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Abstract

A detailed study of the relativistic problem of three bodies was presented by Brumberg
([1,2])- He derived the equations of motion for the general problem and he also deduced
the corresponding equations for the restricted one. The existence and linear stability of
triangular equilibrium points of the restricted problem were studied by Bhatnagar and
Hallan ([3]). In this contribution we focus on the collinear libration points. We study the
existence, position and stability of these points.

1 The equations of motion

In a synodic system of coordinates OXY, where O is the centre of mass of the two
primaries, the motion of the test particle is described by the equations ([1,3])
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~ = the constant of gravity,

my, mg are the masses of the two primaries,

¢ = the velocity of light,

a = the distance between the primaries,

n = the mean motion =
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Xh, X, are the coordinates of the two primaries on the OX —axis.

We transform the above mentioned coordinate system to a dimensionless one,
named Ozy, by choosing the unit of mass so that m; + me = 1 and the unit
of time so that v = 1. The unit of distance is a (¢ = 1). Then, if we denote by
i, < 0.5, the mass of the less massive primary, the mass of the other primary is
equal to 1 — g and their positions on the Qz—axis are 1 — p and —u, respectively.
It can be also derived that, in this coordinate system the “dimensionless” velocity
of light and mean motion are

1

U S _%<1_M>,
Vr(mi+ma)/a 2c; 3

while the motion of the third particle is described by the system
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where ry = /(& + ) + 9% and 12 = /(o + p = 1) + ¢2.

2 Position and stability of the collinear equilibrium points

The existence and position of the collinear equilibrium points of the problem are
determined by the equation
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where r; = |z + p| and r; = |z + ¢ — 1]. This equation results from System (2) if
we put

In order to study the linear stability of the collinear equilibrium points, we transfer
the origin of the coordinate system by putting

x=$£+§> ¥y=11 (4)

where xp is the position of any collinear equilibrium point. Then, we linearize
Equations (2) with respect to £,n and their derivatives. This linearization results
in the following system
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with rip = |zp + p| and rop = |z +p — 1.

We can easily transform Equations (5) to an equivalent system of order one. Then,
the eigenvalues of the corresponding matrix of coefficients are given by

—Ry+/R? — 4R, —Ry —/R? — 4R,
)\112 = i , }\3,4 = :i: (6)
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where
Ry = —0Q1Q3— Q4 — Q2, Rz = Q2Q4.

These eigenvalues determine the kind of linear stability of the considered equilib-
rium points.

3 Numerical results

We have used the above mentioned analysis together with numerical methods to
examine the existence, position and stability of the collinear equilibrium points for
various cases of the model problem. It has been found that, in each case, there
are three such points, named L;, L, and L3, whose positions fulfil the well-known
relation 27, < —p < 2, < 1 —p < 21,. In Table 1 we present these positions
for all Sun-Planet pairs of our solar system. We also include the corresponding
positions in the classical problem for comparison purposes (second entry in the
table for each system). It can be seen that, in most of these cases, the positions of
Ly and L, are much more affected by the influence of the relativistic terms than
that of the third equilibrium point. We have also computed the eigenvalues that
determine the stability of these points. In all cases, two of these eigenvalues are real
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and opposite while the rest of them are imaginary. Consequently, the equilibrium

points are unstable.

Table 1

Comparison of the positions of the collinear equilibrium points for several dynamical
systems modeled by the use of the relativistic and the classical restricted problem.

H €4

Tr,

(I)L2

Trs

0.000000166000 6262.07
(Sun-Mercury)
0.000002447800 8560.03
(Sun—Venus)
0.000003003500 10064.84
{(Sun-Earth)
0.000000322700 12424.24
(Sun—Mars)
0.000953692200 22947.35
(Sun—Jupiter)
0.000285726000 31050.90
(Sun—Saturn)
0.000043548000 44056.13
(Sun-Uranus)
0.000051668900 55148.85
(Sun—Neptune)
0.000000006500 63280.18
(Sun—Pluto)

0.99619406057923
0.99619406054705
0.99068234043513
0.99068234039327

0.99002657248316

0.99002657245077
0.99525140277101
0.99525140276082
0.93236993773108
0.93236993769216
0.95474919732924
0.95474919731454
0.97576220622293
0.97576220621890
0.97434749095228
0.97434749094956
0.99870656252887
0.99870656252876

1.00381528794816
1.00381528798076
1.00937097513753
1.00937097518072
1.01003413805726
1.01003413809074
1.00476303036243
1.00476303037278
1.06882613992582
1.06882613997466
1.04606932682937
1.04606932684648
1.02454737493648
1.02454737494085
1.02599374139635
1.02599374139930
1.00129454074313
1.00129454074324

—1.00000006916666
~1.00000006916666
—1.00000101991664
—1.00000101991666
—1.00000125145831
—1.00000125145833
—1.00000013445833
—1.00000013445833
—1.00039737170147
—1.00039737170283
—1.00011905249851
—1.00011905249873
—1.00001814499997
—1.00001814499999
—1.00002152870831
—1.00002152870832
—1.00000000270833
—1.00000000270833
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