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We consider methods based on the topological degree theory to compute periodic orbits of area
preserving maps. Numerical approximations to the Kronecker integral give the number of fixed
points of the map provided that the integration step is “small enough.” Since in any neighborhood
of a fixed point the map gets four different combinations of its algebraic signs we use points on a
lattice to detect the candidate fixed points by selecting boxes whose corners show all combinations
of signs. This method and the Kronecker integral can be applied to bounded continuous maps such
as the beam—beam map. On the other hand, they cannot be applied to maps defined on the torus,
such as the standard map which has discontinuity curves propagating by iteration. Although the use
of the characteristic bisection method is, in some cases, unable to detect all fixed points up to a given
order, their distribution gives us a clear picture of the dynamics of the map20@3 American
Institute of Physics.[DOI: 10.1063/1.1539011

In this paper we discuss the problem of localization of the complex plane. In particular the fixed point is stable
periodic orbits in two-dimensional mappings. We present when the corresponding eigenvalues lie on the unit circle,
numerical methods for computing the total number of  hyperbolic when the eigenvalues have positive real values,
periodic orbits of given period in bounded regions of the  hyperbolic with reflection when the eigenvalues have nega-
phase space and for locating their position. All these tive real values and parabolic when they are both 1-ar
methods are based on the topological degree theory and from a numerical point of view we decided to label@a-
their advantages are discussed in detail. The effectiveness bolic those fixed points which give Jacobian’s eigenvalues
of the characteristic bisection method, for locating high  very close to either 1 or-1 (by less than a predefined toler-
order periodic orbits is shown by applying it to different ance we fixed as 1¢). The different stability types of fixed
mappings on a plane and on a torus. For these mappings points in maps, as well as the possible transitions between
periodic orbits of order up to 40 were computed. these types, have been studied in detail in Refs. 1 and 2.
The possibility of finding the fixed points up to a given
period is dynamically relevant and computationally challeng-
I. INTRODUCTION ing. Various methods exist to localize a periodic orbit once
the region where it is located is known with a good accuracy,
Two-dimensional2D) mappings are used to model dy- such as Newton’s method and related classes of algo-
namical systems with two degrees of freedom, conservativeithms3“ However, the determination of all or almost all the
or dissipative depending on the@rea-preservingor area-  periodic orbits up to a given period is a long and often im-
contracting character. Their dynamical properties critically possible task. Analytic expressions for the periodic orbits are
depend on the distribution and the naturepefiodic orbits known only for very low periods and efficient numerical
Any point of a periodic orbit of periog is afixed pointof  methods are available only if the map can be decomposed
the mapM iteratedp times (MP). A fixed point of M*P is into involutions. For the Fieon map the fixed points up to
sometimes called fixed point dil of order p. The fixed period 4 were found analyticafiyand for the standard map
points of area preserving maps are classifieeligstic, para-  the involution method allowed the detection of periodic or-
bolic, hyperbolicandhyperbolic with reflectionaccording to  bits of very long periods approaching the golden invariant
how the eigenvalues of the Jacobian matrix are laid out orurve®
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The traditional iterative schemes with quadratic conver-every set of overlapping boxes. By increasmdgrom 1 ton
gence such as Newton’s method and related classes of algtiie number of candidate fixed points approaches a constant
rithms are frequently used. These methods converge rapidiyalue and the right number of fixed points is recovered as
for any initial guess in a region where a single fixed point isn—~. The Kronecker integral gives the exact number of
present. This is rarely the case since the fixed points form fixed points in a given domain, but the numerical accuracy
dense set. Moreover if the ordeis not a prime number, i.e., depends on the distribution of fixed points and their distance
p is of the formp= plil- . -pkmm, the search of the fixed points from the boundary. If a fixed point approaches the boundary
of order p provides also all the fixed points of order the mesh size should be much smaller than such a distance. A
P1,....om. This problem could be solved using deflation SPecial care has to be taken for maps defined on the torus
methods, but their exponential growth wiphentails serious Since discontinuity curves appear while the theorems for the
difficulties. These methods are affected by errors due to théD hold in any subset where the map™ is continuous.
large values the map can assume in a neighborhood of hystenger's method for computing the TD in a dontéif is
perbolic points or due to poor regularity of the partial deriva-affected by the presence of fixed points near the border of the
tives. domain in a similar way.

As an alternative the use of methods based on the ap- e have studied three area preserving maps: the beam-—
plication of topological degree(TD) theory has been pro- beam mapBM)***and the Heon quadratic magHMm),>**

i 2 30 :
posed’ Degree theofyand its application to solve systems POth deflnezd ork®, and the standard maSM)™ defined on
of nonlinear equatioié has been extensively considered the torusT”; among these we made a deeper analysis of

in the mathematical literature starting from the works of(BM) and(SM). In the first case, where the map is continu-
Kronecker® Picard®! and Hadamard untii recent ©us(holomorphig the color mapshows no obvious relation

13-16The TD gives a criterion to insure the existence ofbetween the shape of the four colors domains close to the

times: . . . ;
fixed points in a bounded domain and the Kroneckerf')fed point and the geometry of nearby orbits. Indeed, linear-

integraf' allows to determine their numb& The actual 12iNg M"” in a small neighborhood of the fixed point, the

localization can be reached using ttearacteristic bisection Poundaries of the four colors domains are two straight lines
method-17:18 and their angle does not exhibit a simple dependence on the

These methods prove to be efficient in localizing the@ngle between the stable and unstable manifolds or on the

fixed points of 2D and even 4D mdp$?°once a good ini- 'atlio between the island’s semiaxis. _ _
tial guess is given by direct inspection of the orbits as itis 1 ne Possibility of small angles for chains of large islands
often the case with graphical interactive programs for map§hows that an automatic detection algorithm based on the

of R? (e.g., the program GIOTT®). However the localiza- €valuation of the signs ok*® on a grid followed by the
tion of all or at least a large fraction of the fixed points of g Characteristic bisection method can miss some fixed points.

given order in a compact region requires well tailored strat!n the case of the standard map the discontinuity curves of

egies. The associated dynamical information is relevant be2ropagate when the map is iterated and limit the use of the
cause to know the location and nature of the fixed pointd<ronecker integral and theolor mapto domains not inter-

amounts to knowing the properties of the mapping. Anothesected by these lines. In this case the characteristic bisection
possibility is to examine directly the bifurcations occurring Method can be applied to the whole plane, but we have to
when a parameter is vari@@?3An alternative is the discreti- check that the computed fixed points correspond to real pe-

zation of the map replacing the original one with a permuta10dic orbits of the system. _ o
tion map on a latticé* Even though the choice of a lattice to initialize the char-

In this paper, we propose to use the characteristic bise@cterist.ic bisection .met.hod on the squaresiwhose. corners
tion method'1"8t0 compute the periodic orbits up to a given have different combination of sigrisorresponding to differ-

order in a compact region. This method exploits TD theory toNt olors does not detect all the fixed points no matter how
provide a criterion for the existence of fixed points. StartingSMall is the lattice spacing, the picture which emerges, espe-

from a box, where the TD is-1, and refining it, a fixed point cially for the standard map, is dynamically meanindfte

is localized with the desired accuracy. This method has beefliScontinuity curves do not affect the resutbne of the key

also applied successfully to Hamiltonian systems of 2 de@dvantages of the characteristic bisection method is that the

grees of freedord® 2’ The detection of all fixed points of computable information it requires consists on the algebraic

orderp in a compact domain is a hard task as shown by Signs of the components of the mapping. Thus it is not af-

simple topological argument. Assigning to any point a COIOI’TeCted neither by the mapping evaluations taking large values

corresponding to the signs of the componentsvbP—1, in neighborhoods of un.sta'blle periqdic orb?ts nor by precision
wherel is the identity, we obtain aolor-map A compact set losses until Fhe last significant digit. ThIS. means that the
is painted with four colors so, when four distinct colors ap-Method requires the knowledge ofily the sign of various
pear in a region a simple fixed point exists at the intersectiofu@ntities and not their exact values.

of their boundaries. To set up a numerical strategy we con-
sider a lattice obtained by partitioning the unit square with”' THE TOPOLOGICAL DEGREE

cells of sizee=2"". Among all the boxes of sidme, con- We first consider the problem of detecting the zeroes of
sisting ofm? adjacent cells, we select those which have lat-a function F=(f,,f,) of class C?> on the closure of a
tice points of four distinct colors as candidates to possess bounded domairDC R? we assume to be the square of side
fixed point in their interior, retaining at the end only one for 2L. The function is defined by
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X,:fl(xay)! yI:fZ(Xiy)- (1)

The search of the fixed points of ordeof a mapM amounts
to searching the zeroes Bf= M°P—1, wherel is the identity
map. The curvesF;={(x,y)eD:fi(x,y)=0} and F,

={(x,y) e D:f»(x,y) =0} split an open seD into the open
setsD,;. andD,. wheref; andf, have the quoted signs

signf,(x,y)=*1 for (x,y)eD;~,

signf,(x,y)==*1 for (X,y)e D, . 2
Consider the intersections
D,.=D14+NDy., D._=D1.ND,_,
(€©))

'D,+=Dl,ﬂ'D2+, 'D,,I'Dl,ﬂ'Dz,,

where the functiorF=(f,,f,) has a certain combination of
signs forf, andf,. The zero off is the intersection ofF;
and ¥, which are the common boundaries®f, andD; _,
D,, andD,_, respectively.

Any neighborhood of a simple zefwhose determinant

Polymilis et al.

The integration step has to be chosen of orelér order to

keep the error constant whenr-0. Indeed letting\, be the

integer part ofe” ! the integral(6) is approximated by using

the rectangle rule with¥_+ 1 points in the interval—1,1]
1 o1 1 2 1

T 2w, K27, 2, T N 7

€
=0.50187 —.
T

The same analysis applies to a generic map when the zero
approaches the boundary. Indeed the leading contribution is
obtained by linearizing the map around the zego. The
integrand has the same structure A& (B(x—Xx, )2+ €?),
whereA andB are some constants, and the integration step
must still be proportional t@. Stenger’'s method is affected
by a similar error. A more detailed analysis is given in Ap-
pendix B.

of the corresponding Jacobian matrix is different from zero B. Number of zeroes

of F has a nonempty intersection with the four domains

D1.D;_D,,D,_. Coloring each domain with a different

color, four different colors are found in any neighborhood of

the zero. The TBis defined as the differencEF,D)=r,
—r _ between the number, of zeroes with dei->0 andr _

with detJ-<0 where def is the determinant of the Jacobian

matrix J= of F, and is given by the Kronecker integtaf

1 fodf,—fodf,

TR D=5 25 12 @

re—r_,

b(D)

In order to evaluate the number of zeroes of the 2D map
defined in(1), one has to introduce the extended functtgn
defined by

Fo {x =f1(xy), 7' =zdetJe(x,y)},

0
whereJ denotes the Jacobian of4(,f,). The functionF
has a Jacobian with non-negative determinant equal to
[detJ=(x,y)]*> and the same zeroes Bon thex, y plane and
consequently its TD 7(F,,D,), where D,=D

y'=f(xy),

where the integral is computed counterclockwise on thex[—1y,y], >0, gives the number of simple zeroes of the

boundaryb(D) of the given regiorD which, in our case, is
a closed path.

Another way to compute the TD is Stenger’s metfcd
which consists of finding the signs &f, f, on a fine grid on
the boundary oD (see Appendix B

A. Error estimate

The contour integral4) can be evaluated numerically in
order to obtain the TD. The accuracy depends on the distance

function F.

C. The Kronecker integral

The number of zeros can be evaluated by computing the
TD of the 3D functionF, (7) via the Kronecker integral
which in the 3D case becomes

7F, D=5 |

(Pydx;+P,dxy)
b(D)

e of the closest zero from the boundary. The integration step

8 cannot exceed to have an error of orde¢ at least. To

illustrate this we consider a simple example choosing two

linear functionsf;=x, f,=y—1+ e and a domairD defined
by |x|<1, |y|<1. From(4) we find

1

™

1

1
17 F,D)= arctang + arctanz_—‘E +arctarie)

+arctari2—e¢)

. ©)

Recalling that arctamj+arctank Y)=/2 sign(x) we have
7=1 if 0<e<2 and fore—0" and 7=0 if e<0 and fore

—07. The first term within the brackets comes from the

upper side of the integration path

| 1 fl € q _1 . 1 1 €
T om )yl A=

(6)

LY ff Q dx dx;
2m ] Jp(fi+15+923%)%

®

with

oty
lﬁXi 207Xi Y

(B (12+ 12+ 2092

P, i=1,.2,
Jf,
%,
Jf,
%,
PN

J —
9%y

afq
9y
af,
9y
43

9%,

fa

—|f,

whereJ=detJg.
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1'1<0 f,=0 ] x’ X
{3 ]-malo”
BM:| /| =R(w) i1

where R(w) is an orthogonal 22 matrix representing a
clockwise rotation by angle72». The true beam—beam map
has (1- e*"z)/x but we consider this modified version since

it has very similar properties and becomes thenéte map

FIG. 1. (Color onling Sketch of the domains wherfg, f, have the indi-  for x—0. SM is defined on the torys- %,%]x[_%,%] accord-
cated combination of signs.

ing to
K 1
X' =x+y— z—sin 27X moc< 1,—) ,
D. The color map SM: 2m 2
' 1
One can use aolor mapto inspect the geometry of the y' =y— Zisin 21X mo% 1,5),
a

2D mapM and to locate the zeroes. Choosing a regular lat-

tice of 2"x 2" cells of sidee=2""x2L on the squarex|

<L, |y|<L, we associate to each point a color chosen ac- x mod 1,5)=x mod 1+[
cording to the signs of the functiorfg, f,: red for (+,+),

green for(+,—), yellow for (—,+), blue for(—,—) as shown For the beam—beam map with=0.21 we have com-

in Fig. 1. o , puted thecolor mapfor fixed points of periogh=>5 (see Fig.
The plot of thecolor mapon the lattice gives an imme- 2).

diate insight of where the zeroes are. We label ky)(the
lattice points whose coordinates are=—L+ie, y=L
—je, withi,j=0,...,2", and byc(i,j) the box of sideme

-1 if xmod1>4, ©

1 if xmodi1<— 3.

We have searched for the fixed points in boxes of in-
creasing sizen=2 and the results obtained fon=7 are
' i ' ' Lo also shown in Fig. Zright) where the orbits of the map are
whose vertices aré\=(i,j), B=(i+m,j), C=(,.j+m),  shown for comparison. The results for the total numhgr

D=(i+m,j+m). A simple algorithm allows to detect the o fixeq points of period 5 using the algorithm described in
boxesc,(i,j) whose vertices have four distinct colors. Thesey,q preceding section are the following:

boxes are candidates to have a zero in their interior. To detect

the zeroes of the map up to an accuraayne should test its

signs at the interior points of each bax(i,j), sincethe 1w 2 3 4 5 6 7 8 9 10
presence of different signs at the vertices of a box is neither
necessary nor sufficient for the presence of a zero in its iﬁ/-\[5
terior. Considering instead the boxgg, with 2<m=n, we There is no evident relation between the size of the islands

check again the presence of four distinct colors at all the . . .
lattice points within these boxes. For fixadwe scan all the and the angle formed by the boundaries of the intersecting

boxes ¢, (i,j) with i,j=0,..2—m+1 selecting those regions where f(;,f,) have given signs. When this angle is

: : o very small as for the top left island of Fig. 2, the simeof
which satisfy the above four-colors criterion. The boxes : . )

. . o the box has to be increased considerably in order to detect
cm(i,j) overlap and the accuracy in the localization of Zeroes, -« o point. In particular, fom<7 one elliptic fixed
is the box sizeme. As a consequence among all the boxes_ ) C ' ) .

) . o point of the outer chain is not detect&iyht panel of Fig. 2
which satisfy the four-colors criterion we select the box For completeness we report in Fig, 3 the sarolr-map
Cn(i,]) discarding all the overlapping boxesy(i’,j’), analysis for the HM with the same value of the pattern is

mzer:umzﬁ(r ;;Hfjo u_rJ |2:§Ig]r; 1632/0'\[/];:;&15';:]9“ gg)? 1(Ito;1 simpler with respect to BM, allowing an easy evaluation of
PPINg DOXER1.])  the period 5 fixed points.

reaches a constant value provided that the distance of zeroes We have also examined the behavior of the standard map

is bigger tha_mne. Of course in the ideal limin— the for a valuex/27=0.9 at which a very rich structure is present
exact result is recovered. ) . .
because we are approaching the global chaotic transition oc-
curring when the last invariant curve breaks @at/27
Ill. EIXED POINTS ~0.97°% The color mapis given_in I.:ig..4 for the third it(_arate
and the phase plot of the orbits is given for comparison. In
Given a mapM the periodic points of periog are fixed this case thecolor map gives the fixed points of order 3
points of M°P and the zeroes of the map correctly and also some other four-color crossing which does
E— M| not correspond to fixed points of the same period. Indeed
' they are located exactly on the third iterate of a discontinuity
We have considered the HM, BM, and SM maps which arecurve where the two components of the map change sign due
respectively, unbounded di?, bounded orR? and defined to the modulus operation. The discontinuity curves and their
as an application of the torus into itself. Their explicit iterated images cause problems in the application of methods
expressions are for computing the TD(see Appendix € When the map is

12 24 29 30 30 30 31 31 31 exadl
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FIG. 2. (Color) Beam—beam map fap=0.21: color map for p=5 iterations of the map, computed on a square lattice"of 2" points withn=9 (left);
phase plot of the mafight): the red circles denote the position of the fixed points found with initial guesses taken in boxesnoé sith e=2""andm=7.

iterated these discontinuity curves are also iterated and thehis number is obtained within 1% error using a repeated
direct application of the TD method gives a wrong result.four points Gauss integration with just 1@00 points.
The number\, of fixed points of periodp has also been \when the linear frequency i®=0.14 many periodic orbits
evaluated by computing the TD of the 3D functién (7)  of period 8, 9, 15 are present, as can be seen in Fig. 5.
via the Kronecker integral8). This integral has been evalu- Choosingp=8 andL=5 requires a rather small number of

ated numerically apd gives accurate results if the map i fid points on the boundaryN(=2100) to reach the correct
bounded and continuous. The beam-beam map has this

; 5 value Ng=33=1+2X8+2X8 whereas the correct value
property for every compact domaiPC R“. The standard .
map has discontinuity curves, the mte map is unbounded. Ng=387=1+2x9+2x9 for p=9 is reached much sooner.
Due to this last property the TD cannot be computed with thd" POth cases there are two chains of fixed points, bupfor
same accuracy as the BM and for this reason we shall ng 9 they both have significantly big stability basins, while
longer analyze the HM in the rest of the paper, although thdor p=8 one of them is very thin and embedded in a region
characteristic bisection method works fine for the HM too.of the phase space almost entirely filled by “invariant
For the beam—beam map considered in Fig. 2 whet€©.21  curves.” For higher values op the computation becomes
andL =2 the exact number of period five fixed points is 31. extremely time consuming.

X X

FIG. 3. (Color) Henon map forw=0.21:color map for p=5 iterations of the map, computed on a square lattice’af 2" points withn=9 (left); phase plot
of the map(right): the red circles denote the position of the fixed points found with initial guesses taken in boxes mksizdth e=2"" andm=7.
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FIG. 4. (Colon Standard map witl/277=0.9: color map for p= 3 iterations of the map, computed on a square lattice'sf2" points withn=9 (left); phase

plot of the map(right); the red circles denote the position of the fixed points found with initial guesses taken in boxesmésidth e=2"" andm=7; the

red squares mark the position of two evident four-color crossings indlee mapwhich do not correspond to period 3 fixed points but rather to period 4 fixed
points lying just on the third iterate of a discontinuity curve.

The characteristic bisection method Another approach consists in applying the characteristic

The TD method cannot be used directly to locate thePiSection method to all the cells,(i,j) of a lattice, where
fixed points of a map. When the boundedness and continuiti'® topological degree ig=:=x1. Since the computational
conditions occur the Kronecker integral allows to computeC0St Of an accurate evaluation Bis high, it is more conve-
the number of fixed points in a given domain provided thathient to check whether or not theh iterated of the cell’'s
the integration step is small enougsmaller than the dis- center through the map comes back inside the cell and only
tance of fixed points from the boundary and from eachwhen this happens one tries to apply the characteristic bisec-
othep; the required evaluation of the derivativesMfP can  tion method to these “candidate” cells. To speed up consid-
be cumbersome and numerically expensive for lgsg&he  erably one can restrict further the characteristic bisection
color-mapmethod is a simple algorithm to have a first guessmethod only to cells which are characteristic polyhedha
which can be refined by using the characteristic bisectiovertices have four distinct combinations of signs or cglors
method. This procedure misses some fixed points and their num-

-4 g H 4 ;
-4 X 4 -4 X 4

FIG. 5. (Color Fixed points up to ordep= 40 for the BM map with linear frequenay=0.14 (left) computed on a lattice with 106QL000 grid points. The
elliptic fixed points are blue and the hyperbolic points are red. Phase plot for the santaghgpwith fixed points determined through a visual initial guess.
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0.5

FIG. 6. (Color) Fixed points up to ordgn= 40 for the standard map witki277=0.9 (left) computed on a lattice with 206000 grid points. The elliptic fixed
points are blue, the parabolic points green, the hyperbolic points are red, the hyperbolic points with reflection dark. Phase plot for the(sgirt withp
orbits started at initial points taken from the left picture.

ber depends on the angiebetween the tangents to the lines (see Fig. 6, where one finds also paraboliwith || Tr J¢|
(MP=1),=0, (MP—1),=0 at the intersection point. A —2|<107° and hyperbolic with reflection fixed points
good strategy to recover these fixed points too would b&marked in green and dark, respectivelin this case the
looking for a characteristic polyhedron which not necessarilyproblem may occur only at the discontinuity curves which
coincides with any of the lattice cells: this could be aChieverroduce four-color crossings in tledlor mapwhich do not
by evaluating the signs ofMP—1) over the perimetric ver-  correspond to fixed points of the same period as the one used
tices of a larger “macro-cell” built up with several adjacent to draw thecolor mapitself. There are also points on the
elementary cells of our lattice surrounding the one whichtorus “boundary” (x= =+ 3 or y= = 1) where more than four
was “candidate” for a fixed point in its interior. When the regions of different colors meet. However, all these “discon-
size of this “macro-cell” is large enougtand of course not  tinuity effects” turn out to correspond to fixed points of some
greater than a preset maximum giiteis likely that all four  period so that they are correctly found through the character-
combinations of signs can be found on the perimetric vertiistic bisection method which looks for fixed points of periods
ces, a necessary condition to construct a characteristic polyup to” a preset maximum value. The characteristic bisec-
hedron. tion method, in turn, is not affected by the presence of the
If the cell side ise=2""X2L and we allow fork bisec-  discontinuity curves imagesvhich in any case are of mea-
tions the overall computational complexity fi§p+1)k2°"  sure 2" with respect to L We have chosen a value of the
evaluations of the map to obtain the fixed points up to periotharamete/27=0.9 not far from the critical one, where the
p with an accuracy o&2 *=L2"""k*1 Typically choosing  |ast KAM curve is broken. The picture of the fixed points up
k=40 whenL=1 the machine accuracy is reached. In thisto order 40 reflects the complexity of the dynamics in this
case for a typical grid corresponding to screen resolutionransition region. The chaotic area is filled with hyperbolic
(n=10) the number of functions evaluation is10' to  fixed points, most of which are hyperbolic with reflection.
compute the fixed points up to perige=20. We have ap- The configuration of the fixed points on the plane seen in the
plied this procedure to locate the fixed points in the beameft panel of Fig. 6, is similar to the distribution of periodic
beam map forw=0.14 in the squaré—L,L]? with L=5. orbits of 2D Hamiltonian flows?!

The search for fixed points up to ordgr=40 with a grid
2"x 2" with n=10 was successful as confirmed by a com-!V:- SUMMARY AND CONCLUSIONS
parison with a manually initialized search driven by an inter-  We have studied the applicability of various numerical
active phase space portrait drawing. In Fig. 5 we show thisnethods, based on the topological degree theory, for locating
comparison. The nature of the fixed points has been exantigh period periodic orbits of 2D area preserving mappings.
ined and to the elliptic and hyperbolic points a different colorin particular we have used the Kronecker integral and ap-
(blue and red, respectivelhas been assigned. The overall plied Stenger’s method for finding the TD in a bounded re-
picture shows very neatly the invariant curves near to centragion of the phase space. If the TD has a nonzero value we
elliptic fixed point and the doublets of elliptic and hyperbolic know that there exists at least one periodic orbit in the cor-
points corresponding to the resonanéstands. responding region. The computation of the TD for an appro-
The same picture has been obtained for the standard magiate set of equations allows us to also find the exact num-
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ber of periodic orbits. We also applied the characteristic  Next, we will briefly discuss the characteristic bisection
bisection method on a grid in the phase space for locating thmethod based on the characteristic polyhedron concept for
various fixed points. The main advantage of all these meththe computation of periodic orbits. The problem of finding
ods is that they are not affected by accuracy problems iperiodic orbits of periodp of dynamical systems iR""?!
computing the exact values of the various functions usedamounts to finding the fixed points of the Poincanap
since the only computable information needed is the algeM(X) in R" with XeR", by solving the equation
braic signs of these values. M°P(X*)=X*.

We have applied the above-mentioned methods to 2
symplectic mappings defined dtf and on the torug?. The
methods for computing the TD are limited to regions without ~ The search of periodic points of a mapping is equivalent
discontinuity curves, so they cannot be used for maps on th® solving the system of EqAL) with F=(f,,f,,...,f)
torus, since upon iterating the map the discontinuity curvess M°P—1,, wherel,, is the identity andd=(0,0....,0 is the
form a web, whose limit is a dense subset. On the other han@yigin of R". It is well known that if we have a functioR,
the characteristic bisection method proved to be very effiwhich is continuous in an open and bounded donfiand
cient for all different types of mappings, since it could pro- the topological degree df at O relative toD is not equal to
vide, in reasonably short computational times, a number ofero, then there is at least one solution of systad) within
fixed points of period as large as 40 which allows a satisfacD. This criterion can be used, in combination with the con-
tory description of the underlying dynamics, as it has beerstruction of a suitable polyhedron, called the characteristic
shown in recent work¥33 The good performance of the polyhedron, for the calculation of a solution contained in this
bisection method for the maps on the torus can be explaineggion. This can be done as follows. L&t,, be the 2Xn
by the structure of the discontinuity curves. For a periodicmatrix whose rows are formed by all possible combinations
orbit of orderp the discontinuity curves to be considered areof —1 and 1. Consider now an orientedpolyhedronII",
Dy=M~"P(Dy) whereD; is the set of discontinuity curves, with verticesVy, k=1,..,2". If the 2"Xn matrix of signs
which in the case of SM are the lines=—% andy=—3.  associated witfF and I1", S(F;II"), whose entries are the
The periodic points of periogp are found by applying the vectors
characteristic bisection method to the mMdfy on squares of signF(V,) = (signf,(Vy),signfo(Vy),....signf,(Vy),

sidee=2""L, which are characteristic polyhedra. As a con-. . . . .
T . . is identical to M,,, possibly after some permutations of
sequence the characteristic bisection method is not affect s o
. o . these rows, thedI" is called thecharacteristic polyhedron
by the presence of the discontinuity curves as far as the dis-

tance of the periodic points from the <BY is larger thane relative to F. Furthermore, ifF is continuous, then, under
P P b g ' some suitable assumptions on the boundaryl bf

Ei. Characteristic polyhedra
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This method simply amounts to constructing another refined

characteristic polyhedron, by bisecting a known one,I$ay

in order to determine the solution with the desired accuracy.
Many problems in different areas of science and technolWe compute the midpoir¥ of an 1-simplex, e.g{V;,V),

ogy can be reduced to a study of a set of solutions of avhich determines a one-dimensional edgdBf. The end-

system of nonlinear equations of the form: points of this one-dimensional line segment are vertices of
F(X)=0 (A1) IT", for which the corresponding coordinates of the vectors,

' signF(V;) and sigrF(V;) differ from each other only in one

in an appropriate space. Topological degree theory has beesmtry. We call this 1-simplex proper 1-simplex. To obtain

developed as means of examining this solution set and obynother characteristic po|yhedr(ﬂ'|: we compare the sign

taining information on the existence of solutions, their num-of F(M) with that of F(V;) and F(V;) and substitutev for

ber and their naturé;*“**This theory is widely used in the that vertex for which the signs are identical. Subsequently,

study of nonlinear transcendental or differentiardinary e reapply the aforementioned technique to a different edge

and partial equations:'*>1925-2739t is useful, for ex-  (for details we refer to Refs. 7, 17, 18n particular, let

ample, in bifurcation theory and for providing information (Vi,V;) be a proper 1-simplex ofI" and let B=(V;

about the existence and stability of periodic solutions of or-+ V,)/2 be its midpoint. We then distinguish the following

dinary differential equations as well as the existence of soluthree cases:

tions of certain partial differential equations. Several of these ) ) ) )
applications involve the use of various fixed point theoremd ) If the vectors sigiF(B) and sigrF(V;) are identicald

which can be provided by means of topological dedfe. replacesV,; and the process continues with the next
proper 1-simplex.

,0] denotes the topological degree ofat

APPENDIX A: CHARACTERISTIC BISECTION
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solution, from each of the four regions we construct a char-
acteristic polyhedron. In this figure we can distinguish a
characteristic and a noncharacteristic polyhedibn For a
polyhedronII? to be characteristic all the above combina-
tions of signs must appear at its vertices. Based on this cri-
terion, polyhedrorABD C is not a characteristic polyhedron,
whereasABEC is. To fully comprehend the characteristic
bisection method we illustrate in Fig. 7 its repetitive opera-
tion on a characteristic polyhedrdi?. Starting from the
edgeCE we find its midpointF and then calculate its vector
of signs, which ig+1,—1). Thus, vertexr replacesC, which
has the same vector of signs, and the new refined polyhedron
BEFA is also characteristic. Applying the same procedure,
we further refine the polyhedron by considering the midpoint
G of AF and checking the vector of signs at this point. In this
case, its vector of signs is-1,—1), so that vertexA can be
replaced by vertexs. Finally we consider the midpoirt of
BG. Since the vector of signs {s-,+) we replaceB with H.
The new refined polyhedroRlEFG is also characteristic.
This procedure continues up to the point that the midpoint of
FIG. 7. (Color onling Application of the characteristic bisection method. the Ionge;t cpagonal of the .reflned polyhedron apprOXImaters
The different gray tones correspond to the sign combinatiort), (+,—),  the root within a predetermined accuracy. The characteristic
(-,4), and(—,—). ABEC, BEFA, BEFG, andHEFG are characteristic  bisection method is very useful in cases where the period of
polyhedra constructed by the successive application of the characteristihe periodic orbit is very high and especially when the orbit
bisection method. is unstable, since the method always converges within the
initially specified region. A further advantage of the charac-
teristic bisection method is the simplicity of location of all
. . periodic orbits of a given period. From a pictorial point of
B replacegvj and the process continues with the neXtview this is achieved by assigning a color to each region as
proper _1-S|mplex. _ _ in Fig. 7.
3 Oth_ermse the process continues with the next proper It is evident that in a neighborhood of the zeroRii)
1-simplex. there are points having four distinct vectors of signs, namely
four different colors. As a consequence the color plot is an
effective way of understanding the structure fX) and
detecting approximately the location of its zeroes. The char-
acteristic bisection method then allows to detect them up to
machine accuracy.

(2) If the vectors sigi(B) and sigrF(V;) are identical then

Consider the characteristioc polyhedron,IT", whose
longest edge length iA(TI"). The minimum numbef of
bisections of the edges &i" required to obtain a character-
istic polyhedronII] whose longest edge length satisfies
A(I1})<e, for some accuracyee(0,1), is given by ¢
=llog,(A(ITNe )], where [] denotes the largest integer
which is smaller than the quoted number. Notice thas APPENDIX B: STENGER'S METHOD
independent of the dimensian implying that the bisection
algorithm performs the same number of iterations as the bi- In order to illustrate the basic features of Stenger’s
section in one dimension, which is optimal and asymptoti-method for computing the TD we consider the simple func-
cally possesses the best rate of convergéhae character- tion F=(fy,f;) wheref(x,y)=y—(x*/3)+x and f,(x,y)
istic bisection method is efficient for low dimensions, =Y. The linesf,=0, f,=0 are plotted in Fig. &. The
because the computational effort for applying it grows as above system of equations has three roots. The determinant
power of the dimensionality, since the starting box as well of the corresponding Jacobian matrix is positive for root
as the characteristic polyhedron have\2rtices. (0,0 and negative for root—v3,0) and (v3,0). In order to
study the dependence of the procedure for finding the TD in
a regionD, with respect to the distance of a root from the
boundary of D, we consider a rectangular ar¢a a,2]

To clarify the characteristic polyhedron concept we con-x [ — 2,2] with a> /3, shown in Fig. 8). Since this domain

2. Mappings of R?

sider a functiorF=(f,,f,). Each functionf;, i=1,2, sepa- contains the three roots of the system, the value of TBis
rates the space into a number of different regions, accordin@/e leta= 3+ e with e>0 so that the boundary approaches
to its sign, for some regiong<<0 and for the rest;>0, i the root(—v3,0) ase—0 as shown by the arrow in Fig(&.

=1,2. Thus, in Fig. 7 we distinguish between the regionsWe compute the TD for different values efwith Stenger’s
marked with distinct colors(+,+) red region wherd,;>0  method, by using the same number of poiNten every side
and f,>0, (+,—) green region wherd;>0 and f,<0, of the rectangle. The distance of the root from the boundary
(=,+) yellow region wheref; <0 andf,>0 and(—,—) blue is € and we denote witing, the smallest number of grid
region wheref ;<0 andf,<0. Picking a point, close to the points needed to compute TD with certainty. The number of
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4.0 35 3.0 2.5 2.0 -15 FIG. 9. (Color online Number of fixed pointsV; evaluated for the standard
log(e) map with x/277=0.9 using the Kronecker integral, when the top side of the

rectangular domain moveg). The rectangle and the discontinuity curves
FIG. 8. (a) Plot of the curved,=y— %x3+x:0 andf,=y=0. (b) Number  are shown ir(b)._The discontinui_ty curves= —0.5 andy= 7_0.5 are drawn
of iteration pointsny, used to compute the correct value of the TD on a @S heavy gray lines, and the discontinuity curves that will be mapped on
domain for the set of equation of parfe) (dashed lingand the SM(con- = —0.5 andy=—0.5, after one iteration of the SM are shown.
tinuous ling, versus the distance of a root from the boundary of the
domain.
affected by the presence of a root near the boundary. A simi-
lar behavior appears when we use the Kronecker integral for
the computation of the total number of roots in a given do-
main D.

total grid points used in the computationng,=4N. In Fig.
8(b) we plot in log—log scaleng, with respect toe (dashed
line). The slope of the curve is almostl so thatng,

-1
xe *. The same result holds for any map when a root ap- )
proaches the boundary. We have considered the standard méBPENDIX C: DISCONTINUITY CURVES

for k/27=0.9 in the domairf —0.25,0.29X[—¢,0.25], with For maps defined on the torus like the SM, the compu-
e>0, free of discontinuity curvegssee Appendix ¢ which  tation of the TD using Stenger’s method or the Kronecker
contains the elliptic fixed poin®,0). The value of TD is+1.  integral faces a problem due to the presence of discontinuity

We let e~0 and computeng, as a function ofe like in the  curves. Indeed the Kronecker integral is defined on a domain
previous case. As in the previous example we obtain then the boundary of which the map is continuous. For the SM
correct value of the TD when the grid step is of ordess the discontinuity curves are the lines=—0.5 andy
shown by the solid line in Fig.(®). These examples show =-—0.5, plotted in blue and red color representatively Fig.
how the computation of the TD based on Stenger’s method i8(b). On the initial phase space there exist also the disconti-
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