interval (a; b), and computes the midpoint, midPoint, of the interval. If
the slave has also received the number of roots in (a; b), it computes the number of roots of the
interval (a; midPoint) using (3.4) and calculates the number of roots in (midPoint; b), with a simple
subtraction. Otherwise it uses (3.4) for both intervals.

If an interval has only one root, the slave 1nds it using the modi1ed bisection method. The same
procedure is repeated for the (midPoint; b) interval. Finally, it returns to the master the new intervals
with the corresponding number of roots. A high-level description of the algorithm is given below:

procedure slave
start:
RcvInterval(a, b, numOfRoots)
midPoint := (a+b)/2
numOfLeftRoots := FindRoots(a, midPoint)
numOfRightRoots := numOfRoots - numOfLeftRoots
if numOfRoots =0 then numOfRightRoots:= FindRoots(midPoint, b)
if numOfLeftRoots =1 then root := Bisection(a, midPoint)
SendInterval(a, midPoint, numOfLeftRoots,root)
if numOfRightRoots =1 then root := Bisection(midPoint, b)
SendInterval(midPoint, b, numOfRightRoots, root)
goto start

The above algorithm focuses in obtaining the roots with certainty and robustness. It is designed
with high generality in the sense that it can be applied to compute the zeros of any twice continuously
di0erentiable function. Thus, since in many cases the numerical values of various special functions
cannot be obtained very accurately and to avoid numerical integration inaccuracies of the user chosen
integration method, the above algorithm applies its integration portion at every instance. In cases
where the user is certain about the accuracy of the numerical function values in obtaining the total
number of zeros, it is evident that the above algorithm can be reconstructed to be more rapid without
numerical integrations at every instance.

Although the integral in relation (3.4) is nontrivial, the numerical integration is very fast, since the
result — the number of roots in a given interval — is always an integer and thus no high accuracy
is required. For example, on an HP-715 computer (with one PA-Risk 7100=75 Mhz processor) the
typical elapsed CPU time for the numerical integration is from 9.02 to 32.81 ms, when intervals with
length 30–50 are considered. On the average, the typical time required for numerical integration is
one third of the time needed for the computation of the isolated zeros, utilizing the modi1ed bisection
method (4.1).

V.P. Plagianakos et al. / Journal of Computational and Applied Mathematics 133 (2001) 545–554 551

6. Experimental results

The algorithm described in Section 5 has been implemented and tested on many problems of
various special functions and the results have been quite satisfactory. Our experience is that the
algorithm behaves predictably and reliably. With this algorithm and a PVM, one can massively
compute all the roots of a given twice continuously di0erentiable function in a given interval, with
certainty.

The key feature of the proposed algorithm is that it can be straightforwardly implemented in
parallel, because the computation of the number of roots using (3.4), the bisection method (4.1),
as well as the algorithms of the master and the slaves have large granularity and exhibit low
synchronization. This is evident since the parallel version of our algorithm is about ten times faster
than the sequential one, when run on a PVM that consists of 10 slave nodes.

To test the performance of the proposed algorithm, we have applied it on the parallel computation
of all the roots of special functions of certain orders. To this end, we have tested our approach to
a problem where a massive computation of these zeros is required. According to Prof. TA. Elbert,
the density property of the zeros of Bessel functions plays an important role and a better insight on
the distribution of these zeros is required [2] (see also [4,5], where JoTo dealt with oscillation of the
circular membranes). To this end, we consider the following set:

S=
⋃
n; k=1

{jnk}=
⋃
j=1

{xj};

where jnk is the kth positive zero of the Bessel function of the 1rst kind, Jn(x), and x1¡x2¡ · · ·,
and we have tried to extract pieces of information regarding the following product:

Ej = xj(xj+1 − xj); (6.1)

Table 1
Quantitative information for Ej in Eq. (6.1) for orders n = 0; 1; : : : ; 10000 and the number of
roots, Nr , within the corresponding exhibited intervals

Interval Minimum Mean Maximum std.

[10000; 10010] 0.00007450592607 3.99269958773648 47.03825583568963 4.037765
[10000; 10001] 0.00007450592607 3.96253282037896 44.44593478678763 4.172368
[10001; 10002] 0.00111576389384 3.97831989729870 27.68517659088264 3.923294
[10002; 10003] 0.00597613035132 4.02593708771399 31.67826186554454 4.088156
[10003; 10004] 0.00023979790426 3.99404064880568 37.71659298637130 4.025062
[10004; 10005] 0.00080143385603 4.02828978890569 34.70717497269536 4.051591
[10005; 10006] 0.00084866990518 4.01577160014173 44.38887697723416 3.957860
[10006; 10007] 0.00397942852308 3.97103101771882 47.03825583568963 4.107122
[10007; 10008] 0.00318327014514 4.00197484290160 42.26565426253388 4.151968
[10008; 10009] 0.00118115106241 3.97627900894455 32.55679308484231 4.013669
[10009; 10010] 0.00032302494730 3.97416368578276 43.37227316700991 3.883157

Nr : 25059; 2524; 2514; 2482; 2507; 2484; 2490; 2521; 2501; 2517; 2519.

552 V.P. Plagianakos et al. / Journal of Computational and Applied Mathematics 133 (2001) 545–554

Table 2
Quantitative information for Ej in Eq. (6.1) for orders n=0; 1; : : : ; 2000 and the number of roots,
Nr , within the corresponding exhibited intervals

Interval Minimum Mean Maximum std.

[0; 2000] 0.00002063847942 4.00165503414487 52.54410751200736 3.962428
[0; 400] 0.00051114207273 4.00816537924939 40.82943057823706 3.881962
[400; 800] 0.00004315974771 4.00268178330445 43.10751779470661 3.961188
[800; 1200] 0.00003193841635 4.00142044530852 40.95811360846550 3.964162
[1200; 1600] 0.00003032675281 4.00068047439606 52.17900499047060 3.963991
[1600; 2000] 0.00002063847942 4.00147908759290 52.54410751200736 3.969533

Nr : 499799, 19963, 59961, 99965, 139976, 179934.

which can be utilized in Elbert’s conjecture [2]:

lim sup
j→∞

xj(xj+1 − xj)¡∞:

In Tables 1 and 2 we exhibit some quantitative results regarding Ej, for various intervals and
orders of Jn(x). We remark that in Table 2, the mean value and the standard deviation of Ej exhibit,
on average, a smoother behavior than in Table 1, due to the larger number of zeros within the
considered intervals. We also remark that the mean value and the standard deviation are nearly the
same (� 4), which may be an interesting point for further investigation.

Moreover, we have computed all the 10 54 942 roots of Jn(x), of order n = 0; 1; : : : ; 2000, in the
interval [0; 3000]. These zeros are used to extract information regarding the distances between them.
To this end, we have sorted all the computed zeros and we have computed the distances di, i =
1; 2; : : : ; 10 54 942 between all the pairs of consecutive zeros. The mean value of these distances di is
�(di)=0:00284157510496, the standard deviation is (di)=0:00628066999847, the minimum distance
is mini {di}=1:361058821203187×10−9 and the maximum distance is maxi {di}=1:42688040988250.

7. Conclusion

In this paper, the concept of the topological degree has been utilized to calculate the total number
of simple real roots of Bessel functions within a predetermined interval, and to isolate and compute
each one of them. For this purpose, we have used the Kronecker’s theory and the Picard’s extension.
Once a zero is isolated, it is computed numerically, utilizing a modi1ed bisection method. This
procedure is implemented to run in a parallel computer and is tested using the PVM. The proposed
algorithm has large granularity since it consists of large independent portions, and exhibits low
synchronization, because no process synchronization is necessary. Furthermore, its performance is
fast, robust and predictable.

Of course, our approach can be more eUcient and e0ective utilizing analytic or asymptotic es-
timates of zeros, in cases of well-known functions where these estimates are available. Also, the
algorithm can easily be modi1ed to compute the extrema of a three times continuously di0erentiable
function. Our approach can be used to speed up other similar recently proposed algorithms [6,7,22]
with regard to the computation of complex zeros of special functions which is an area of particular

V.P. Plagianakos et al. / Journal of Computational and Applied Mathematics 133 (2001) 545–554 553

interest [8]. Future work will also include utilization of well-known estimates as well as experi-
ments on various “real life” applications that require fast speed of execution and vast computational
resources.

Acknowledgements

We wish to thank Prof. TA. Elbert for many stimulating and useful discussions, constructive com-
ments and valuable suggestions, as well as the anonymous referee, whose remarks helped us to
improve the paper.

References

[1] P. Alexandro0, H. Hopf, Topologie, Springer, Berlin, 1935 (reprinted: Chelsea, Bronx, New York, 1965).
[2] TA. Elbert, Some recent results on the zeros of Bessel functions and orthogonal polynomials, this issue, J. Comput.

Appl. Math. 133 (2001) 65–83.
[3] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, V. Sunderam, PVM: Parallel Virtual Machine. A User’s

Guide and Tutorial for Networked Parallel Computing, MIT Press, Cambridge, 1994.
[4] I. JoTo, Exact controllability and oscillation properties of circular membranes, Dissertation for the title doctor of

science, Budapest, 1992.
[5] I. JoTo, On the control of a circular membrane I, Acta Math. Hungar. 61 (1993) 303–325.
[6] P. Kravanja, O. Ragos, M.N. Vrahatis, F.A. Za1ropoulos, ZEBEC: a mathematical software package for computing

simple zeros of Bessel functions of real order and complex argument, Comput. Phys. Commun. 113 (1998) 220–238.
[7] P. Kravanja, M. Van Barel, O. Ragos, M.N. Vrahatis, F.A. Za1ropoulos, ZEAL: a mathematical software package

for computing zeros of analytic functions, Comput. Phys. Commun. 124 (2000) 212–232.
[8] D.W. Lozier, Software needs in special functions, J. Comput. Appl. Math. 66 (1996) 345–358.
[9] D.W. Lozier, F.W.J. Olver, Airy and Bessel functions by parallel integration of ODEs, in: R.F. Sincovec,

D.E. Keyes, M.R. Leuze, L.R. Petzold, D.A. Reed (Eds.), Proceedings of 6th SIAM Conference on Parallel Processing
for Scienti1c Computing, Vol. 2, SIAM, Philadelphia, 1993, pp. 531–538.

[10] D.W. Lozier, F.W.J. Olver, Numerical evaluation of special functions, in: W. Gautschi (Ed.), Mathematics
of Computation 1943–1993: a half-century of computational mathematics, Proceedings of Symposia in Applied
Mathematics, Vol. 48, AMS, Providence, RI, 1994, pp. 79–125.

[11] J.M. Ortega, W.C. Rheinbolt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New
York, 1970.

[12] E. Picard, Sur le nombre des racines communes Wa plusieurs Tequations simultanTees, J. Math. Pure Appl. (4 STer.) 8
(1892) 5–24.

[13] E. Picard, TraitTe d’analyse, 3rd Edition, Gauthier–Villars, Paris, 1922 (Chapter 4.7).
[14] J. Segura, A. Gil, ELF and GNOME: Two tiny codes to evaluate the real zeros of the Bessel functions of the 1rst

kind for real orders, Comput. Phys. Commun. 117 (1999) 250–262.
[15] K. Sikorski, Bisection is optimal, Numer. Math. 40 (1982) 111–117.
[16] T.L. Sterling, J. Salmon, D.J. Becker, D.F. Savarese, How to build a Beowulf: A Guide to Implementation and

Application of PC Clusters, MIT Press, Cambridge, 1999.
[17] M.N. Vrahatis, Solving systems of nonlinear equations using the nonzero value of the topological degree, ACM

Trans. Math. Software 14 (1988) 312–329.
[18] M.N. Vrahatis, CHABIS: A mathematical software package for locating and evaluating roots of systems of nonlinear

equations, ACM Trans. Math. Software 14 (1988) 330–336.
[19] M.N. Vrahatis, A short proof and a generalization of Miranda’s existence theorem, Proc. Amer. Math. Soc. 107

(1989) 701–703.
[20] M.N. Vrahatis, T.N. Grapsa, O. Ragos, F.A. Za1ropoulos, On the localization and computation of zeros of Bessel

functions, Z. Angew. Math. Mech. 77 (1997) 467–475.

554 V.P. Plagianakos et al. / Journal of Computational and Applied Mathematics 133 (2001) 545–554

[21] M.N. Vrahatis, O. Ragos, T. Skiniotis, F.A. Za1ropoulos, T.N. Grapsa, RFSFNS: a portable package for the numerical
determination of the number and the calculation of roots of Bessel functions, Comput. Phys. Commun. 92 (1995)
252–266.

[22] M.N. Vrahatis, O. Ragos, T. Skiniotis, F.A. Za1ropoulos, T.N. Grapsa, The topological degree theory for the
localization and computation of complex zeros of Bessel functions, Numer. Funct. Anal. Optim. 18 (1997) 227–234.

[23] M.N. Vrahatis, O. Ragos, F.A. Za1ropoulos, T.N. Grapsa, Locating and computing zeros of Airy functions,
Z. Angew. Math. Mech. 76 (1996) 419–422.

