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1. INTRODUCTION

We address the problem of finding reliable solutions of global optimization problems
f* = min f(z), (1.1)

z€ X0
where the objective function f : R® — R is continuously differentiable and the compact set X° C R"
is an n—dimensional box.

Classical gradient and random search methods behave well on simple unimodal functions but
are inappropriate to be applied to difficult (and more common) problems, like non-differentiable,
multimodal or noisy functions. In such cases, where traditional optimization methods fail to provide
reliable results, Genetic Algorithms (GAs) can be an interesting alternative. GAs are optimization
methods that evolve a population of potential solutions using mechanisms inspired from those of
genetics. The choice of a “good” initial population as well as the definition of an efficient termination
criterion are quite difficult tasks. Interval analysis comes to tackle these difficulties. Interval branch-
and-bound algorithms are applied in order to discard from consideration large regions of the search
space, where the global solution cannot exist, and to bound the global minimum.

In this paper a Hybrid Interval Genetic algorithm (HIG) is presented. The algorithm consists
of two phases: In the first phase, interval arithmetic and especially an interval branch-and-bound
algorithm is used to obtain small regions where candidate solutions lie. In this way, a population of
potential solutions is initialized and initial bounds for the global minimum f* are obtained.

In the sequence, a genetic algorithm is applied in such a way that all the above pieces of information
are exploited. The construction of a mechanism that updates the bounds in each generation, gives
the ability to define an efficient termination criterion. When the criterion is fulfilled, the algorithm
converges to the global minimum f* with certainty and extra effort can be avoided.

The contents of this paper are as follows: In Section 2 we shortly review some of the relevant
material of genetic algorithms and interval analysis. Section 3 describes the proposed hybrid algo-
rithm HIG. Numerical experiences are presented in Section 4. The final section contains concluding
remarks and a short discussion for further work.

2. PRELIMINARIES

This section begins with a brief discussion about the basic concepts of GAs. For a more thorough
treatment of this subject, it is recommended to see [1,2,3]. In the sequence, interval arithmetic tools
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which are needed for the treatment of (1.1) are established. A thorough introduction to the area of
interval arithmetic can be found in [4,5.6,7].

2.1. Genetic Algorithms (GAs)

GAs are adaptive search and optimization methods based on the genetic processes of biological
organisms. Their principles have been first laid down by Holland [8]. The aim of GAs is to optimize
a problem-defined function, called the fitness function. To do this, GAs maintain a population of
indiwiduals (suitably represented candidate solutions) and evolve this population over time. At each
iteration, called generation, the new population is created by the process of selecting individuals
according to their level of fitness in the problem domain and breeding them together using operators
borrowed from natural genetics, as, for instance, crossover and mutation. As the population evolves,
the individuals in general tend toward the optimal solution.
The basic structure of a GA is the following:

ALGORITHM 1. Simple Genetic Algorithm
1. Initialize a population of individuals;
Evaluate each individual in the population;

3. while termination criterion not reached do

{

Select individuals for the next population;
5. Apply genetic operators (crossover, mutation) to produce new individuals;

Evaluate the new individuals;

}

7. return the best individual

GAs demand only an objective function measuring the fitness of each individual. No other auxiliary
knowledge such as continuity, differentiability or satisfaction of the Lipschitz condition, is required.
They avoid many of the shortcomings exhibited by local search techniques on difficult search spaces
since they explore new areas using knowledge accumulated during search, not randomly. They often
lead to near-optimal solutions and can be easily parallelized and hybridized. In their recent work,
Renders and Flasse [9] proposed hybrid methods which combine principles from genetic algorithms
and “hill-climbing” methods in order to find a trade—off between accuracy, reliability and computing
time.

GAs are highly depended on the choice of the initial population as well as on various heuristically
chosen parameters. Population size (Popsize), mutation rate (p,,) and crossover rate (p.) and some
other parameters should be properly tuned, in order that the GA exhibits its best performance
[10]. The starting population can be initialized either heuristically, by using whatever knowledge is
available about the possible solutions of the specific problem, or randomly, if no such knowledge is
available. Measuring the performance of a GA is not an easy task. Typically this is done by comparing
the solutions found on different runs, although this implies extra amount of function evaluations.
Another non trivial task is the definition of a termination criterion. A GA may terminate when a
fixed number of generation has reached, when an acceptable solution is found, or when the average
population fitness converges to stable fixed points. However, an efficient termination criterion is
difficult to be defined. Besides, there are problems that are hard for a GA to solve [11,12]. GAs do
not guarantee to find the optimal solution because (i) the search process does not ergodically cover
and search the state space, and (ii) the precision limits in the encoding process can substantially
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reduce the solution accuracy [13].

2.2. Interval Arithmetic

Interval arithmetic is a generalization or an extension of real arithmetic. It has been invented by
R. Moore [4] and has been used recently for solving ordinary differential equations, linear systems,
verifying chaos, and global optimization.

Let I = {[a,b]]|a < b, a,b € R} be the set of compact intervals and ¥" be the set of n-dimensional
interval vectors (also called bozes). The interval arithmetic operations are defined by

AxB={axbla€ A,be B} for A,B €], (2.2)
where the symbol * may denote +, —, -, or /. The above definition is equivalent to the following rules:
[a,b] + [e,d] = [a + ¢,b + d],
la,b] — [e,d] = [a — d,b - c],
[@,b] - [c,d] = [min{ac, ad, bc, bd}, max {ac, ad, be, bd}],
la,b]/[e,d] = [a,b] -[1/d,1/c] i O ¢ [c,d].

Throughout this paper, we denote real numbers by z,y,... and real bounded and closed intervals
by X = [i,jﬂ,Y = [X,?],..., etc. The width of the interval X is defined by w(X) = X -
X ifX € X, and w(X) = max™, w(X;), if X € I". The midpoint of the interval X is defined by
m(X) = (X +X)/2if X €I, and m(X) = (m(X3)), if X € I".

An interval function F(Xq,...,X,) of intervals X;,...,X,, is an interval valued function of one
or more variables. F(X1,...,X,) is said to be an interval ertension of a real function f(zy,...,z,)
if f(z1,...,zn) € F(X1,...,X,), whenever z; € X; for all 7 = 1,...,n. An interval function, F, is
said to be inclusion monotonic if X; C Y; (i = 1,...,n) implies: F(X;,...,X,) C F(Y1,...,Y,).

The power of interval methods in solving optimization problems and in other applications, is exhib-
ited in the following result due to Moore [4,5]: “Let F(X1,...,X,) be an inclusion monotonic interval
ectension of a real function f(zy,...,z,). Then F(X1,..., X,) contains the range of f(z1,...,%z)
foralz, e X;((=1,...,n)".

Inclusion functions can be constructed in any programming language in which interval arithmetic
is simulated or implemented via natural interval extensions. However, computing an interval bound
carries a cost of 2 to 4 times as much effort as evaluating f [7].

Interval methods for solving optimization problems consist of: (a) the main algorithm, which is a
sequential deterministic algorithm where branch-and-bound techniques are used, and (b) accelerating
devices such as cut—off test, monotonicity test, interval Newton-like step, concavity test, or local
search procedures. Branch-and-bound techniques split up the whole domain into areas (branching)
where bounds of the objective function f, are computed (bounding). The starting box X% € I" is
successively subdivided into smaller subboxes in such a way that subregions which do not contain a
global minimizer of f are discarded, while the other subregions are subdivided again until the desired
width of the interval vectors is achieved. The development of interval tools appropriate for dealing
with optimization problems is presented in [14,15,16].

3. THE NEW HYBRID INTERVAL GENETIC ALGORITHM

In this section we present our Hybrid Interval Genetic algorithm (HIG). Firstly, we give a simple
model algorithm which is based on the branch-and-bound principle. It is used in the first part of our
hybrid algorithm in order to produce boxes (with relatively small diameter ¢) from which we get a
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“good” initial population used in the genetic portion of HIG. Secondly, we describe how the initial
population is formed and propose our algorithm. Finally, we explain how a termination criterion can
be defined using obtained information for bounds of f*.

3.1. Interval Subdivision Algorithm

This algorithm has common features with an interval subdivision method for global optimization,
but does not include local search procedures, concavity test or interval Newton-like steps, as the
latter require the inclusion of the Hessian [14,16,17]. On the contrary, the cut-off and monotonicity
tests are applied. Cut-off test uses the inclusion function /' and an upper bound f for the global
minimum f*. Boxes X with min F(X) > f do not reliably contain any global minimum point and,
therefore, can be deleted.

Moreover, if f is differentiable then monotonicity test can be applied. Monotonicity test allows
one to automatically recognize whether f is strictly monotone in one of the variables in some subbox
Y C X. Let VF be the inclusion function of the gradient of f, Vf. If 0 ¢ VF;(Y) for some
j=1,...,n, then box Y can be discarded or replaced by an edge piece [16].

The algorithm requires the following set of parameters: the initial box X0; the inclusion function
Ffor f: X% - R; and the maximum diameter ¢ of an accepted box. On output it returns a list
of boxes, £, and an interval F™ containing initial bounds for the global minimum f*. The model
algorithm is as follows:

ALGORITHM 2. Interval Subdivision Model Algorithm
1. Set Y = X,y = min F(X), and f = max F(X) as an upper bound for f*. Initialize the
working list W = {(Y,y)} and the candidate list £ = {}.
2. Choose a coordinate direction k parallel to the edge of maximum length of Y = Y; x---xY,.
3. Bisect Y normal to direction k obtaining boxes V!, V2 such that Y = VI UVZ

4. Calculate F(V!) and F(V?). Set v' = min F(V*) for i = 1,2. Improve the upper bound
f = min{f,max F(V1),max F(V?)}.

5. Remove (Y,y) from the working list W.

6. Cut-off test: discard the pair (V',v') if v* > f,for i = 1,2.

7. Monotonicity test: discard the remaining pair(s) (Vi v?) if 0 ¢ VF;(V?) for any j € {1,
2,...,n},and ¢ = 1,2,

8. If w(F(V')) < ¢ then insert the pair (V?,v') to candidate list £; else insert it to the working
list W. The insertion is done in such a way that the second members v* of all pairs do not
decrease.

9. If the list W becomes empty, then set as lower bound, _F;t, the second member of the first
element of list £, and as upper bound, F*, the current f. Return list £ and interval F*
containing the bounds.

10. Denote the first element of W by (Y,y). Go to Step 1.

The above sequential deterministic algorithm has been mainly established to produce a list of rela-
tively small boxes containing various stationary (minima, maxima or saddle) points. According to
our verifying procedure the global minimizer exists with certainty in one of these boxes. Of course, if
the inclusion function gives the range of f in a particular box, then the box with the minimal lower
bound in the list £ contains the global minimizer.

In order to discard additional regions, any local (non-interval) optimization method that pursues
the aim of delivering small function values at the first stages of Algorithm 2 can be used. In this
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way, cut-off test (Step 5) is more effective and regions containing various useless stationary points
can be discarded. Cut-off test does not require additional pieces of information, but it may decrease
the space complexity, i.e. the maximal length of working list W. Evidently, the monotonicity test
(Step 6) can be applied when the function f is differentiable. If this is not the case Step 6 must be
removed. Additionally, in many cases a huge amount of time can be gained by applying different
strategies in Step 1, instead of bisecting a box orthogonal to the direction with greatest diameter.
Various strategies and confirmation of this effect are recently proposed by Csendes and Ratz [18,19].
Also, related approaches and implementations of Algorithm 2 can be found in [17]).

Furthermore, Algorithm 2 gives an additional information regarding the bounds of f*. These
bounds are fundamental for the construction of our termination criterion (explained later) used in
the genetic portion of HIG.

3.2. HIG Algorithm

In the second phase, a genetic algorithm is applied. As stated before, boxes obtained by Algorithm 2
are used to form the initial population of a GA. This initialization can be done as follows: Firstly,
the population size, Popsize, is defined. The midpoints of the boxes in list £ are taken as members
of the initial population. In this way, the number of individuals is equal to the number of the above
boxes, #L£. If #L is greater than Popsize, then Popsize is teplaced by the value #L£. I it is smaller,
the population is increased by taking sequentially a box from the list £, randomly selecting a point
within it, and adding this point to the population. This procedure takes place cyclically until the
number of individuals reaches the value Popsize.

The number of boxes contained in £ depends on the choice of the heuristic parameter ¢ of Algo-
rithm 2. For all the problems tested a value of ¢ € [0.001,0.1] returns a list length value #.£ smaller
than Popsize = 50. In general, according to our experience, the choice of ¢ is proportional to the
diameter of the initial region and the morphology of the objective function.

Next, we combine Algorithms 1 and 2 to obtain the following hybrid algorithm:

ALGORITHM 3. Hybrid Interval Genetic Algorithm, HIG
1. Apply an interval subdivision algorithm;
2. Initialize the population;
3. Evaluate each individual in the population;
4. while termination criterion not reached do

{
Update the bounds;

Select individuals for the next population;

o @

7. Apply genetic operators to produce new individuals;
8. Evaluate the new individuals;

}

9. return f* and z*.

The bounds F* and F~ which are obtained by the Step 1 of the above algorithm satisfy the following
relation:

< fr <P
Since, in general, we choose a relatively large value of € and also the inclusion function is actually the
natural interval extension of f, the F* and F* are overestimated. The basic idea for the termination
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criterion referred to Step 4 is to make these bounds of f* sharper at each generation.

Now, although it is always possible for a genetic algorithm to update and improve the upper
bound at each generation, it is impossible to give a better lower bound. Also, the lower bound is
much smaller than the global minimum value. GAs are not able to provide a safe mechanism for
updating the lower bound since they sample the objective function at only a finite munber of points.

Thus, we update the bounds in the following way: At each generation, the upper bound F* of the
global minimum is replaced by the minimum of the current upper bound and the best individual’s
performance. That is,

F* = min {T—*_, BestPerformance} .

Updating the lower bound is not an easy task. To do this, we utilize interval arithmetic and the
notion of the current shrinking bor which is defined in the sequel.

A current shrinking box, denoted by Xs, is the smallest convex interval vector containing a subset
S of n—dimensional individuals z,, z2,...,z,, where k < Popsize, whose performance is within the
interval [F*, F~].

The shrinking box is constructed when the number k of individuals with performance within the
current interval [F*, F'*] exceeds a predefined number, r, which is proportional to the total population
size, Popsize. According to nature’s survival-of-the—fittest principle, the number k£ will certainly
exceed, r, at some generation. Of course, the indication of the construction of the shrinking box can
be handled as a convergence test of a GA. If it is not constructed, the algorithm does not converge.

When a shrinking box Xs is constructed, an estimation of the range of f over X is obtained using
interval arithmetic. In this way, new bounds Fs and F are obtained. Thus, the current bounds of
the global minimum are updated as follows:

F* = min{F*,Fs}, F* = max{F*, Fs}.
Evidently, as w(Xs) tends to zero the individuals are accumulated to a point. Additionally, if w(F™),
F* = [F*,F¥) tends to zero, which means that F* ~ F* ~ f* then this accumulation point is a
global minimizer of f.
Based on this, our algorithm proceeds until the following relations hold:

w(Xs)<e, and w(F*)<e,,

where ¢, and ¢, are the tolerances for z* and f* respectively.
According to our opinion the above termination criterion is very effective compared with other
widely used criteria and by using this, extra computational effort is saved.

4. NUMERICAL EXPERIENCES

The numerical tests have been carried out on an 80486/133MHz PC IBM compatible using an
implementation of the HIG algorithm in C-XSC which is a C++ class library for scientific computing
with automatic result verification [17]. The inclusion functions have been produced by natural interval
extensions.

The performance of HIG algorithm is measured according to the Expected Number of Evaluations
per Success performance index (ENES). This number has been defined at the IEEE International
Conference on Evolutionary Computation (ICEC’96), May 20-22, 1996, Nagoya, Japan. Details on
this can be found from the home page http://iridia.ulb.ac.be/langerman/ICEO.html. ENES
represents the mean number of function evaluation needed in order that the HIG algorithm reaches
the termination criterion and it is computed by running twenty independent runs of the algorithm
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with the same parameters, until the termination criterion is fulfilled. If NS is the number of successes,
that is the number of runs that termination criterion is reached and NE is the total number of function
evaluations during the 20 runs, the ENES is defined as ENES= NE/NS. If the desired value for the
global minimum can never be reached, then ENES is not defined.

We have selected difficult optimization problems for both Interval Analysis and Genetic Algo-
rithms, and experimental results are exhibited in the sequel. HIG algorithm has been compared with
GENESIS 5.0 optimization system due to Grefenstette [20]. Two different sets of runs of GENESIS
have been made: GENESIS-RP and GENESIS-HP, where the initial population has been initial-
ized randomly and heuristically (the same as HIG itial population), respectively. For each test
problem we have executed twenty independent runs. Both HIG and GENESIS have been provided
with the same set of parameters. GENESIS terminates when a predefined number of trials (function
evaluations) is reached. Assuming that one interval evaluation is equivalent to two floating-point
evaluations, the number of total trials supplied to GENESIS has been computed by the formula:
TT = 2+ (IFE + IGE)+ MNE, where IFE is the total number of interval function calls to determine
the range of the function, IGE is the total number of interval gradient evaluations, and MNF is the
maximum number of real function evaluations of a particular run, after twenty runs of HIG.

For the following test problems, further reported parameters are: n the dimension of the problem,
X0 the starting box, z* the global minimizer, and f* the global minimum. BV is the best value each
algorithm has reached, and TOL=¢,=¢, the error tolerance for approximating z* and f*.

PrOBLEM 4.1 Levy function (n = 2) [18]. This function is defined by

5 5
f(z) = icos[(i + 1)z1 +14] Y _ jcos[(j + V)aa + 5] + (z1 + 1.42513)% + (2 + 0.80032)?,

i=1 j=1

within the initial box X© specified by —10 < z; < 10,7 = 1,2. The global minimum is f* = —176.1375
at 2* = (—1.3068, —1.4248). There are about 760 local minima in the minimization region. The large
number of local optimizers makes it extremely difficult for any approximation method to find the
global minimizer.

All genetic algorithms have run for the same set of parameters. That is: population size Popsise =
50, crossover rate p. = 0.6, and mutation rate p,, = 0.01. Algorithm 2 has returned 25 boxes and
has found that f* belongs to the interval [~191.8058, —175.0057|, with total effort IFE = 292 and
IGE = 178. We have executed the HIG algorithm for twenty independent runs and we have found
that the maximum number of real function evaluations of a particular run has been MNE = 2650.
According to the previous formula, the total number of trials for both GENESIS-HP and GENESIS-
RP is MNE = TT = 3600.

The results exhibited in Table 1 clearly show that HIG has been the only algorithm that has found
the global minimum with certainty. HIG has succeeded in all runs and has found the optimal solution

HIG GENESIS-HP GENESIS-RP

BV —-176.1375 —174.9709 —117.363658
NS 20/20 0/20 0/20
ENES 2202 — —
MNE 2650 3600 3600
Success 100% 0% 0%

Table 1: Classification of Levy function (n = 2).
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with the desired accuracy TOL = 0.001. The termination criterion has been verified in all runs. For
each run the maximum number of real function evaluations has been less than or equal to 2650. The
ENES index for HIG has been 2202, while the corresponding index for the rest algorithms cannot
be defined. It is clearly seen that GENESIS-HP is superior to GENESIS-RP. This confirms our
argument that the choice of a “good” initial population is crucial for the efficiency of a pure genetic
algorithm.

PrROBLEM 4.2 Goldstein-Price function (n = 7). [18]. This function is defined by

f@) = [1+ (21 + 22+ 1) (19 - 1421 + 37 - 1425 + 62122 + 323)| X
[30 + (221 — 3z5)? (18 — 320, + 1202 + 482, — 36712, + 27x§)] ,

within the initial box X© specified by —2 < z; < 2,¢ = 1,2. The global minimum is f* = 3.0 at
z* = (0.0,—1.0).

For this problem, the common set of parameters has been: Popsise = 50, p. = 0.6, and p,, = 0.01.
Algorithm 2 has returned 15 boxes. The initial bounds for f* has been [-3.4875x 10°,32.6875] and
the total effort has been IFF = 60 and IGE = 30. As shown in Table 2, although all algorithms have
found the global minimum, with TOL= 0.001, ENES indexes indicate that HIG outperform the rest
of them. Both HIG and GENESIS-HP have succeeded in all runs, in contrast with GENESIS-RP
which has succeeded only in half of them. In addition, HIG seems to be the least cost—effective
algorithm, as the termination criterion has been fullfiled in all runs. For each run the maximum
number of real function evaluations has been less than or equal to 1950. GENESIS-HP has exhibited
better performance than GENESIS-RP, due to the good choice of initial population. However, their
comparatively good performance is justified by the relatively small search region as well as by the
flatness of the objective function in the global minimum’s neighborhood.

HIG GENESIS-HP GENESIS-RP

BV 3.000 3.000 3.000
NS 20/20 20/20 10/20
ENES 1340 1885 4089
MNE 1950 2150 2150
Success 100% 100% 50%

Table 2: Classification of Goldstein-Price function (n = 2).

PROBLEM 4.3 Griewank function (n = 7) [18]. This function is defined by

7 9 7

f(=z) =Z4§60 - Hcos% +1,
i=1 :

i=1

within the initial box X° specified by —600 < z; € 500,¢ = 1,2,...,7. The global minimum is
f* =00 at z* = (0,0,0,0,0,0,0). It is an extremely difficult test problem since there are several
thousands of local minima in this relatively large minimization region.

The common set of parameters for the genetic algorithms has been: Popsise = 50, p. = 0.6,and
Pm = 0.001. Algorithm 2 has returned only one box, with total effort IFE = 580 and IGE = 386.
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HIG GENESIS-HP GENESIS-RP

BV 0.0001 0.0005 1.0292
NS 20/20 20/20 0/20
ENES 430 2450 —
MNE 500 2450 2450
Success 100% 100% 0%

Table 3: Classification of Griewank function (n = 7).

The large amount of this effort, comparatively with the previous test problems, is due to the high
dimension of the problem, as well as to the wide range of the search space. In Table 3, it is easily
seen that both HIG and GENESIS-HP have succeeded in all the runs but, clearly, HIG has been
more efficient than the latter. Observing the ENES indexes it is evident that an efficient termination
criterion for a genetic algorithm is of great significance. HIG needs only few trials to reach the optimal
solution (with TOL = 0.001), while the rest of them consume all the trials and terminate without any
guarantee that the global minimum has been found. GENESIS-HP has performed well (by taking
in advantage its good initial population), in contrast with GENESIS-RP which has been completely
misleaded by the large search region and the enormous number of local minima. Of course better
results for GENESIS-RP can be obtained by tuning the size of the randomly selected population.

5. CONCLUSIONS AND FURTHER WORK

In this contribution, we present a hybrid genetic algorithm for finding guaranteed and reliable solu-
tions of global optimization problems. This algorithm uses the branch-and-bound principle to obtain
small regions where candidate solutions lie. In this way, a highly-performing initial population is
formed and initial bounds for the global minimum f=* are obtained. By applying a genetic algorithm
using this population as well as a safe and reliable technique for updating properly the bounds of f*,
we are able to compute with certainty global minima for various difficult test problem.

The proposed algorithm becomes more effective when a new termination criterion is used. This
criterion is based on the notion of a shrinking box and using this extra computational effort is avoided.

HIG has exhibited high performance when applied to difficult problems, especially to multimodal
and high—dimensional objective functions. It has been clear that HIG outperforms traditional genetic
algorithms. Also, for all the problems examined, HIG has given better results for both Algorithm 1
and 2 studied separately.

In its present form, HIG gives us one global minimum. Assuming that clusters of global minima do
not exist, HIG can give all the global minimizers, using dynamically produced subpopulations. As a
future work, we are going to investigate the construction of a pure genetic algorithm whose genetic
operators will be based on interval arithmetic. In this way and using only function evaluations, we
hope that all the global minimizers will be computed with certainty.
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