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We consider methods based on the topological degree theory to compute periodic orbits of area
preserving maps. Numerical approximations to the Kronecker integral give the number of fixed
points of the map provided that the integration step is ‘‘small enough.’’ Since in any neighborhood
of a fixed point the map gets four different combinations of its algebraic signs we use points on a
lattice to detect the candidate fixed points by selecting boxes whose corners show all combinations
of signs. This method and the Kronecker integral can be applied to bounded continuous maps such
as the beam–beam map. On the other hand, they cannot be applied to maps defined on the torus,
such as the standard map which has discontinuity curves propagating by iteration. Although the use
of the characteristic bisection method is, in some cases, unable to detect all fixed points up to a given
order, their distribution gives us a clear picture of the dynamics of the map. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1539011#
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In this paper we discuss the problem of localization of
periodic orbits in two-dimensional mappings. We present
numerical methods for computing the total number of
periodic orbits of given period in bounded regions of the
phase space and for locating their position. All these
methods are based on the topological degree theory an
their advantages are discussed in detail. The effectivenes
of the characteristic bisection method, for locating high
order periodic orbits is shown by applying it to different
mappings on a plane and on a torus. For these mappings
periodic orbits of order up to 40 were computed.

I. INTRODUCTION

Two-dimensional~2D! mappings are used to model d
namical systems with two degrees of freedom, conserva
or dissipative depending on theirarea-preservingor area-
contracting character. Their dynamical properties critical
depend on the distribution and the nature ofperiodic orbits.
Any point of a periodic orbit of periodp is a fixed pointof
the mapM iteratedp times (M +p). A fixed point of M +p is
sometimes called fixed point ofM of order p. The fixed
points of area preserving maps are classified aselliptic, para-
bolic, hyperbolicandhyperbolic with reflection, according to
how the eigenvalues of the Jacobian matrix are laid out
941054-1500/2003/13(1)/94/11/$20.00
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the complex plane. In particular the fixed point is stab
when the corresponding eigenvalues lie on the unit circ
hyperbolic when the eigenvalues have positive real valu
hyperbolic with reflection when the eigenvalues have ne
tive real values and parabolic when they are both 1 or21:
from a numerical point of view we decided to label aspara-
bolic those fixed points which give Jacobian’s eigenvalu
very close to either 1 or21 ~by less than a predefined tole
ance we fixed as 1026). The different stability types of fixed
points in maps, as well as the possible transitions betw
these types, have been studied in detail in Refs. 1 and 2

The possibility of finding the fixed points up to a give
period is dynamically relevant and computationally challen
ing. Various methods exist to localize a periodic orbit on
the region where it is located is known with a good accura
such as Newton’s method and related classes of a
rithms.3,4 However, the determination of all or almost all th
periodic orbits up to a given period is a long and often i
possible task. Analytic expressions for the periodic orbits
known only for very low periods and efficient numeric
methods are available only if the map can be decompo
into involutions. For the He´non map the fixed points up to
period 4 were found analytically5 and for the standard ma
the involution method allowed the detection of periodic o
bits of very long periods approaching the golden invaria
curve.6
© 2003 American Institute of Physics
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The traditional iterative schemes with quadratic conv
gence such as Newton’s method and related classes of
rithms are frequently used. These methods converge rap
for any initial guess in a region where a single fixed point
present. This is rarely the case since the fixed points for
dense set. Moreover if the orderp is not a prime number, i.e.
p is of the formp5p1

k1
¯pm

km, the search of the fixed point
of order p provides also all the fixed points of orde
p1 ,...,pm . This problem could be solved using deflatio
methods, but their exponential growth withp entails serious
difficulties. These methods are affected by errors due to
large values the map can assume in a neighborhood of
perbolic points or due to poor regularity of the partial deriv
tives.

As an alternative the use of methods based on the
plication of topological degree~TD! theory has been pro
posed.7 Degree theory8 and its application to solve system
of nonlinear equations3,4 has been extensively considere
in the mathematical literature starting from the works
Kronecker,9 Picard,10,11 and Hadamard12 until recent
times.13–16The TD gives a criterion to insure the existence
fixed points in a bounded domain and the Kronec
integral9,12 allows to determine their number.10,11 The actual
localization can be reached using thecharacteristic bisection
method.7,17,18

These methods prove to be efficient in localizing t
fixed points of 2D and even 4D maps7,19,20once a good ini-
tial guess is given by direct inspection of the orbits as it
often the case with graphical interactive programs for m
of R2 ~e.g., the program GIOTTO21!. However the localiza-
tion of all or at least a large fraction of the fixed points of
given order in a compact region requires well tailored str
egies. The associated dynamical information is relevant
cause to know the location and nature of the fixed po
amounts to knowing the properties of the mapping. Anot
possibility is to examine directly the bifurcations occurrin
when a parameter is varied.22,23An alternative is the discreti
zation of the map replacing the original one with a permu
tion map on a lattice.24

In this paper, we propose to use the characteristic bis
tion method7,17,18to compute the periodic orbits up to a give
order in a compact region. This method exploits TD theory
provide a criterion for the existence of fixed points. Starti
from a box, where the TD is61, and refining it, a fixed poin
is localized with the desired accuracy. This method has b
also applied successfully to Hamiltonian systems of 2
grees of freedom.25–27 The detection of all fixed points o
order p in a compact domain is a hard task as shown b
simple topological argument. Assigning to any point a co
corresponding to the signs of the components ofM +p2I ,
whereI is the identity, we obtain acolor-map. A compact set
is painted with four colors so, when four distinct colors a
pear in a region a simple fixed point exists at the intersec
of their boundaries. To set up a numerical strategy we c
sider a lattice obtained by partitioning the unit square w
cells of sizee522n. Among all the boxes of sideme, con-
sisting ofm2 adjacent cells, we select those which have l
tice points of four distinct colors as candidates to posse
fixed point in their interior, retaining at the end only one f
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every set of overlapping boxes. By increasingm from 1 ton
the number of candidate fixed points approaches a cons
value and the right number of fixed points is recovered
n→`. The Kronecker integral gives the exact number
fixed points in a given domain, but the numerical accura
depends on the distribution of fixed points and their dista
from the boundary. If a fixed point approaches the bound
the mesh size should be much smaller than such a distan
special care has to be taken for maps defined on the t
since discontinuity curves appear while the theorems for
TD hold in any subset where the mapM +p is continuous.
Stenger’s method for computing the TD in a domain16,28 is
affected by the presence of fixed points near the border of
domain in a similar way.

We have studied three area preserving maps: the be
beam map~BM!23,29 and the He´non quadratic map~HM!,5,22

both defined onR2, and the standard map~SM!30 defined on
the torusT2; among these we made a deeper analysis
~BM! and ~SM!. In the first case, where the map is contin
ous ~holomorphic! the color mapshows no obvious relation
between the shape of the four colors domains close to
fixed point and the geometry of nearby orbits. Indeed, line
izing M +p in a small neighborhood of the fixed point, th
boundaries of the four colors domains are two straight lin
and their angle does not exhibit a simple dependence on
angle between the stable and unstable manifolds or on
ratio between the island’s semiaxis.

The possibility of small angles for chains of large islan
shows that an automatic detection algorithm based on
evaluation of the signs ofM +p on a grid followed by the
characteristic bisection method can miss some fixed poi
In the case of the standard map the discontinuity curves oM
propagate when the map is iterated and limit the use of
Kronecker integral and thecolor mapto domains not inter-
sected by these lines. In this case the characteristic bisec
method can be applied to the whole plane, but we have
check that the computed fixed points correspond to real
riodic orbits of the system.

Even though the choice of a lattice to initialize the cha
acteristic bisection method on the squares whose cor
have different combination of signs~corresponding to differ-
ent colors! does not detect all the fixed points no matter ho
small is the lattice spacing, the picture which emerges, es
cially for the standard map, is dynamically meaningful~the
discontinuity curves do not affect the result!. One of the key
advantages of the characteristic bisection method is that
computable information it requires consists on the algeb
signs of the components of the mapping. Thus it is not
fected neither by the mapping evaluations taking large val
in neighborhoods of unstable periodic orbits nor by precis
losses until the last significant digit. This means that
method requires the knowledge ofonly the sign of various
quantities and not their exact values.

II. THE TOPOLOGICAL DEGREE

We first consider the problem of detecting the zeroes
a function F5( f 1 , f 2) of class C2 on the closure of a
bounded domainD,R2 we assume to be the square of si
2L. The function is defined by
IP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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96 Chaos, Vol. 13, No. 1, 2003 Polymilis et al.
x85 f 1~x,y!, y85 f 2~x,y!. ~1!

The search of the fixed points of orderp of a mapM amounts
to searching the zeroes ofF5M +p2I , whereI is the identity
map. The curvesF15$(x,y)PD: f 1(x,y)50% and F2

5$(x,y)PD: f 2(x,y)50% split an open setD into the open
setsD16 andD26 where f 1 and f 2 have the quoted signs

signf 1~x,y!561 for ~x,y!PD16 ,
~2!

signf 2~x,y!561 for ~x,y!PD26 .

Consider the intersections

D115D11ùD21 , D125D11ùD22 ,
~3!D215D12ùD21 , D225D12ùD22 ,

where the functionF5( f 1 , f 2) has a certain combination o
signs for f 1 and f 2 . The zero ofF is the intersection ofF1

andF2 which are the common boundaries ofD11 andD12 ,
D21 andD22 , respectively.

Any neighborhood of a simple zero~whose determinan
of the corresponding Jacobian matrix is different from ze!
of F has a nonempty intersection with the four doma
D11D12D21D22 . Coloring each domain with a differen
color, four different colors are found in any neighborhood
the zero. The TD8 is defined as the differenceT(F,D)5r 1

2r 2 between the numberr 1 of zeroes with detJF.0 andr 2

with detJF,0 where detJF is the determinant of the Jacobia
matrix JF of F, and is given by the Kronecker integral9,12

T~F,D!5
1

2p R
b~D!

f 1 d f22 f 2 d f1

f 1
21 f 2

2 5r 12r 2 , ~4!

where the integral is computed counterclockwise on
boundaryb(D) of the given regionD which, in our case, is
a closed path.

Another way to compute the TD is Stenger’s method16,28

which consists of finding the signs off 1 , f 2 on a fine grid on
the boundary ofD ~see Appendix B!.

A. Error estimate

The contour integral~4! can be evaluated numerically i
order to obtain the TD. The accuracy depends on the dista
e of the closest zero from the boundary. The integration s
d cannot exceede to have an error of ordere at least. To
illustrate this we consider a simple example choosing t
linear functionsf 15x, f 25y211e and a domainD defined
by uxu<1, uyu<1. From~4! we find

T~F,D!5
1

p Farctan
1

e
1arctan

1

22e
1arctan~e!

1arctan~22e!G . ~5!

Recalling that arctan(x)1arctan(x21)5p/2 sign(x) we have
T51 if 0,e,2 and fore→01 and T50 if e,0 and fore
→02. The first term within the brackets comes from t
upper side of the integration path

I 5
1

2p E
21

1 e

x21e2 dx5
1

p
arctan

1

e
.

1

2
2

e

p
. ~6!
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The integration step has to be chosen of ordere in order to
keep the error constant whene→0. Indeed lettingNe be the
integer part ofe21 the integral~6! is approximated by using
the rectangle rule with 2Ne11 points in the interval@21,1#

I .
1

2p (
k52Ne

Ne 1

11k2 .
1

2p (
k52`

1`
1

11k22
1

Nep

50.501 872
e

p
.

The same analysis applies to a generic map when the
approaches the boundary. Indeed the leading contributio
obtained by linearizing the map around the zerox* . The
integrand has the same structure asAe/(B(x2x* )21e2),
whereA andB are some constants, and the integration s
must still be proportional toe. Stenger’s method is affecte
by a similar error. A more detailed analysis is given in A
pendix B.

B. Number of zeroes

In order to evaluate the number of zeroes of the 2D m
defined in~1!, one has to introduce the extended functionF*
defined by

F* :$x85 f 1~x,y!, y85 f 2~x,y!, z85z detJF~x,y!%,
~7!

whereJF denotes the Jacobian of (f 1 , f 2). The functionF*
has a Jacobian with non-negative determinant equa
@detJF(x,y)#2 and the same zeroes asF on thex, y plane and
consequently its TD T(F* ,D* ), where D* 5D
3@2g,g#, g.0, gives the number of simple zeroes of th
function F.

C. The Kronecker integral

The number of zeros can be evaluated by computing
TD of the 3D functionF* ~7! via the Kronecker integra
which in the 3D case becomes

T~F* ,D* !5
1

2p E
b~D!

~P1 dx11P2 dx2!

1
g

2p E E
D

Q dx1 dx2

~ f 1
21 f 2

21g2J2!3/2, ~8!

with

Pi5

S f 1

] f 2

]xi
2 f 2

] f 1

]xi
DgJ

~ f 1
21 f 2

2!~ f 1
21 f 2

21g2J2!1/2, i 51,2,

Q5U f 1
] f 1

]x1

] f 1

]x2

f 2
] f 2

]x1

] f 2

]x2

J
]J

]x1

]J

]x2

U ,

whereJ5detJF .
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D. The color map

One can use acolor mapto inspect the geometry of th
2D mapM and to locate the zeroes. Choosing a regular
tice of 2n32n cells of sidee522n32L on the squareuxu
<L, uyu<L, we associate to each point a color chosen
cording to the signs of the functionsf 1 , f 2 : red for ~1,1!,
green for~1,2!, yellow for ~2,1!, blue for~2,2! as shown
in Fig. 1.

The plot of thecolor mapon the lattice gives an imme
diate insight of where the zeroes are. We label by (i , j ) the
lattice points whose coordinates arex52L1 i e, y5L
2 j e, with i , j 50,...,2n, and bycm( i , j ) the box of sideme
whose vertices areA5( i , j ), B5( i 1m, j ), C5( i , j 1m),
D5( i 1m, j 1m). A simple algorithm allows to detect th
boxesc1( i , j ) whose vertices have four distinct colors. The
boxes are candidates to have a zero in their interior. To de
the zeroes of the map up to an accuracye one should test its
signs at the interior points of each boxc1( i , j ), since the
presence of different signs at the vertices of a box is nei
necessary nor sufficient for the presence of a zero in its
terior. Considering instead the boxescm , with 2<m<n, we
check again the presence of four distinct colors at all
lattice points within these boxes. For fixedm we scan all the
boxes cm( i , j ) with i , j 50,...,2n2m11 selecting those
which satisfy the above four-colors criterion. The box
cm( i , j ) overlap and the accuracy in the localization of zero
is the box sizeme. As a consequence among all the box
which satisfy the four-colors criterion we select the b
cm( i , j ) discarding all the overlapping boxescm( i 8, j 8),
where max(ui82iu,uj82ju)<m21. By increasingm from 1 ton
the number of four colors nonoverlapping boxescm( i , j )
reaches a constant value provided that the distance of ze
is bigger thanne. Of course in the ideal limitn→` the
exact result is recovered.

III. FIXED POINTS

Given a mapM the periodic points of periodp are fixed
points ofM +p and the zeroes of the map

F5M +p2I .

We have considered the HM, BM, and SM maps which a
respectively, unbounded onR2, bounded onR2 and defined
as an application of the torus into itself. Their explic
expressions are

FIG. 1. ~Color online! Sketch of the domains wheref 1 , f 2 have the indi-
cated combination of signs.
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HM :S x8
y8 D5R~v!S x

y1x2D ,

BM:S x8
y8 D5R~v!S x

y112e2x2D ,

where R(v) is an orthogonal 232 matrix representing a
clockwise rotation by angle 2pv. The true beam–beam ma
has (12e2x2

)/x but we consider this modified version sinc
it has very similar properties and becomes the He´non map
for x→0. SM is defined on the torus@21

2,
1
2#3@21

2,
1
2# accord-

ing to

SM:H x85x1y2
k

2p
sin 2px modS 1,

1

2D ,

y85y2
k

2p
sin 2px modS 1,

1

2D ,

~9!

x mod~1,1
2![x mod 11H 21 if x mod 1. 1

2,

1 if x mod 1,2 1
2.

For the beam–beam map withv50.21 we have com-
puted thecolor mapfor fixed points of periodp55 ~see Fig.
2!.

We have searched for the fixed points in boxes of
creasing sizem>2 and the results obtained form57 are
also shown in Fig. 2~right! where the orbits of the map ar
shown for comparison. The results for the total numberN5

of fixed points of period 5 using the algorithm described
the preceding section are the following:

m 2 3 4 5 6 7 8 9 10

N5 12 24 29 30 30 30 31 31 31 exact531

There is no evident relation between the size of the isla
and the angle formed by the boundaries of the intersec
regions where (f 1 , f 2) have given signs. When this angle
very small as for the top left island of Fig. 2, the sizem of
the box has to be increased considerably in order to de
the fixed point. In particular, form<7 one elliptic fixed
point of the outer chain is not detected~right panel of Fig. 2!.

For completeness we report in Fig. 3 the samecolor-map
analysis for the HM with the same value ofv; the pattern is
simpler with respect to BM, allowing an easy evaluation
the period 5 fixed points.

We have also examined the behavior of the standard m
for a valuek/2p50.9 at which a very rich structure is prese
because we are approaching the global chaotic transition
curring when the last invariant curve breaks atkc/2p
'0.97.6 Thecolor mapis given in Fig. 4 for the third iterate
and the phase plot of the orbits is given for comparison.
this case thecolor map gives the fixed points of order 3
correctly and also some other four-color crossing which d
not correspond to fixed points of the same period. Inde
they are located exactly on the third iterate of a discontinu
curve where the two components of the map change sign
to the modulus operation. The discontinuity curves and th
iterated images cause problems in the application of meth
for computing the TD~see Appendix C!. When the map is
IP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp



98 Chaos, Vol. 13, No. 1, 2003 Polymilis et al.
FIG. 2. ~Color! Beam–beam map forv50.21: color map, for p55 iterations of the map, computed on a square lattice of 2n32n points withn59 ~left!;
phase plot of the map~right!: the red circles denote the position of the fixed points found with initial guesses taken in boxes of sizeme with e522n andm57.
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iterated these discontinuity curves are also iterated and
direct application of the TD method gives a wrong resu
The numberNp of fixed points of periodp has also been
evaluated by computing the TD of the 3D functionF* ~7!
via the Kronecker integral~8!. This integral has been evalu
ated numerically and gives accurate results if the map
bounded and continuous. The beam–beam map has
property for every compact domainD,R2. The standard
map has discontinuity curves, the He´non map is unbounded
Due to this last property the TD cannot be computed with
same accuracy as the BM and for this reason we shal
longer analyze the HM in the rest of the paper, although
characteristic bisection method works fine for the HM to
For the beam–beam map considered in Fig. 2 wherev50.21
andL52 the exact number of period five fixed points is 3
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This number is obtained within 1% error using a repea
four points Gauss integration with just 1003100 points.
When the linear frequency isv50.14 many periodic orbits
of period 8, 9, 15 are present, as can be seen in Fig
Choosingp58 andL55 requires a rather small number o
grid points on the boundary (N52100) to reach the correc
value N85335112381238 whereas the correct valu
N95375112391239 for p59 is reached much soone
In both cases there are two chains of fixed points, but fop
59 they both have significantly big stability basins, whi
for p58 one of them is very thin and embedded in a reg
of the phase space almost entirely filled by ‘‘invaria
curves.’’ For higher values ofp the computation become
extremely time consuming.
FIG. 3. ~Color! Hénon map forv50.21:color map, for p55 iterations of the map, computed on a square lattice of 2n32n points withn59 ~left!; phase plot
of the map~right!: the red circles denote the position of the fixed points found with initial guesses taken in boxes of sizeme with e522n andm57.
IP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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FIG. 4. ~Color! Standard map withk/2p50.9:color map, for p53 iterations of the map, computed on a square lattice of 2n32n points withn59 ~left!; phase
plot of the map~right!; the red circles denote the position of the fixed points found with initial guesses taken in boxes of sizeme with e522n andm57; the
red squares mark the position of two evident four-color crossings in thecolor mapwhich do not correspond to period 3 fixed points but rather to period 4 fi
points lying just on the third iterate of a discontinuity curve.
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The characteristic bisection method

The TD method cannot be used directly to locate
fixed points of a map. When the boundedness and contin
conditions occur the Kronecker integral allows to comp
the number of fixed points in a given domain provided th
the integration step is small enough~smaller than the dis-
tance of fixed points from the boundary and from ea
other!; the required evaluation of the derivatives ofM +p can
be cumbersome and numerically expensive for largep. The
color-mapmethod is a simple algorithm to have a first gue
which can be refined by using the characteristic bisec
method.
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Another approach consists in applying the characteri
bisection method to all the cellsc1( i , j ) of a lattice, where
the topological degree isT561. Since the computationa
cost of an accurate evaluation ofT is high, it is more conve-
nient to check whether or not thepth iterated of the cell’s
center through the map comes back inside the cell and o
when this happens one tries to apply the characteristic bi
tion method to these ‘‘candidate’’ cells. To speed up cons
erably one can restrict further the characteristic bisect
method only to cells which are characteristic polyhedra~the
vertices have four distinct combinations of signs or color!.

This procedure misses some fixed points and their nu
s.

FIG. 5. ~Color! Fixed points up to orderp540 for the BM map with linear frequencyv50.14~left! computed on a lattice with 100031000 grid points. The
elliptic fixed points are blue and the hyperbolic points are red. Phase plot for the same map~right!, with fixed points determined through a visual initial gues
IP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp



100 Chaos, Vol. 13, No. 1, 2003 Polymilis et al.
FIG. 6. ~Color! Fixed points up to orderp540 for the standard map withk/2p50.9 ~left! computed on a lattice with 200032000 grid points. The elliptic fixed
points are blue, the parabolic points green, the hyperbolic points are red, the hyperbolic points with reflection dark. Phase plot for the same map~right! with
orbits started at initial points taken from the left picture.
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ber depends on the anglea between the tangents to the line
(M +p2I )x50, (M +p2I )y50 at the intersection point. A
good strategy to recover these fixed points too would
looking for a characteristic polyhedron which not necessa
coincides with any of the lattice cells: this could be achiev
by evaluating the signs of (M +p2I ) over the perimetric ver-
tices of a larger ‘‘macro-cell’’ built up with several adjace
elementary cells of our lattice surrounding the one wh
was ‘‘candidate’’ for a fixed point in its interior. When th
size of this ‘‘macro-cell’’ is large enough~and of course not
greater than a preset maximum size! it is likely that all four
combinations of signs can be found on the perimetric ve
ces, a necessary condition to construct a characteristic p
hedron.

If the cell side ise522n32L and we allow fork bisec-
tions the overall computational complexity isp(p11)k22n

evaluations of the map to obtain the fixed points up to per
p with an accuracy ofe22k5L22n2k11. Typically choosing
k540 whenL51 the machine accuracy is reached. In th
case for a typical grid corresponding to screen resolu
(n510) the number of functions evaluation is;1010 to
compute the fixed points up to periodp520. We have ap-
plied this procedure to locate the fixed points in the bea
beam map forv50.14 in the square@2L,L#2 with L55.
The search for fixed points up to orderq540 with a grid
2n32n with n510 was successful as confirmed by a co
parison with a manually initialized search driven by an int
active phase space portrait drawing. In Fig. 5 we show
comparison. The nature of the fixed points has been ex
ined and to the elliptic and hyperbolic points a different co
~blue and red, respectively! has been assigned. The over
picture shows very neatly the invariant curves near to cen
elliptic fixed point and the doublets of elliptic and hyperbo
points corresponding to the resonances~islands!.

The same picture has been obtained for the standard
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~see Fig. 6!, where one finds also parabolic~with uuTr JFu
22u,1026) and hyperbolic with reflection fixed point
~marked in green and dark, respectively!: in this case the
problem may occur only at the discontinuity curves whi
produce four-color crossings in thecolor mapwhich do not
correspond to fixed points of the same period as the one u
to draw thecolor map itself. There are also points on th
torus ‘‘boundary’’ (x56 1

2 or y56 1
2) where more than four

regions of different colors meet. However, all these ‘‘disco
tinuity effects’’ turn out to correspond to fixed points of som
period so that they are correctly found through the charac
istic bisection method which looks for fixed points of perio
‘‘up to’’ a preset maximum value. The characteristic bise
tion method, in turn, is not affected by the presence of
discontinuity curves images~which in any case are of mea
sure 22n with respect to 1!. We have chosen a value of th
parameterk/2p50.9 not far from the critical one, where th
last KAM curve is broken. The picture of the fixed points u
to order 40 reflects the complexity of the dynamics in th
transition region. The chaotic area is filled with hyperbo
fixed points, most of which are hyperbolic with reflectio
The configuration of the fixed points on the plane seen in
left panel of Fig. 6, is similar to the distribution of period
orbits of 2D Hamiltonian flows.31

IV. SUMMARY AND CONCLUSIONS

We have studied the applicability of various numeric
methods, based on the topological degree theory, for loca
high period periodic orbits of 2D area preserving mappin
In particular we have used the Kronecker integral and
plied Stenger’s method for finding the TD in a bounded
gion of the phase space. If the TD has a nonzero value
know that there exists at least one periodic orbit in the c
responding region. The computation of the TD for an app
priate set of equations allows us to also find the exact nu
IP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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ber of periodic orbits. We also applied the characteris
bisection method on a grid in the phase space for locating
various fixed points. The main advantage of all these me
ods is that they are not affected by accuracy problems
computing the exact values of the various functions us
since the only computable information needed is the a
braic signs of these values.

We have applied the above-mentioned methods to
symplectic mappings defined onR2 and on the torusT2. The
methods for computing the TD are limited to regions witho
discontinuity curves, so they cannot be used for maps on
torus, since upon iterating the map the discontinuity cur
form a web, whose limit is a dense subset. On the other h
the characteristic bisection method proved to be very e
cient for all different types of mappings, since it could pr
vide, in reasonably short computational times, a numbe
fixed points of period as large as 40 which allows a satisf
tory description of the underlying dynamics, as it has be
shown in recent works.32,33 The good performance of th
bisection method for the maps on the torus can be expla
by the structure of the discontinuity curves. For a perio
orbit of orderp the discontinuity curves to be considered a
Dp5M 2+p(D0) whereD0 is the set of discontinuity curves
which in the case of SM are the linesx52 1

2 and y52 1
2.

The periodic points of periodp are found by applying the
characteristic bisection method to the mapM +p on squares of
sidee522nL, which are characteristic polyhedra. As a co
sequence the characteristic bisection method is not affe
by the presence of the discontinuity curves as far as the
tance of the periodic points from the setDp is larger thane.
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APPENDIX A: CHARACTERISTIC BISECTION

Many problems in different areas of science and techn
ogy can be reduced to a study of a set of solutions o
system of nonlinear equations of the form:

F~X!50, ~A1!

in an appropriate space. Topological degree theory has b
developed as means of examining this solution set and
taining information on the existence of solutions, their nu
ber and their nature.8–11,34This theory is widely used in the
study of nonlinear transcendental or differential~ordinary
and partial! equations.7,14,15,19,25–27,35It is useful, for ex-
ample, in bifurcation theory and for providing informatio
about the existence and stability of periodic solutions of
dinary differential equations as well as the existence of so
tions of certain partial differential equations. Several of the
applications involve the use of various fixed point theore
which can be provided by means of topological degree.16,36
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Next, we will briefly discuss the characteristic bisectio
method based on the characteristic polyhedron concept
the computation of periodic orbits. The problem of findin
periodic orbits of periodp of dynamical systems inRn11

amounts to finding the fixed points of the Poincare´ map
M (X) in Rn with XPRn, by solving the equation
M +p(X* )5X* .

1. Characteristic polyhedra

The search of periodic points of a mapping is equival
to solving the system of Eq.~A1! with F5( f 1 , f 2 ,...,f n)
5M +p2I n , whereI n is the identity and05~0,0,...,0! is the
origin of Rn. It is well known that if we have a functionF,
which is continuous in an open and bounded domainD and
the topological degree ofF at 0 relative toD is not equal to
zero, then there is at least one solution of system~A1! within
D. This criterion can be used, in combination with the co
struction of a suitablen polyhedron, called the characterist
polyhedron, for the calculation of a solution contained in th
region. This can be done as follows. LetMn be the 2n3n
matrix whose rows are formed by all possible combinatio
of 21 and 1. Consider now an orientedn polyhedronPn,
with verticesVk , k51,...,2n. If the 2n3n matrix of signs
associated withF and Pn, S(F;Pn), whose entries are the
vectors

signF~Vk!5~signf 1~Vk!,signf 2~Vk!,...,signf n~Vk!!,

is identical to Mn , possibly after some permutations o
these rows, thenPn is called thecharacteristic polyhedron
relative to F. Furthermore, ifF is continuous, then, unde
some suitable assumptions on the boundary ofPn,

deg@F,Pn,0#5 (
XPF21~0!ùP

+
n

sign detJF~X!561Þ0,

~where deg@F,Pn,0# denotes the topological degree ofF at

0 relative to Pn, P
+

n determines the interior ofPn and
det JF(X) denotes the determinant of the Jacobian matrix
X!, which implies the existence of a periodic orbit insidePn.

Next, we describe thecharacteristic bisection method.
This method simply amounts to constructing another refin
characteristic polyhedron, by bisecting a known one, sayPn,
in order to determine the solution with the desired accura
We compute the midpointM of an 1-simplex, e.g.,̂V i ,V j&,
which determines a one-dimensional edge ofPn. The end-
points of this one-dimensional line segment are vertices
Pn, for which the corresponding coordinates of the vecto
signF(V i) and signF(V j ) differ from each other only in one
entry. We call this 1-simplex proper 1-simplex. To obta
another characteristic polyhedronP

*
n we compare the sign

of F~M ! with that of F(V i) andF(V j ) and substituteM for
that vertex for which the signs are identical. Subsequen
we reapply the aforementioned technique to a different e
~for details we refer to Refs. 7, 17, 18!. In particular, let
^V i ,V j& be a proper 1-simplex ofPn and let B5(V i

1V j )/2 be its midpoint. We then distinguish the followin
three cases:

~1! If the vectors signF~B! and signF(V i) are identicalB
replacesV i and the process continues with the ne

proper 1-simplex.
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~2! If the vectors signF~B! and signF(V j ) are identical then
B replacesV j and the process continues with the ne
proper 1-simplex.

~3! Otherwise the process continues with the next pro
1-simplex.

Consider the characteristicn polyhedron,Pn, whose
longest edge length isD(Pn). The minimum numberz of
bisections of the edges ofPn required to obtain a characte
istic polyhedronP

*
n whose longest edge length satisfi

D(P
*
n )<e, for some accuracyeP~0,1!, is given by z

5 d log2(D(Pn)e21)e, where d e denotes the largest intege
which is smaller than the quoted number. Notice thatz is
independent of the dimensionn, implying that the bisection
algorithm performs the same number of iterations as the
section in one dimension, which is optimal and asympto
cally possesses the best rate of convergence.37 The character-
istic bisection method is efficient for low dimension
because the computational effort for applying it grows a
power of the dimensionalityn, since the starting box as we
as the characteristic polyhedron have 2n vertices.

2. Mappings of R2

To clarify the characteristic polyhedron concept we co
sider a functionF5( f 1 , f 2). Each functionf i , i 51,2, sepa-
rates the space into a number of different regions, accord
to its sign, for some regionsf i,0 and for the restf i.0, i
51,2. Thus, in Fig. 7 we distinguish between the regio
marked with distinct colors:~1,1! red region wheref 1.0
and f 2.0, ~1,2! green region wheref 1.0 and f 2,0,
~2,1! yellow region wheref 1,0 andf 2.0 and~2,2! blue
region wheref 1,0 and f 2,0. Picking a point, close to the

FIG. 7. ~Color online! Application of the characteristic bisection metho
The different gray tones correspond to the sign combination~1,1!, ~1,2!,
~2,1!, and ~2,2!. ABEC, BEFA, BEFG, andHEFG are characteristic
polyhedra constructed by the successive application of the characte
bisection method.
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solution, from each of the four regions we construct a ch
acteristic polyhedron. In this figure we can distinguish
characteristic and a noncharacteristic polyhedronP2. For a
polyhedronP2 to be characteristic all the above combin
tions of signs must appear at its vertices. Based on this
terion, polyhedronABDC is not a characteristic polyhedron
whereasABEC is. To fully comprehend the characterist
bisection method we illustrate in Fig. 7 its repetitive ope
tion on a characteristic polyhedronP2. Starting from the
edgeCE we find its midpointF and then calculate its vecto
of signs, which is~11,21!. Thus, vertexF replacesC, which
has the same vector of signs, and the new refined polyhe
BEFA is also characteristic. Applying the same procedu
we further refine the polyhedron by considering the midpo
G of AF and checking the vector of signs at this point. In th
case, its vector of signs is~21,21!, so that vertexA can be
replaced by vertexG. Finally we consider the midpointH of
BG. Since the vector of signs is~2,1! we replaceB with H.
The new refined polyhedronHEFG is also characteristic
This procedure continues up to the point that the midpoin
the longest diagonal of the refined polyhedron approxima
the root within a predetermined accuracy. The characteri
bisection method is very useful in cases where the period
the periodic orbit is very high and especially when the or
is unstable, since the method always converges within
initially specified region. A further advantage of the chara
teristic bisection method is the simplicity of location of a
periodic orbits of a given period. From a pictorial point
view this is achieved by assigning a color to each region
in Fig. 7.

It is evident that in a neighborhood of the zero ofF~X!
there are points having four distinct vectors of signs, nam
four different colors. As a consequence the color plot is
effective way of understanding the structure ofF~X! and
detecting approximately the location of its zeroes. The ch
acteristic bisection method then allows to detect them up
machine accuracy.

APPENDIX B: STENGER’S METHOD

In order to illustrate the basic features of Stenge
method for computing the TD we consider the simple fun
tion F5( f 1 , f 2) where f 1(x,y)5y2(x3/3)1x and f 2(x,y)
5y. The lines f 150, f 250 are plotted in Fig. 8~a!. The
above system of equations has three roots. The determi
of the corresponding Jacobian matrix is positive for ro
~0,0! and negative for roots~2),0! and ~),0!. In order to
study the dependence of the procedure for finding the TD
a regionD, with respect to the distance of a root from th
boundary of D, we consider a rectangular area@2a,2#
3@22,2# with a.A3, shown in Fig. 8~a!. Since this domain
contains the three roots of the system, the value of TD is21.
We leta5A31e with e.0 so that the boundary approach
the root~2),0! ase→0 as shown by the arrow in Fig. 8~a!.
We compute the TD for different values ofe with Stenger’s
method, by using the same number of pointsN on every side
of the rectangle. The distance of the root from the bound
is e and we denote withngp the smallest number of grid
points needed to compute TD with certainty. The number

tic
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total grid points used in the computation isngp54N. In Fig.
8~b! we plot in log–log scale,ngp with respect toe ~dashed
line!. The slope of the curve is almost21 so that ngp

}e21. The same result holds for any map when a root
proaches the boundary. We have considered the standard
for k/2p50.9 in the domain@20.25,0.25#3@2e,0.25#, with
e.0, free of discontinuity curves~see Appendix C!, which
contains the elliptic fixed point~0,0!. The value of TD is11.
We let e→0 and computengp as a function ofe like in the
previous case. As in the previous example we obtain
correct value of the TD when the grid step is of ordere as
shown by the solid line in Fig. 8~b!. These examples show
how the computation of the TD based on Stenger’s metho

FIG. 8. ~a! Plot of the curvesf 1[y2
1
3x31x50 andf 2[y50. ~b! Number

of iteration pointsngp used to compute the correct value of the TD on
domain for the set of equation of panel~a! ~dashed line! and the SM~con-
tinuous line!, versus the distancee of a root from the boundary of the
domain.
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affected by the presence of a root near the boundary. A s
lar behavior appears when we use the Kronecker integra
the computation of the total number of roots in a given d
main D.

APPENDIX C: DISCONTINUITY CURVES

For maps defined on the torus like the SM, the comp
tation of the TD using Stenger’s method or the Kroneck
integral faces a problem due to the presence of discontin
curves. Indeed the Kronecker integral is defined on a dom
on the boundary of which the map is continuous. For the S
the discontinuity curves are the linesx520.5 and y
520.5, plotted in blue and red color representatively F
9~b!. On the initial phase space there exist also the disco

FIG. 9. ~Color online! Number of fixed pointsN1 evaluated for the standard
map withk/2p50.9 using the Kronecker integral, when the top side of t
rectangular domain moves~a!. The rectangle and the discontinuity curve
are shown in~b!. The discontinuity curvesx520.5 andy520.5 are drawn
as heavy gray lines, and the discontinuity curves that will be mapped ox
520.5 andy520.5, after one iteration of the SM are shown.
IP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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nuity curves that will be mapped after one iteration to t
lines x520.5 and y520.5. These curves are plotted
black and green color representatively in Fig. 9~b! and are
produced by applying the inverse SM,

M 215H x5x82y8 mod~1,1
2!,

y5y81
k

2p
sin~2px!modS 1,

1

2D ,

to the discontinuity linesx520.5 andy520.5. So the dis-
continuity curves divide the initial phase space in five co
tinuous regions.

In each region the computation of the TD can be p
formed accurately by Stenger’s method or by the Kronec
integral evaluation. If however the boundary of the dom
where these procedures are applied crosses a disconti
curve the results we get are not correct. This behavior
comes evident in the case plotted in Fig. 9. We consider
set of rectangular areas@20.25,0.15#3@20.25,y# with
0.25<y,0.5, which contain the fixed point of period 1~0,0!.
In these rectangles we compute the total number of rootsN1

of period 1~which should to be equal to 1!, by evaluating the
Kronecker integral~8!. For our computation we use a 10
3100 equally spaced grid. The upper side of the rectan
moves towards greater values ofy in the direction indicated
by the thick arrow in Fig. 9~b!. The two points marked by
arrows in Fig. 9~a!, whereN1 deviates from the correct valu
N151, correspond toy'0.358 andy'0.466, respectively,
where the upper side of the rectangle crosses the two dis
tinuity curves@see Fig. 9~b!#. The behavior observed in Fig
9~a! is due to the fact that the functions are not continuou
differentiable in the given rectangles and does not depen
the inaccuracy of the integration~the results do not vary by
refining the mesh up to 1033103). The computation of TD
through Stenger’s method faces the same problem. From
analysis it is evident that the TD cannot be evaluated fo
map on the torus as the SM because by increasing the o
p the discontinuity curves network becomes progressiv
more intricate.
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