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Abstract. The photogravitational circular restricted three-body
model including the Poynting-Robertson effect is employed to
describe the motion of a particle in the vicinity of two massive
radiating bodies. The equilibrium points lying out of the orbital
plane of the primaries are studied numerically. The exact number
of these points is determined by means of the topological degree
theory. Subsequently, a modified bisection method is used to
compute the positions of the equilibrium. Finally their stability
is studied.

Key words: stars: binaries: general — celestial mechanics —
methods: numerical

1. Introduction

It is known (Poynting 1903) that small particles approaching
luminous celestial bodies are comparably affected by gravita-
tional and light radiation forces.

In space science, the influence of the radiation is connected
with the motion and the formation of concentrations of inter-
planetary and interstellar dust or grains in planetary and binary
star systems as well as with the perturbations observed on ar-
tificial satellite orbits (Kozai 1961; McCracken & Alexander
1968; Ferraz-Mello 1972; Milani et al 1987; Vokrouhlicky 1993,
1994).

The relativistic expression of the total radiation force on
a particle has been given by Robertson (1937). He has also
stated that a justifiable approximation for this force, immedi-
ately rephrasable in classical mechanics nomenclature, can be
obtained by considering only linear terms in the ratio of the
velocity of the particle over that of light, as follows : If R is
the position vector of the particle P with respect to a radiating
source S, v the corresponding velocity vector and c the velocity

of light, then the radiation force on P, to first order in v/c, is

R v-R R v
F=F,— - F,— 7 Fp;,
where F}, denotes the measure of the radiation pressure force.
The first component in the above equation expresses the radi-
ation pressure, while the remaining two forces consist the so
called Poynting-Robertson effect.

The above form of the radiation force has been widely used
in the bibliography for the study of the motion of a particle with
negligible mass in the vicinity of two main bodies of the type
sun-planet or the type of a binary star. The so-called photogravi-
tational restricted three-body model is usually used to formulate
the problem.

A simplified version of this model, involving central forces
only, was first introduced by Radzievskii (1950) and subse-
quently used by several scientists in studying the existence and
stability of equilibrium points (Radzievskii 1953; Perezhogin
1976; Kunitsyn & Perezhogin 1978; Simmons et al 1985; Ku-
nitsyn & Tureshbaev 1985; Ragos & Zagouras 1988a; Ku-
mar & Choudhry 1987; GoZdziewski et al 1991; Choudhry
1988; Niedzielska 1994), regions of allowed motion (Schuer-
man 1972; Ragos & Zagouras 1988b) as well as periodic motion
(Ragos & Zagouras 1988a; Ragos & Zagouras 1991; Ragos et
al 1991).

Extending Radzievskii’s model so as to include the two rel-
ativistic terms of Robertson’s linear approximation Chernikov
(1970) and Schuerman (1980) examined the equilibrium points
assuming that only one of the primaries radiates. Recently Ra-
gos & Zafiropoulos (1995) have considered the case that both
main bodies are luminous. They have studied the libration points
lying on the orbital plane of these bodies (coplanar case). In the
present paper we deal with the equilibrium points which exist
out of that plane. First we derive the system of equations satis-
fied by these points. Then, using the topological degree theory,
we determine the exact number of the solutions of this system.
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Finally, the location and stability of the equilibrium positions
are studied numerically.

2. Equations of motion

In a rotating, barycentric and dimensionless coordinate system
Ozyz (well known from the classical restricted three-body prob-
lem), the equations of motion of the particle P are (Ragos and
Zafiropoulos (1995); see also Appendix A) :

j—zy=x_%($+#)—%($+ﬂ—l)—
1 2
Wi [z + ] . _
7"_21[ 2“((9:+,u):i:+yy+zz)+a:—y]—
1 1
W:
—;[%((x+u—l)x+yy+zz)+x—y} (1a)
3 3
y+2f=[l—Q—;—Q2:|y_
T T
W;
—il‘[%((ﬂ?+u):i‘+yy+zz)+y+x+p]
T LM
‘Igz[%((whu—l)x+yy+zz)+y+x+p—1] (1b)
2 L™
I
W;
—2][—2((w+u)ﬂ:+yy+m)+z]—
r? |1
W;
—22[—2(($+u—1)w+yy+ZZ)+Z], (lc)
T2 L7
where
Qi=q —p), Qr=qpu,
W1=(1—QI)(1_'“), W2=(1—Q2)#,
Cd Cq
and

=/ (@+p)? +y? + 22, o=/ (x +p—1)2 + 92 + 22.

We denote by . the mass ratio parameter (0 < p < 1/2); by ¢;
(¢; < 1) the parameters determining the relationship between
the measures of the gravitational and radiation pressure force
of the primary S;,i = 1,2; by ¢4 the dimensionless velocity of
light, i.e. the size of light velocity using as unit the sum of the
measures of the velocities of the two main bodies.

3. Existence and location
of the out of plane equilibrium points

The position of the out of plane libration points can be deter-
mined by setting

i‘=’y=2=0,
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and considering z # 0 in Equations (1). We thus obtain that

x_@@ u)—Qf(mu - D+ [K; + Ej] y=0, (2
T T2
[1—931—63—3} y- D - 2@ru—1=0,  @b)
T on 81 T2
Q—3 + Q—32 =0. (2¢)
TN

From Equation (2c) it can be seen that, for the existence of
any real solution (z,y, z) of System (2), one of the following
conditions is necessary to hold:

Qg2 <0 or @ =q0=0. 3)

The second condition means that the gravitational attractions
balance the corresponding radiation pressure forces, so, the par-
ticle moves under the influence of the Poynting-Robertson effect
forces. This case will not be considered in this paper.

The first condition means that the radiation pressure force
of just one of the primaries exceeds its gravitational attraction.
From Equation (2c) and the definition of r;, r, we have that

m:%—u+%[1—(g?)}r. @)
Equations (2b) and (4) yield
1 @ Q)
r= s [ () - ()}
1 Q1
+§ [ -W; (Qz) } %)

Finally, combining Equations (2c),(4),(5) with (2a), we have
that the distance of any existing equilibrium point from S; must
satisfy the equation

P )= a6r6 +a4r4+a2r2+a17‘1 +ag = 0,
1 1 1

©

where

wi[ (@] et
weafren(@)]
v [n(8) (&)}
e v (8)]

a; = _Qh
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Fig. 1. Binary star Kruger 60. The existence and the number of roots
of Equation (6): theoretical study

Any positive root of (6) together with the corresponding value
of r, obtained from (2c) must fulfill the triangle condition

ri+ry > 1. @)

Then the z, y, z may be derived from Equations (4), (5) and

z=H4/r} — (z+p)? — 2 8)

Equations (8) indicate that the ‘out of plane’ equilibrium points
exist in pairs. The members of each pair are symmetrical with
respect to the Ozy plane.

The existence and the number of libration points can be
partly determined by studying the behaviour of Equation (6).

The coefficient a4 of the polynomial P(r) is always non-
negative and a; has a sign opposite to that of g;. For given
values of the mass ratio  and the light velocity ¢, the rest of the
coefficients depend on g1, g;. We observe that ag and a; have the
same sign. For the typical case of u = 0.25 and ¢4 = 48002.33
(binary star Kruger 60) we present the curves on which ag and
ayp are equal to zero (Figure 1: curves (1) and (2) respectively).
These curves determine seven regions on the parts of the plane
where ¢1¢; < 0:

A. Inthisregion ag > 0,a4 > 0,a; > 0,a9 > 0. Since there is
no change of sign in the sequence of a;, no roots of (6) exist.
Hence there are no equilibrium points for (g1, ¢;) € A.

B. Here ag > 0,a4 > 0,a, > 0,a; > 0,09 < 0. Since
there is just one change of sign in the sequence of a; and
P(0)P(+00) < 0, there is exactly one positive root of (6).
Hence there exists at most (due to Condition (7)) one pair
of equilibrium points for (g1, ¢2) € B.
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C. In this region ag < 0,a4 > 0,a; < 0,a; > 0,a9 > O.
There are three changes of sign in the sequence of a; and
P(0)P(+0) < 0. So there is one or three roots of (6).

D. In this part of the plane ag < 0,a4 > 0,a; < 0,a; <
0, ap > 0. The situation here is the same as in C. So, Equa-
tion (6) has one or three roots.

E. Here ag > 0,a4 > 0,a; > 0,a; < 0,09 > 0. Since
there are two changes of sign in the sequence of a; and
P0)P(+00) > 0, none or two positive roots of (6) exist.
Hence there are either none or at most two pairs of equilib-
rium points for (¢, ¢;) € E.

F. In this region ag > 0,a4 > 0,a; > 0,a; < 0,a¢ < 0. This
case is similar to B. So at most one pair of libration points
exists.

G. In this part of the plane ag > 0,a4 > 0,a; > 0,a; <
0,ap > 0. As in region E, none or at most two pairs of
equilibrium points exist.

Although the above theoretical study gives information about

P(ry), it is not enough to determine the exact number of the

roots of Equation (6). For this reason we use a method based

on the topological degree and the Kronecker-Picard integral.

According to this method the number of roots of the polynomial

P(ry) within an interval (a, 8) is :

/" P(r)P"(r) — P*(ry)
o« PAro+y? P

1P'(B) 7P’ ()
—arctan (W) +arctan (—15(—55-)}, )

where « is an arbitrary small positive constant. The derivation
of Formula (9) is explained in Appendix B.

/l/'=—l['y

™

Once we calculate the exact number.//”" of the solutions p;
of Equation (6) within an interval (, 3), we can locate them by
subdividing this interval and finding ./ subintervals (a;, 3;)
for which the well known Bolzano’s criterion P(a;)P(3;) <
0 is fulfilled. In order to compute the root p; in the interval
(aj, B;), we utilize a modified version of the bisection method.
A short description of this method is presented in Appendix C.

4. Stability of the out of plane equilibrium points

Inorder to study the stability of the equilibrium, we first linearize
Equations (1) around its position (zo, Yo, 20). Denoting by &, n
and ¢ the corresponding perturbations along the axes Oz, Oy,
Oz, we obtain the following system:

(D2+A1D+A2) £+(A3D+A4) 17+(A5D+A6) C=O,

(B1D+B,) £+(D*+B3D+By) n+(BsD+Bg) (=0,
(C1D+Cy) £+(C3D+Cy) n+(D*+CsD+Cs) ¢ =0,

10)

where D stands for differentation with respect to time. The
coefficients A;, B;,Cy, i = 1,...,6 are given in Appendix D.
The characteristic equation of the matrix in System (10) is a
polynomial of sixth degree :

MNaeshre +aXl+ 2+l +c=0.

€3))
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Fig. 2. Binary star Kruger 60. The existence and the number of roots
of Equation (6): numerical study

The coefficients ¢;, 2 = 0, ..., 5 are also given in Appendix D.
The obtained eigenvalues determine the stability or instability
of the respective point.

5. Numerical results

The topological degree method for the computation of the exact
number of the roots of Equation (6) has verified the analytical
results regarding the regions A, B and F. For the rest of them it
gave the followings:

In C there is only one root of Equation (6), while for
(q1, ¢2) €G it has two roots.

Region D is divided into two subregions, D; and D5, giving
one and three roots respectively (Figure 2). Region E is also
divided into two subregions. For (g1, ¢2) € E; there are no roots
of Equation (6), while if these parameters belong to E, there
exist two roots. The boundary between Dy, D; and E;, E; is the
curve (3) which includes the points (g1, g2) where the derivative
P'(r}) has a double root.

The above mentioned regions depend on the value of mass
ratio. As p increases, B and C get larger, G and F get smaller,
while D; and E; increase at the expense of D, and E; respec-
tively.

However, in certain cases, due to Condition (7), not all the
roots of Equation (6) give pairs of equilibrium points.

In this paper we present results regarding two binary stars,
namely Kruger 60 (1 = 0.25, ¢g = 48002.33) and BD-8°4352
(= 0.33333, ¢g = 12561.56). We have calculated the out of
plane libration points for ¢; equal to 1, 0.8, 0.6, 0.4, 0.2, 0.01,
—-0.01, —0.05, —0.15, —0.25, —0.35, —0.45 and —3.5 < g, <
1. The stability of these points is also studied.

0. Ragos et al.: A numerical study of the influence of the Poynting-Robertson effect. II

Fig. 3. Binary star Kruger 60. A three-dimensional representation of
equilibrium points Lg, Ls (separated by e) for (1) ¢1=1, (2) ¢1=0.8, (3)
q1=0.6, (4) q1=0.4, (5) ¢1=0.2, (6) ¢1=0.01 and —3.5 < ¢» < 0

5.1. Existence and location

Firstly, we refer to the binary star Kruger 60.

For all considered positive values of ¢; there are intervals of
q of the form [a, b], a, b < 0 for which there exist equilibrium
points. For ¢; =1, 0.8, 0.6, 0.4, 0.2 and g, within a certain
subinterval [c, b], ¢ > a, there is only one pair of equilibrium
points. We name Lg the point with positive z—coordinate and L
the other one. If g, € (a, c] a second pair of such points appears,
Lg and Lo, which have relatively smaller x and y coordinates
and larger value of z. When ¢, = a, Lg and L; coincide with
Lg and Ly respectively. When g; = 0.01 the picture is the same
except that Lg and Lg appear for all ¢, € [a, b] while Lg and L,
exist only for g; € (a, c] (Figures 3,4,5).

For these values of ¢, the x—coordinate of any existing
equilibrium point is positive.

When ¢; = —0.01, —0.05, —0.15, —0.25 there is a range
of ¢, of the form [a, 1], a > 0, for which one pair of equilib-
rium points exists, Ls and L7 (Figures 6,7,8). Due to Condition
(7) there are no libration points for those (g1, ¢») within region
B. Consequently, for every g, > 0 the values of ¢; for which
equlibrium points exist are bounded by curve (1) (Figure 2).
Thus, obviously, for ¢; = —0.35, —0.45 there are no such points.

For the considered negative values of ¢; the z—coordi-
nate of any existing equilibrium point is negative while the
y—coordinate is positive.

We observe that as g; decreases the respective ranges of
@2, namely [a,b] when ¢; > O and [a, 1] when ¢; < O, get
smaller. Figures 3 and 6 depict the equilibrium positions in three
dimensions for the above mentioned values of ¢; and q,.
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Fig. 4a. Binary star Kruger 60. The variation of y— versus
z—coordinate of equilibrium points Le, Lg (separated by e) for (1)
qi=1, 2) ¢1=0.8, 3) ¢1=0.6, (4) :1=0.4, (5) ¢1=0.2, (6) ¢1=0.01 and
-35<¢<0
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Fig. 4b. Binary star Kruger 60. The variation of z— versus
z—coordinate of equilibrium points L¢, Lg (separated by e) for (1)
a=1, 2) ¢1=0.8, (3) 1=0.6, (4) ¢1=0.4, (5) ¢1=0.2, (6) ¢:=0.01 and
-35< <0
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Fig. 5. Binary star Kruger 60. The variation of z—coordinate of equi-
librium points Lg, Ls (separated by e) versus g, for (1) ¢1=1, (2) ¢1=0.8,
(3) ¢1=0.6, (4) ¢1=0.4, (5) ¢1=0.2, (6) g1=0.01

Comparing the results obtained for Kruger 60 with the ones
for BD-824352 (Figures 9-14) we see that the whole situation
appears similar. The observed differences are the following:

For positive ¢;, the intervals of ¢, for which equilibrium
points exist increase with the mass ratio . The opposite is true
when g is negative.

Besides when g; is positive, as p increases, the range of
variation of the x—coordinate of the libration points is more
narrow while this of the y—coordinate is wider. The opposite
happens when g; is negative.

5.2. Stability

For the investigation of the stability of the out of plane libration
points it is necessary to study the solutions of Equation (11).
This has been carried out numerically ranging the parameters
q1 and g, from —3.5 to 1 with step 0.001.

For the above mentioned binaries it has been found that
none of the equilibrium positions is stable. It is known that in
the classical photogravitational restricted three-body problem
the out of plane equilibrium points are conditionally stable. Ap-
parently, the presence of the Poynting-Robertson effect ruins
this stability.

6. Concluding remarks

The study of the out of plane equilibrium points presented in
this article leads to the following conclusions:

1. The equilibrium points appear in pairs. The members of
these pairs are symmetrical with respect to the orbital plane
of the primaries.
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Fig. 6. Binary star Kruger 60. A three-dimensional representation
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Fig. 7b. Binary star Kruger 60. The variation of z— versus

of equilibrium point L¢ for (1) ¢1 = —0.01, (2) ¢1 = —0.05, (3) z—coordinate of equilibrium point L¢ for (1) ¢ = —0.01, (2)
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Fig. 7a. Binary star Kruger 60. The variation of y— versus
z—coordinate of equilibrium point L¢ for (1) ¢1 = —0.01, (2)
g1 =—0.05,3) g =-0.15,4) g =-025and 0 < 2 < 1

Fig. 8. Binary star Kruger 60. The variation of z—coordinate of equi-
librium point L¢ versus ¢, for (1) ¢1 = —0.01, 2) ¢1 = —0.05, (3)
q1 = —0.15,(4) g1 = —0.25
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Fig. 9. Binary star BD-8°4352. A three-dimensional representation of
equilibrium points L¢, Lg (separated by e) for (1) gi1=1, (2) 1=0.8, (3)
q1=0.6, (4) ¢1=0.4, (5) ¢:1=0.2, (6) ¢:=0.01 and -3.5 < ¢ <0
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Fig. 10a. Binary star BD-8°4352. The variation of y— versus
z—coordinate of equilibrium points Ls, Lg (separated by e) for (1)
q=1, 2) ¢1=0.8, (3) ¢:=0.6, (4) ¢:=0.4, (5) :=0.2, (6) ¢:=0.01 and
-35<¢<0
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Fig. 10b. Binary star BD-8°4352. The variation of z— versus
z—coordinate of equilibrium points Le, Lg (separated by e) for (1)
q1=1, 2) ¢1=0.8, (3) ¢:1=0.6, (4) ¢1=0.4, (5) ¢1=0.2, (6) ¢:=0.01 and
-35<¢<0
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Fig. 11. Binary star BD-8°4352. The variation of z—coordinate of
equilibrium points L¢, Lg (separated by e) versus ¢, for (1) ¢1=1, (2)
¢1=0.8, (3) ¢:1=0.6, (4) ¢1=0.4, (5) ¢1=0.2, (6) ¢1=0.01
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Fig. 12. Binary star BD-8°4352. A three-dimensional representation
of equilibrium point L¢ for (1) ¢ = —0.01, 2) ¢ = —0.05, 3)
q = —015 @) ¢ = —025, (5) q1 = —0.35, (6) ¢1 = —0.45 and
0<g<1
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Fig. 13a. Binary star BD-8°4352. The variation of y— versus
z—coordinate of equilibrium point L¢ for (1) ¢1 = —0.01, (2)
q = —0.05 3)q = —0.15, @) 1 = —0.25, (5) ¢1 = —0.35, (6)
q=-045and0< g <1

0. Ragos et al.: A numerical study of the influence of the Poynting-Robertson effect. II

S
N

3] =) N

PURT I ST [ TN VO U T YO T T I W T W T W O O 0 O B 1 B AV 1

()

N

-~

2
1

LIS I N S N B B B N R B B B B B N | T T T T 17T llllTx

-0.35 -0.30 -0.25 —0.20 015 010 005 -0.00

Fig. 13b. Binary star BD-8°4352. The variation of z— versus

z—coordinate of equilibrium point Le for (1) ¢ = —-0.01, (2)
= —0.05, 3) ¢1 = —0.15, (4 1 = —0.25, (5) q1 = —0.35, (6)
=—-045and0<q2<1
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Fig. 14. Binary star BD-8°4352. The variation of x—coordinate of
equilibrium point L¢ versus ¢ for (1) g1 = —0.01, (2) 1 = —0.05, (3)
q1 = —0.15, (4) ¢ = —0.25, (5) ¢1 = —0.35, (6) g1 = —0.45
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2. When the radiation pressure force of the more massive pri-
mary does not exceed the gravitational one there are at most
two pairs of such points. In the opposite case there is at most
one pair.

3. The influence of the Poynting-Robertson effect keeps, in
general, the equilibrium points slightly off the Ozz—plane.

4. Both pairs of libration points are unstable.

7. Discussion

In this article we study the number, the location and the stability
of the “out of plane” equilibrium points for particles moving in
the vicinity of two massive bodies which emit light radiation.
As it is known, such points do not appear if only gravitational
forces are considered. The existence of these points is of partic-
ular astronomical interest in connection with planetary system
formation, satellite motion, etc.

The existence of radiation perceptibly influences the char-
acteristics of motion for particles with appropriate masses
and cross-sections. Comparing previous contributions with the
present one it is obvious that the results about the “out of plane”
equlilibium positions depend also widely on the order of ap-
proximation of the forces introduced:

Consider that the radiation pressure force is enough to de-
scribe the radiation influnce. Then, provided that this influnce
of just one of the main bodies dominates the gravitalional one,
there is one or two pairs of equilibrium points, symmetrical with
respect to the orbital plane and lying on a plane perpenticular to
the above mentioned one and containing the primaries. For par-
ticles of certain physical properties these positions are linearly
stable for a specific range of the mass ratio of the primaries.

In our model, which, additionally, takes into account the
aberrational deceleration due to the Poynting-Robertson effect,
these points deviate from the plane on which they used to lie
in the previous consideration. Moreover, for the cases studied,
these positions are unstable and, as indicated, not significantly
affected by the masses and orbital characteristics of the pri-
maries. So, the out of plane equilibrium points in binary star
systems should not be expected to gather particles susceptible
toradiation influence. We note that similar results were obtained
for the “coplanar” libration positions in a previous communica-
tion of ours (Ragos & Zafiropoulos 1995). Consequently, small
as the two additional forces are, their influence is remarkable.

Appendix A: derivation of Eq. (1)

In an inertial frame OXY Z whose origin is the mass centre
of two radiating primaries S;, S, with coordinates (s;,0,0),
(52,0, 0), the total acceleration of the particle P will be :

> qimy qrmy
R=-G R; - G—=R
R rR
mp R]'R] R] R]
a q‘)GR%[ R R c]
my [Ry-Ry Ry Ry
(1 - )2 22,22 Al
( qZ)R%[ch 7, c], (A1)
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where m; is the mass of S; (mq > ma), ¢ = 1 — Fp;/Fg;
expresses the relation between the radiation pressure and the
gravitational force due to S; and R; = /(X — s;)2 + Y2 + Z2
(i =1,2). Obviously ¢; < 1.

Considering now that the primaries rotate in circular orbits
around O under the influence of their mutual gravitational attrac-
tion, we use a new coordinate system Oz yz which follows them.
The bodies are positioned on the Oz —axis, the Oxy—plane co-
incides with OXY and the Oz—axis with O Z. Furthermore, we
transform the units of mass, distance, time so that this system
will be dimensionless : the distance between the two primaries
as well as the sum of their masses are assumed to be equal to
unity and the unit of time is such that their angular velocity is
1. The Gaussian constant G will also be 1. Since, in this frame,
the sum of the velocities of the primaries is equal to one, we
measure the velocity of light using as unit this quantity. If u
denotes the mass of S,, the mass of S; will be 1 — y and their
positions on Oz 1 — p and —p, respectively.

In the above described reference system, the acceleration
acting on P can be expressed, in terms of the Coriolis Theorem,
as follows :

r= _117"%“[.]1— T—lél'z

44 Ni(% q1)
r(l— (I"1+k>(l‘1)-l'1) 51_+l"|+k><l'1]
L CdT1 T Cd

+,U(1‘;112)
L)
-(1 _ (l"2+k>< rg)-l‘z) 52_ + I +kx l’z]
L CdT2 ) cd

+2k x £ +k x (k x 1), (A2)

where k is the unit vector along the Oz—axis, r is the po-

sition vector of P and 71 = /(z+p)?+y*+2% 1 =

Vi@ +p— 12 +y2+ 22,

Appendix B: derivation of Eq. (9)

Definition. Suppose that a function F,, = (fy, f2,..., fn) :
Y, C R™ — R" is defined and twice continuously differen-
tiable in an open and bounded domain &7, with boundary b(Z,,).
Suppose also that the roots of the equation

Fn(x)=@na @n =(0a0,"',0)7 (Bl)
are located in &, and are simple i.e. the Jacobian determinant
Jr,, of F,, at these roots is non-zero. Then the topological degree
of F,, at ©,, relative to %, is defined by (Alexandroff & Hopf
1935; Ortega & Rheinbolt 1970)

>

x€F; ' (©,)

deg[F,,, Z},,0,] = sgn Jr,, (x), (B2)

where by sgn we denote the well known sign function.
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The above definition means that the topological degree is
equal to the number of the simple roots of (1) which give positive
Jr,, minus the number of those which give negative Jg,, .

The topological degree can be represented by the Kronecker
integral (Kronecker 1895):

deg [Fna@'n, O,] =
Z D@'dml BN d.’L‘,;_ld:I}i“ N d.’I)n

1 i=1
= — , B3
Q,, / (fE+f2+...+ f2)n/2 (B3)
WD)
where
D= (~1)"¢=)
F, o e Te  Ba (B4)

and Q, is the surface of a unit sphere in R™ ie. Q, =
277/2T (2).

Picard (1892; 1922) considered, instead of F,,, the following
function:

Fn+1 = (fla- . 'afnafnﬂ) : @nﬂ - Rn+l - ]Rn+1) (BS)

where fp41 = Tny Jr, and P, is the direct product of the do-
main %, with an arbitrary interval of the x,,,; —axis containing
the point z,4+; = O (see also Hoenders & Slump 1983). Then
the system :

fi(xl):BZa"'azn):Oa i=1727""n)
frnn1 = T Jr, (T1, T2, ..., Tn) = 0,

(B6)

has the same simple roots with Equation (B1), provided that
Tns1 = 0. Besides the Jacobian of (B6) is equal to (J, )* which
is always positive. Thus we conclude that the total number of
the roots of (B1) can be given by 4" = deg[Fp+1, Pn+1, Ons1]-

‘We consider now the problem of calculating the total number
of simple roots of

fi(z1) =0,

where f; : [, 8] € R — R is twice continuously differen-
tiable in this interval; o and 3 are arbitrarily chosen so that
fi(a@)f1(B) # 0. According to Picard’s extension we define the
function Fy = (fi, f2) : 22 € R* — R? and the corresponding
system

fl(xlvwl) = fl(xl) = Oa
fa(x1,22) = 22 f{(21) = 0,

where & is the rectangular parallelepiped in the (z1, z,)—plane
[a, B] x [—7,~], with « an arbitrary small positive constant.
Since the roots are simple, which means f{(z) # 0 for z €
fr L), it is easily seen that Equation (B7) and System (B8)
have the same roots in &°. Also, Jg, = (f] )2. So the total number
of simple zeros /" of the function f; in (a, 8) can be given
by

B7)

(B8)

N = deg[F27 ‘@7 @2]'
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Now, Equation (B3), for n = 2, yields

1 Dld.’L‘z + Dzd.’I}]
deg[F,, #7,0;] = — —
2 2 flz T f22

271' %)
where D and D, are defined as in Relation (B4) and the inte-
gration is performed along (7). By replacing Dy, D, in the
above integral we get

1 fidfa — frdfy
deg[F,, #,05] = — —_— = (B9)
g2 2o fygy I PR
Moreover, since  d arctan <é> = f,_dj%;_]%d_fl’ we ob-
h fi+f;
tain the following :
_ 1 frdfy — fodfi
deg[F27@7 92] = I f f12 + f22
b(P)
_ 1 fa
= fdarctan (fl). (B10)
b(Z)

Performing the integration in Equation (B10) we finally get

v “‘%[ [ RS fe,,

H@)+2 A ()
3 'yf{(ﬁ)) (m’ (a)> 1
arctan ( B +arctan @ )| (B11)

It has been explicitly shown by Picard that /" is independent
of the value of v and need not be computed within high accuracy,
because it is known a priori that the number of roots has to be
an integer.

The Kronecker-Picard integral can also be applied for the
determination of the total number of multiple roots (Davidoglou
1901; Tzitzéica 1901; Hoenders & Slump 1992). However the
multiple roots of f; can be found by the method described above
by considering the roots of its derivatives.

Appendix C: description of the bisection method

The modified bisection method used to solve Equation (6) is
described by the scheme

p5 =pj+ sgn P(pf) sgn P(p)h; /2™, i=0,1,...,  (CD)

with p) = aj and h; = 3; — a; (Vrahatis, 1988). The above se-
quence converges with certainty if the Bolzano’s criterion holds.
If the number of roots in an interval is even, Algorithm (C1) con-
verges to the root p; provided that, for some pg-, i=1,2,...,
the following holds:

sgn P(p}) sgn P(p}) = —1.

The number of iterations v, required to obtain an approximation
p; of the root such that lpj — p;| < g, for some € € (0, 1), is
given by

v = [logy(hze™)],
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where [-] denotes the smallest integer not less than the real

number quoted.

The bisection method always converges within the given
interval and it is a global convergence method. Moreover it is
“optimal”, i.e. it possesses asymptotically the best possible rate
of convergence (Sikorski 1982). Also, we know in advance the
number of iterations required in order to attain an approximate
root to a predetermined accuracy. Finally, Scheme (C1) requires
only the algebraic signs of the function values to be computed,
thus it can be applied to problems with imprecise function val-

ues.

Appendix D: coefficients of Sys. (10) — Eq. (11)
The coefficients of System (10) are :

W] W2 2 Wl W2
A= —@o+p)y + —=(zo+p— 1)+ =L+ 22 ,
o 30 o T%o
A = —1—3[2-@ +,u)2+g-(xo+,u—l)2]
7”10 720

wi W,
+2 [—(xo + )+ —(:Eo +u— 1)] Yo,
o 30

Wi W,
Ay = -2+ [—(a;o+,u)+ ——(xo+u - 1)] Yo,
7'10 T20

Ayg= -3 [?—(mo+u)+Q—(xo+u— 1)}

10 T30
W, W W, W
o Z[TlJf—z}yg’
Tlo T2 Tio. T2
Wi W,
As = [_(1'0 +p)+ —(zo +p—- 1)] 20,
7‘10 20

Ag= -3 [Q—(xo+,u)+9—(zo+,u— 1)] 20
T30

+2 } Y020,

’"10
(

o+ p)+ ——(zo +pu— 1)} Yo,
20

e
Bi=2e |2
-3

-3 —(:vo + )+ —(wo +p— 1)] Yo
20

4% %% W,
+TI+K2/3 [ l(:150+u)+—(:1c0+p—1)2
o T o T30

|Vt Tt

w.
By = [@ . 2} » Wi W,
Tio T Tlo T2

|

™o T3
wi W-
-2 [T(-’Uo + )+ = (o + p — 1)] Yo,
T10 0
w, W,
Bs = [Tl + TZJ Y020,
Tilo T2

Bg=-3 [6—251 + %:l Yozo0
Tio T2

%% %%
-2 [Tl(wo +p)+ Tz(xo U= 1)] 20,
T1o T20

Q
|

= 41($0+/~‘L)+ 42(m0+/-l‘_1) 20,
T T
10 20

Cr= -3 [Qsl(xo e+ Laorp - 1)J 2,
Tio 720

W, W,
Cs= [T + —4'] Yoo,
Tio T2

C6 =-3 [% Q2] Zé.

T1o 7"20

where :

T0=1/ (To+p)?+y2+22, r20=\/(x0+,u — 1)2+y2+22.

The coefficients of Equation (11) are :

cs =A1 + B3 + C5,

Cq4 = Az — A3B] + AlB3 + B4 — A5C] — B5C3 + A]C5
+B3C5 + CG,
C3 = —~A4Bl - A3Bz + AzB3 + AlB4 - A6(71

—A5.B3C] + A3B5C1 — A5Cg
+A5B103 — A|B5C3 — BGCS — B5C4 + A205
—A3B105 + A]B305 + B4C5 + A]CG + 3305,
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—A4By + AyBy — AgB3Cy — AsB4Cy + AsBsCh
+A3BsC — AgCy — AsB3Cy + A3 BsCy + A¢B1Ch
+A5B,C; — AyBsCsy — A1 BgC3 + AsB1Cy — BsCy
—ABsCy — A4B1Cs — A3 B,Cs + A3 B3Cs
+A41B4Cs + A,Cg — A3 B1Cs + A1 B3Cg + B4Cs,

&)

Cc1 = —AeB401 + A4BGC1 — AﬁB3C2 — A5B4Cz
+A4B502 + A33602 + A6B203 — AgB6C3
+A6Bl 04 + A5BzC4 — A2B5C4 — AlB6C4
—-A4BzC5 + A2B4C5 - A4B| C6 — A3B206
+A2.B3CG + AlB4C6,

Cy = —A6B402 + A4B6CZ + A6Bzc4 — AzB6C4
—-A4B206 + A2B406.
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