;“ Natural Computing 1: 307-322, 2002.
“ © 2002 Kluwer Academic Publishers. Printed in the Netherlands.

Parallel evolutionary training algorithms for
“hardware-friendly”’ neural networks

VASSILIS P. PLAGIANAKOS and MICHAEL N. VRAHATIS
Department of Mathematics and Artificial Intelligence Research Center — UPAIRC,
University of Patras, GR-26110 Patras, Greece (E-mail: {vpp,vrahatis} @math.upatras.gr)

Abstract. In this paper, Parallel Evolutionary Algorithms for integer weight neural network
training are presented. To this end, each processor is assigned a subpopulation of potential
solutions. The subpopulations are independently evolved in parallel and occasional migration
is employed to allow cooperation between them. The proposed algorithms are applied to train
neural networks using threshold activation functions and weight values confined to a narrow
band of integers. We constrain the weights and biases in the range [-3, 3], thus they can be
represented by just 3 bits. Such neural networks are better suited for hardware implementation
than the real weight ones. These algorithms have been designed keeping in mind that the
resulting integer weights require less bits to be stored and the digital arithmetic operations
between them are easier to be implemented in hardware. Another advantage of the proposed
evolutionary strategies is that they are capable of continuing the training process “on-chip”, if
needed. Our intention is to present results of parallel evolutionary algorithms on this difficult
task. Based on the application of the proposed class of methods on classical neural network
problems, our experience is that these methods are effective and reliable.

Key words: “hardware-friendly” implementations, integer weight neural networks, “on-chip”
training, parallel differential evolution algorithms, threshold activation functions

Abbreviations: FNN - feedforward neural network; PEA — parallel evolutionary algorithm;
EHW - evolvable hardware; ES — evolution strategy; DE — differential evolution; PDE —
parallel differential evolution

ACM Computing Classification (1998): 1.2.6, C.1.3,F.1.1, G.1.6, F.1.2, G.1.0

1. Introduction

Artificial Feedforward Neural Networks (FNNs) have been widely used in
many application areas in recent years and have shown their strength in
solving hard problems in Artificial Intelligence. Although many different
models of neural networks have been proposed, multilayered FNNs are
the most common. FNNs consist of many interconnected identical simple
processing units, called neurons. Each neuron calculates the dot product of
the incoming signals with its weights, adds the bias to the resultant, and

308 VASSILIS P. PLAGIANAKOS AND MICHAEL N. VRAHATIS

passes the calculated sum through its activation function. In a multilayer
feedforward network the neurons are organized into layers with no feedback
connections.

FNNs can be simulated in software, but to be utilized in real life appli-
cations, where high speed of execution is required, hardware implementation
is needed. The natural implementation of an FNN — because of its modu-
larity — is a parallel one. Hardware-friendly algorithms are essential to ensure
the functionality and cost effectiveness of the hardware implementation.
Moreover, the need for hardware-friendly algorithms, which have the ability
to cope with time-varying problems and real-time timing constraints, has
been recently increased. The evolvable hardware (EHW) (Higuchi et al.,
1992; Higuchi et al., 1994) designed for such practical industrial applications.
In the conventional hardware design, it is necessary to have in advance
all the specifications of the hardware functions. To alleviate this problem
(especially in time-varying or unknown environments), EHW design has
been employed (see for example (Yao and Higuchi, 1999)). The method
of EHW design is able to change dynamically the hardware configu-
rations according to an Evolution Strategy (ES) (Beyer and Schwefel, 2002;
Schwefel, 1995). To improve EHW’s performance, these reconfigurations
do not need in advance known specifications and can continue on-line, if
necessary.

FNNs having integer weights and biases are easier and less expensive to
implement in electronics as well as in optics and the storage of the integer
weights is much easier to be achieved. Additionally, the use of threshold
activation functions for all the hidden and output neurons, greatly reduces
the complexity of the hardware implementation, because there is no need to
design and implement complicated non-linear activation functions. Another
advantage of the FNNs with integer weights and threshold activation func-
tions is that the trained neural network is to some extend immune to noise in
the training data. Such networks only capture the main feature of the training
data. Low amplitude noise that possibly contaminates the training set cannot
perturb the discrete weights, because those networks require relatively large
variations to “jump” from one integer weight value to another.

Mathematical operations that are easy to implement in software might
often be very burdensome in the hardware and therefore more costly. To
this end, we focus on neural networks having integer weights, constrained
in the ranges [-3, 3], which correspond to 3-bit integer representation of the
weights. This property reduces the amount of memory required for weight
storage in digital electronic implementations. Additionally, it simplifies the
digital multiplication operation, since multiplying any number with a 3-bit
integer requires only one sign change, one one-step left shift and one addition.

PARALLEL EVOLUTIONARY TRAINING ALGORITHMS 309

Finally, if inputs are restricted to the set {—1, 1} (bipolar inputs), the neurons
in the first hidden layer require only sign changes during multiplication
operations, and only integer additions.

It is evident that the problem of neural network training using integer
weights is related to the integer programming problem. Early approaches in
the direction of Evolutionary Algorithms (EAs) for integer programming can
be found in (Gall, 1966; Kelahan and Gaddy, 1978). They proposed random
search methods on integer spaces in the spirit of a (1 + 1)-ES (Beyer adn
Schwefel, 2002; Schwefel, 1995). More recently, an interesting construction
of a mutation distribution for unbounded integer search spaces is proposed in
(Rudolph, 1994) resulting to an efficient («, A)-ES for integer programming.
In our approach we utilize a Parallel Evolutionary Algorithm (PEA). The
proposed algorithm is based on the recently proposed differential evolution
method (Storn, 1999; Storn and Price, 1997). Our experimental results show
that this algorithm is an efficient and effective algorithm for neural network
training with integer weights.

The paper is organized as follows: in the next section we briefly review the
basics of neural network training and formulate the problem. The proposed
PEA approach, as explained in Section 3, has been utilized to train neural
networks with 3-bit integer weights and threshold activation functions, suit-
able for hardware implementation. A brief overview of the chosen ES is
also presented. In Section 4 techniques for training neural networks with
threshold activation functions are proposed. Experiments and computer simu-
lation results are presented in Section 5. The final section contains concluding
remarks and a short discussion.

2. Neural network training

The efficient supervised training of FNNG, i.e., the incremental adaptation of
the connection weights that propagate information between the neurons, is
a subject of considerable ongoing research and numerous algorithms have
been proposed to this end. The majority of those algorithms use the negative
of the gradient of the error function, —V E (w), as their descent direction. The
gradient V E (w) can be computed by the BackPropagation (Rumelhart et al.,
1994; Magoulas et al., 1997) of the error through the layers of the network.
This calculation, however, is computationally expensive and difficult to be
implemented in hardware. In this paper, a new class of training algorithms
that do not need the gradient of E and train networks with threshold units
is proposed. Other algorithms that train neural networks with threshold units
need the learning task to be static, i.e., not to change over time, in order to
train the network “off-line” in a software simulation and later transfer it to

310 VASSILIS P. PLAGIANAKOS AND MICHAEL N. VRAHATIS

the hardware (Corwin et al., 1994; Magoulas et al., 1997). But many real-
life applications may not be static, i.e., input data may continue to change
even after the hardware implementation. In such cases an algorithm capable
to continue training “on-chip” is needed. The advantage of the proposed
strategies is that they are capable of continuing the training process in
hardware, when threshold activation functions have been used.

Formally, a typical FNN consists of L layers, where the first layer denotes
the input, the last one, L, is the output, and the intermediate layers are the
hidden layers. It is assumed that the (I — 1) layer has N;,_; neurons. The
neurons operate according to the following equations

Ni-1
I _ =10 i—1 1 I _ gl !
net; = Zwij Vi ~|—9j, Vi = f (netj),
i=1
where wfj_l’l is the integer connection weight from the i-th neuron at the (/ —

1) layer to the j-th neuron at the /-th layer, y! is the output of the i-th neuron
belonging to the [-th layer, 911. denotes the integer bias of the j-th neuron
at the /-th layer, and f is the activation function. The weights in the FNN
can be expressed in vector notation. Let the weight vector have the form:
w = (wy, wy, ..., wy). The weight vector, in general, defines a point in the
N-dimensional real Euclidean space R", where N denotes the total number
of weights and biases in the network. Throughout this paper w is considered
to be the 3-bit integer vector of the weights and biases. From the optimization
point of view, supervised training of an FNN is equivalent to minimizing the
corresponding error function, which is a multivariate function that depends
on the weights in the network. The square error over the set of input-desired
output patterns with respect to every weight, is usually taken as the function to
be minimized. Specifically, the error function for an input pattern ¢ is defined
as follows:

ej(t) =y () —d;(1), j=12,...,Np,

where d(t) is the desired response of an output neuron at the input pattern
t. For a fixed, finite set of input-desired output patterns, the square error over
the training set which contains 7" representative pairs is:

T Np

T
Ew) =) Ew) =) _Y e,
t=1

t=1 j=1

where E;(w) is the sum of the squares of errors associated with the pattern
t. Minimization of E is attempted by using a training algorithm to update
the weights. Efficient training algorithms have been proposed for trial and

PARALLEL EVOLUTIONARY TRAINING ALGORITHMS 311

error based training, but it is difficult to use them when training with discrete
weights (Khan, 1996; Khan and Hines, 1994).

3. The proposed parallel evolutionary algorithm

In a recent work, Storn and Price (Storn and Price, 1997) have presented
a novel minimization method, called Differential Evolution (DE), which
has been designed to handle nondifferentiable, nonlinear and multimodal
objective functions. To fulfill this requirement, DE has been designed as a
stochastic parallel direct search method, which utilizes concepts borrowed
from the broad class of evolutionary algorithms, but requires few easily
chosen control parameters. Experimental results have shown that DE has
good convergence properties and outperforms other well known evolutionary
algorithms (Storn, 1999; Storn and Price, 1997). EAs, as well as DEs, are
easily parallelized due to the fact that each member of the population is
evaluated individually (Schwefel, 1995). The only phase of the algorithm
which requires communication with other individuals is in reproduction,
and this too occurs in parallel for pairs of individuals (Michalewicz and
Fogel, 2000; Schwefel, 1995). Thus, there are two typical models for EA
parallelization. The first uses fine grained parallelism, so each individual is
represented by a processor. This creates certain problems when the number
of processors available is limited or when the individual’s fitness to reproduce
needs to be evaluated over the whole population. The second model, which
is actually used in this paper, maps an entire subpopulation to a processor.
Thus each subpopulation evolves independently towards a solution. This
allows each subpopulation to develop its own solution uniquely. Then, the
best individual of each subpopulation is propagated to other subpopulations,
according to the selected topology. This operation is called “migration”
(Rudolph, 1991). This model is called the Parallel Evolutionary Algorithm
(PEA). The topology of the proposed PEA is a ring, i.e., the best individuals
from each subpopulation are allowed to migrate to the next subpopulation
of the ring. This concept reduces the migration between the subpopulations
and consequently the messages between the processors. The migration of the
best individuals is controlled by the migration constant, ¢ € (0, 1). At each
iteration, a random number from the interval (0, 1) is uniformly chosen and
compared with the migration constant. If the migration constant is bigger,
then the best individuals of each subpopulation migrate and take the place
of a randomly selected individual (different from the best one) in the next
subpopulation; otherwise no migration is permitted. We have experimentally
found that a migration constant, ¢ = 0.1, is a good choice, since it allows

312 VASSILIS P. PLAGIANAKOS AND MICHAEL N. VRAHATIS

each subpopulation to evolve for some iterations before the migration phase
actually occur.

To apply Parallel DE (PDE) to neural network training with 3-bit integer
weights, we start with a specific number of subpopulations, each one initia-
lized with NP, N-dimensional integer weight vectors, and evolve them
over time. NP is fixed throughout the training process. All the weight
subpopulations are initialized with random integers from the interval [-3, 3],
following a uniform probability distribution. At each iteration, called gener-
ation, all the subpopulations are evolved independently in parallel, until a
migration phase is decided. After the migration of the best individuals, the
new subpopulations continue to evolve as before.

Let us now focus on a subpopulation. In each subpopulation, new weight
vectors are generated by combining weight vectors that are randomly chosen
from the population and the outcome is rounded to the nearest integer.
Moreover, we force the new vectors to be in the range [-3, 3]". This operation
in our context can be referred as mutation. The outcoming 3-bit integer weight
vectors are then mixed with another predetermined integer weight vector — the
target weight vector — and this operation can be called as recombination (see
Section 3.1). This operation yields the so-called trial weight vector, which
is an integer vector in the range [-3, 3]". The trial vector is accepted for the
next generation if and only if it reduces the value of the error function E. This
operation can be referred as selection.

A high-level description of the usage of the above mentioned operators is
given below (for one generation):

Step 1: Do for each weight_vector

Step 2: mutant_vector := MUTATION(weight_vector)
Step 3: trial_vector := RECOMBINATION(mutant_vector)
Step 4: If E(trial_vector) < E(weight_vector)

Step 5: weight_vector := trial_vector

Step 6: EndIf

Step 7: EndDo

To prevent a vector from surviving indefinitely, we employ the concept
of aging (Storn, 1999). To this end, each vector is randomly assigned a
maximum age, i.e., an integer from the interval [, 8], where « and B are
the minimum and the maximum possible age, respectively. At each iteration,
the age of each vector is increased by one, and if it exceeds its maximum age
then the individual “dies”. This individual is then replaced by another vector
randomly chosen from the current subpopulation. Note that it is desirable not
to eliminate the best individual of the subpopulation. We now briefly review
the two basic PDE variation operators used for integer weight FNN training.

PARALLEL EVOLUTIONARY TRAINING ALGORITHMS 313
3.1 Variation operators

The first PDE operator we consider is mutation. Specifically, for each weight
vector w,, i =1, ..., NP, where g denotes the current generation, a new
vector v;;, 41 (mutant vector) is generated according to one of the following

relations:

Vi = wp g (] —). 1)
ot = w0 u), @
Vi = w4 (wf —wp), 3)
ot = g (0 =) e () @
vi o= wet 4 p (w] —wP) +p(wp —wlt), 5)
where w" is the best member of the previous generation, ;. > 0 is a real

parameter, called mutation constant, which controls the amplification of the
difference between two weight vectors in such away to avoid the search to be
stagnated and

71,7‘2,1’3,1’46{1,2,...,i—1,i+1,...,NP},

are random integers mutually different and different from the running index i.
Obviously, the mutation operator results in a real weight vector. As our aim is
to maintain an integer weight population at each generation, each component
of the mutant weight vector is rounded to the nearest integer. Additionally, if
the mutant vector is not in the range [-3, 3]V, we take:

vl =sgn(,) - (Jvl,,| mod4),

where sgn is the well known triple valued sign function. Relation (1) is
similar to the intermediary recombination operator of ES, and relations (2)
and (3) derive from it. The remaining relations are modifications which can
be obtained by the combination of (1), (2) and (3). It is clear that more
such relations can be generated using the above ones as building blocks.
In (Plagianakos and Vrahatis, 1999; Plagianakos and Vrahatis, 2000), it has
been shown that the above relations can efficiently be used to train FNNs with
arbitrary as well as constrained integer weights.

To increase further the diversity of the rounded mutant weight vector, the
recombination operator is applied. Specifically, for each integer component
j(j=1,2,..., N) of the mutant weight vector v; +1» we randomly choose a
real number r from the interval [0, 1]. Then, we compare this number with p
(recombination constant), and if » < p we select, as the j-th component of the

trial vector u’ _ |, the corresponding component j of the mutant vector v;

g+’ +1°

314 VASSILIS P. PLAGIANAKOS AND MICHAEL N. VRAHATIS

Otherwise, we pick the j-th component of the integer target vector w,,. It

must be noted that the result of this operation is again a 3-bit integer vector.

4. Using threshold activation functions

The proposed class of algorithms does not need the activation function to
be differentiable and is suitable for training with threshold units (Plagi-
anakos and Vrahatis, 2000). In the first phase of our approach, the PDE
algorithms are used to train a neural network “off-line”, using sigmoid
activation functions, such as:

2

fikx) = m—l,
1

fZ('x) - 1—|—e_)“x’

AX
f3(x) = tanh =,

where X is the gain parameter. This seems to be a good practice since the
network is trained much faster with sigmoid functions. In the second phase
we alter the gain of the sigmoid function in such a way that allows a mapping
to a threshold unit network.

Specifically, when the inputs are correctly classified and the network error
is relatively small, the value of A is increased in the sequence (1, 10, 20,
30, 40, 50, co). Additional training might be necessary after each increase
of A. That justifies the additional iterations needed to train an FNN, using
only threshold activation functions. This procedure is analogous to taking
the limit of the sigmoid function as the gain parameter A goes to infinity.
Finally, the trained network uses only threshold activation functions and thus
the complexity of the hardware implementation is greatly reduced. If new
input data are introduced, training can be continued sequentially or in parallel
“on-chip”, using the proposed algorithms.

5. Experimental results

Three classical learning test problems — the eXclusive—~OR (XOR), the 3-Bit
Parity and the Encoder/Decoder — have been used for testing the functionality,
and parallel computer simulations have been developed to study the perfor-
mance of the PDE training algorithms. We call PDE1 the algorithm that uses
relation (1) as mutation operator, PDE2 the algorithm that uses relation (2),
and so on. For all the simulations bipolar input and output vectors have

PARALLEL EVOLUTIONARY TRAINING ALGORITHMS 315

been used. Tables 1, 3, 5 summarize the performance of the PDE algorithms
using different mutation rules when sigmoid activation functions are used.
Hyperbolic tangent activation functions in both the hidden and output layer
neurons have been used. In Tables 2, 4, 6 we exhibit the performance of
the PDE algorithms to the same test problems, when the training has been
performed as described in Section 4 and leads to a trained network that uses
only threshold activation functions.

For each problem we have conducted 100 simulations and the reported
parameters in the following tables for simulations that have reached solution
are: min the minimum number, mean the mean value, max the maximum
number, and s.d. the standard deviation of error function evaluations. When
an algorithm fails to converge, it is considered that it fails to train the FNN and
its error function evaluations are not included in the statistical analysis of the
algorithms. We must note here that a key feature of the PDE algorithms is that
only error function values are needed. No gradient information is required, so
there is no need of backward passes. For the test problems considered, we
made no effort to tune the mutation, recombination and migration constants,
W, p and ¢ respectively, to obtain optimal or at least nearly optimal conver-
gence speed. Default fixed values (u = 0.5, p = 0.7 and ¢ = 0.1) have
been used instead. Smaller values of ¢ can further reduce the messages
between the processors, but may result in rare and inefficient migrations. It
is obvious that one can try to fine-tune the u, p, ¢ and NP parameters to
achieve better results, i.e., less error function evaluations and/or exhibit higher
success rates. The weight subpopulations have been initialized with random
integers from the interval [-3, 3] and the total population size 3NP has been
divided equally to 3 subpopulations, each having NP individuals. Regarding
the total population size, experimental results have shown that a good choice
is 2N < 3NP < 4N. It is obvious that the exploitation of the weight space
is more effective for large values of NP, but sometimes more error function
evaluations are required. On the other hand, small values of NP render the
algorithm inefficient and more generations are required to converge to the
minimum.

5.1 The eXclusive—OR problem

The first test problem we will consider is the eXclusive-OR (XOR) Boolean
function problem, which historically has been considered as a good test of a
network model and learning algorithm. A 2-2-1 FNN (six weights and three
biases, dimension of the problem N = 9) has been used for these simulations
and the training has been stopped when the value of the error function E, has
been E < 0.1. The size of each subpopulation was NP = 10. The low and high
bound of the age of each individual, were o« = 20 and B = 30 respectively. A

316 VASSILIS P. PLAGIANAKOS AND MICHAEL N. VRAHATIS

typical 3-bit weight vector after the end of the training process is w = (3, 3,
2,3,2,-2,1,-3,-2) and the corresponding value of the error function is E =
0.0221. The six first components of the above vector are the weights and the
remaining three are the biases. Tables 1 and 2 exhibit the simulation results
when sigmoid and threshold activation functions were used.

Table 1. Results of simulations for the XOR problem using
sigmoid activation functions.

Algorithm min mean max s.d. Success
PDEI1 40 2384 750 1363 100%
PDE2 130 720.1 1840 352.6 100%
PDE3 80 3422 1090 186.1 100%
PDE4 50 395.6 1080 218.5 100%
PDES 140 1209.7 3360 661.5 100%

Table 2. Results of simulations for the XOR problem using
threshold activation functions.

Algorithm min mean max s.d. Success
PDEI 360 5904 1150 1595 100%
PDE2 420 1197.6 5340 6140 100%
PDE3 390 651.3 1250 177.5 100%
PDE4 380 7469 1480 225.6 100%
PDES 490 1473.8 3790 5862 100%

5.2 The 3-bit parity problem

The second test problem is the 3-bit parity problem, which can be considered
as a generalized XOR problem but is more difficult. The task is to train
a neural network to produce the sum, mod 2, of 3 binary inputs — also
known as computing the “odd parity” function. We use a 3-3—1 FNN (twelve
weights and four biases, dimension of the problem N = 16) in order to train
the 3-Bit Parity problem. Each subpopulation consists of 11 weight vectors.
The maximum age of each individual has been randomly selected from the
interval [«, B8], where o = 50 and § = 100. A typical 3-bit weight vector after
the end of the training process is w = (3, 3, 2, 3, -1, -1, 2, -2, -2, -3, 3, -3,
1,0, 1, 1) and the corresponding value of the error function is E = 0.0257.
Tables 3 and 4 illustrate the results for this problem.

PARALLEL EVOLUTIONARY TRAINING ALGORITHMS 317

Table 3. Results of simulations for the 3-bit parity problem
using sigmoid activation functions.

Algorithm min mean max s.d. Success
PDE1 275 12729 3949 619.1 82%
PDE2 1353 3562.7 8525 1367.8 86%
PDE3 198 1473.0 6457 8733 91%
PDE4 264 22273 5104 903.5 99%
PDES5 1430 4829.6 9306 1598.2 91%

Table 4. Results of simulations for the 3-bit parity problem
using threshold activation functions.

Algorithm min mean max s.d. Success
PDEI 561 30223 12078 35232 100%
PDE2 1562 52223 25377 37577 100%
PDE3 660 2238.8 11847 2100.7 100%
PDE4 1419 3147.7 11517 17424 100%
PDES 2387 6868.2 35310 5473.2 100%

5.3 4-2—4 encoder/decoder

The last test problem we considered is the 4-2—4 encoder/decoder (sixteen
weights and six biases, dimension of the problem N = 22). The network
is presented with 4 distinct input patterns, each having only one bit turned
on. The task is to duplicate the input pattern in the output units. Since all
information must flow through the hidden units, the network must develop
a unique encoding for each of the 4 patterns in the 2 hidden units and a
set of connection weights performing the encoding and decoding operations.
This particular encoding is considered to be “tight”, since the number of the
hidden nodes equals the base 2 logarithm of the input nodes (log, 4 = 2). This
problem has been selected because it is quite close to real world pattern clas-
sification tasks, where small changes in the input pattern cause small changes
in the output pattern. The size of each subpopulation was NP = 20. The low
and high bound of the age of each individual, were @ = 50 and g = 200
respectively. A typical 3-bit weight vector is w = (0, 2, -2, 3, -3, -3, 2, 3,
-3,-3,2,-3,-2,2,3,2,1,0,-3, -3, -2, -2) and the corresponding value of
the error function is E = 0.0459. Simulation results are exhibited in Tables 5
and 6.

318 VASSILIS P. PLAGIANAKOS AND MICHAEL N. VRAHATIS

Table 5. Results for the encoder/decoder problem using sigmoid
activation functions.

Algorithm min mean max s.d. Success
PDE1 330 1614.8 4686 868.5 100%
PDE2 3960 8160.6 13376 2160.5 100%
PDE3 308 1428.2 4004 660.9 100%
PDE4 660 4540.5 8514 1505.4 100%
PDES 7260 131109 20636 30924 100%

Table 6. Results for the encoder/decoder problem using
threshold activation functions.

Algorithm min mean max s.d. Success
PDE1 990 2520.8 23260 23264 100%
PDE2 4796 87249 16588 2264.6 100%
PDE3 1034 2104.5 4664 680.0 100%
PDE4 1870 4778.1 9724 1278.0 100%
PDES5 6072 14070.3 20746 27954 100%

5.4 Monk’s problem and generalization results

In addition to training speed and efficiency, we have also evaluated the
generalization performance of the PDE algorithms. To this end, we have
tested the best of them (PDE3 and PDE4) on the MONK’s problems. These
are difficult binary classification tasks which have been used for comparing
the generalization performance of learning algorithms. These problems rely
on the artificial robot domain, in which robots are described by six different
attributes. Each problem is given by a logical description of the class, as
shown below:

MONK-1: (Attributel = Attribute2) OR (Attribute5 = 1). This problem is
in standard Disjunctive Normal Form (DNF). 124 examples have been
selected randomly from the data set for training, while the remaining
308 have been used for the generalization testing. There are no misclas-
sifications.

MONK-2: (Only two attributes = 1). This problem is similar to the parity
problem mentioned above and is difficult to describe in DNF or

PARALLEL EVOLUTIONARY TRAINING ALGORITHMS 319

Conjunctive Normal Form (CNF). 169 examples have been randomly
selected from the data set for training, while the rest have been used for
testing. Again, there is no noise.

MONK-3: (Attribute5 = 3 AND Attribute4 = 1) OR (Attribute5 = 4 AND
Attribute? # 3) with added noise. This problem is also in DNF but with
5% deliberate misclassifications in the training set, which consists of
122 examples. The remaining 310 examples have been used for testing.

Each one of the six attributes can have one of 3, 3, 2, 3, 4, and 2 values,
respectively, which results 432 possible combinations that constitute the total
data set (see (Thrun et al., 1991), for details). Finally, each possible value for
every attribute is assigned a single bipolar input, resulting 17 inputs.

We have tested PDE3 and PDE4 against the BackPropagation (BP), the
BackPropagation with Weight Decay (BPWD), and the Cascade Correla-
tion (CC) algorithms. In Table 7 we exhibit the comparative results on the
MONK’s problems.

It is clear from Table 7 that the PDE algorithms generate FNNs, which are
at least as capable as the best generated by real-weight learning algorithms.
Those networks, in all the MONK’s problems, seem to have learned the
concept embedded in the training data. This is more evident in MONK-3,
where there are 5% deliberate misclassifications and the networks generated
by BP, BPWD, and CC seem to fail to capture the concept embedded in the
training data, and fit to the noise instead.

Table 7. Comparison of generalization performance
on the MONK'’s problems.

Algorithm MONK-1 MONK-2 MONK-3

BP 100% 100% 93.1%
BPWD 100% 100% 97.2%
CC 100% 100% 97.2%
PDE3 100% 100% 100%
PDE4 100% 100% 100%

The topology of the trained networks is shown in Table 8. The dimen-
sion for each of the MONK’s problems is N =77, N =77, and N = 58,
respectively. It is known that the best generalizers are neither too complex
nor too simple; they exactly match the complexity of the embedded in the
training data concept. We think that the reason why our algorithms, in general,
need a bigger network in order to generate FNNs with good generalization
capabilities is that more integers than real numbers are needed to match the
complexity of the given problem (Khan, 1996).

320 VASSILIS P. PLAGIANAKOS AND MICHAEL N. VRAHATIS

Table 8. Network configuration for the MONK’s problems.

Algorithm MONK-1 MONK-2 MONK-3

BP 17:3:1 17:2:1 17:4:1
BPWD 17:2:1 17:2:1 17:2:1
CcC 17:1:1 17:1:1 17:3:1
PDE3 17:4:1 17:4:1 17:3:1
PDE4 17:4:1 17:4:1 17:3:1

6. Concluding remarks and discussion

In this paper, Parallel Differential Evolution algorithms for 3-bit integer
weight neural networks with threshold activation functions are studied. This
is an interesting kind of neural networks, because the amount of memory
required for the storage of their weights is significantly reduced compared to
networks with real weights and non-linear (sigmoid) activation functions and
the digital arithmetic operations required are simplified. Moreover, this kind
of networks are based on neurons whose output can be in a particular state
and are important, since they can handle many of the inherently binary tasks
that neural networks are used for. Their internal representations are clearly
interpretable, they are computationally simpler to understand than networks
with sigmoid units and provide a starting point for the study of the neural
network properties (Boutsinas and Vrahatis, 2001; Magoulas et al., 1997).
Furthermore, the training procedure can continue on-chip, if the environment
has changed.

Customized differential evolution operators have been applied on
subpopulations of 3-bit integer weight vectors, in order to evolve them over
time in parallel and explore the constrained weight space as wide as possible.
The proposed algorithms require only forward passes resulting in the value
of the error function, since the hardware implementation of the backward
passes, which compute its gradient is more difficult. The performance of
these algorithms has been examined and simulation results from some clas-
sical test problems have been presented. The results suggest that the PDE
algorithms are promising, effective and suitable for integer weight training,
when sigmoid or threshold activation functions are used. The success rates of
some of these strategies are better than other well-known continuous weight
training algorithm that require the gradient of the error function, such as
BackPropagation (BP), adaptive BP or BP with momentum. Summarizing,
we have concluded that the PDE3 and PDE4 algorithms seem to be the best
choices for the problems tested. On the other hand, algorithm PDE]1, based
on a simple strategy, has performed remarkably well.

PARALLEL EVOLUTIONARY TRAINING ALGORITHMS 321

Acknowledgments

The authors wish to thank Prof. Hans-Paul Schwefel for his very constructive
comments in the early draft of this paper. This material was partially
supported by the Deutsche Forschungsgemeinschaft (DFG) as a part of the
collaborative research center “Computational Intelligence” (SFB 531).

Part of this work was done while the author was at the Department
of Computer Science XI, University of Dortmund, D-44221 Dortmund,
Germany.

References

Beyer H-G and Schwefel H-P (2002) Evolution Strategies: A comprehensive introduction.
Natural Computing (to appear)

Boutsinas B and Vrahatis MN (2001) Artificial nonmonotonic neural networks. Artificial
Intelligence 132: 1-38

Corwin EM, Logar AM and Oldham WIJB (1994) An Iterative Method for Training Multilayer
Networks with Threshold Functions. IEEE Transactions on Neural Networks 5: 507-508

Gall DA (1996) A practical multifactor optimization criterion. In: Lavi A and Vogl TP (eds)
Recent Advances in Optimization Techniques, pp. 369-386. Wiley, New York

Higuchi T, Niwa T, Tanaka T, Iba H, Garis H and Furuya T (1992) Evolvable hardware with
genetic learning. Simulation of Adaptive Behavior, MIT Press

Higuchi T, Iba H and Manderick B (1994) Evolvable hardware with genetic learning. In:
Kitano H (ed) Massively Parallel Artificial Intelligence. MIT Press

Kelahan RC and Gaddy JL (1978) Application of the adaptive random search to discrete and
mixed integer optimization. International Journal for Numerical Methods in Engineering
12: 289-298

Khan AH (1996) Feedforward Neural Networks with Constrained Weights. Ph.D. Thesis,
Univ. of Warwick, Dept. of Engineering

Khan AH and Hines EL (1994) Integer-weight neural nets. Electronics Letters 30: 1237-1238

Magoulas GD, Vrahatis MN and Androulakis GS (1997) Effective back-propagation with
variable stepsize. Neural Networks 10: 69-82

Magoulas GD, Vrahatis MN, Grapsa TN and Androulakis GS (1997) A training method for
discrete multilayer neural networks. In: Ellacott SW, Mason JC and Anderson 1J (eds)
Mathematics of Neural Networks, Models, Algorithms and Applications, pp. 250-254.
Kluwer Academic Publishers

Michalewicz Z and Fogel DB (2000) How to solve it: Modern Heuristics. Springer

Plagianakos VP and Vrahatis MN (1999) Training Neural Networks with 3-bit Integer
Weights. In: Banzhaf W, Daida J, Eiben AE, Garzon MH, Honavar V, Jakiela M and
Smith RE (eds) Proceedings of Genetic and Evolutionary Computation Conference
(GECCO0’99), pp. 910-915. Morgan Kaufmann

Plagianakos VP and Vrahatis MN (2000) Training Neural Networks with Threshold Activation
Functions and Constrained Integer Weights. Proceedings of the IEEE International Joint
Conference on Neural Networks (IJCNN’2000). Como, Italy

322 VASSILIS P. PLAGIANAKOS AND MICHAEL N. VRAHATIS

Rudolph G (1991) Global optimization by means of distributed evolution strategies. In:
Schwefel H-P and Ménner R (eds) Parallel problem solving from nature, Lecture Notes in
Computer Science, 496, pp. 209-213. Springer, Berlin

Rudolph G (1994) An evolutionary algorithm for integer programming. In: Davidor Y,
Schwefel H-P and Ménner R (eds) Parallel Problem Solving from Nature, Lecture Notes
in Computer Science, 866, pp. 139-148. Springer-Verlag, Berlin

Rumelhart DE, Hinton GE and Williams RJ (1986) Learning internal representations by error
propagation. In: Rumelhart DE and McClelland JL (eds) Parallel Distributed Processing:
Explorations in the Microstructure of Cognition, 1, pp. 318-362. MIT Press, Cambridge,
Massachusetts

Schwefel H-P (1995) Evolution and Optimum Seeking. John Wiley & Sons, Inc., New York

Storn R (1999) System Design by Constraint Adaptation and Differential Evolution. IEEE
Transactions on Evolutionary Computation 3: 22-34

Storn R and Price K (1997) Differential Evolution — A Simple and Efficient Heuristic for
Global Optimization over Continuous spaces. Journal of Global Optimization 11: 341-359

Thrun SB, Bala J, Bloedorn E, Bratko I, Cestnik B, Cheng J, De Jong K, Dzeroski S, Fahlman
SE, Fisher D, Hamann R, Kaufmann K, Keller S, Kononenko I, Kreuziger J, Michalski
RS, Mitchell T, Pachowicz P, Reich Y, Vafaie H, Van de Welde W, Wenzel W, Wnek J and
Zhang J (1991) The MONK’s Problems: A performance comparison of different learning
algorithms. Technical Report, Carnegie Mellon University, CMU-CS-91-197

Yao X and Higuchi T (1999) Promises and Challenges of Evolvable Hardware. Systems, Man,
and Cybernetics Part C: Applications and Reviews 29: 87-97

