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Abstract
Doubly-stochastic matrices play a vital role in modern applications of complex networks
such as tracking and decentralized state estimation, coordination and control of autonomous
agents. A central theme in all of the above is consensus, that is, nodes reaching agreement
about the value of an underlying variable (e.g. the state of the environment). Despite the fact
that complex networks have been studied thoroughly, the communication graphs are usually
described by symmetric matrices due to their advantageous theoretical properties. We do not
yet havemethods for optimizing generic doubly-stochasticmatrices. In this paper, we propose
a novel formulation and framework, EvoDSM, for achieving fast linear distributed averaging
by: (a) optimizing the weights of a fixed graph topology, and (b) optimizing for the topology
itself. We are concerned with graphs that can be described by positive doubly-stochastic
matrices. Our method relies on swarm and evolutionary optimization algorithms and our
experimental results and analysis showcase that our method (1) achieves comparable perfor-
mance with traditional methods for symmetric graphs, (2) is applicable to non-symmetric
network structures and edge weights, and (3) is scalable and can operate effectively with
moderately large graphs without engineering overhead.
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1 Introduction

A complex network is a set interacting agents connected through a graph structure. The study
of complex networks involves analyzing the dynamics between connected agents as well as
the dynamics of the graph structure itself. The combination of these dynamics produces
emergent behaviors even for seemingly simple interactions (we refer the reader to [1] for
more details about the major concepts). Technological advancements throughout the years
have called for a better understanding of complex networks. With the introduction of the
multiprocessor, intricately connected computing agents created a need for dynamic load
balancing methods through local exchanges of data (cf. [2]). Now, with recent advancements
in wireless communications, there is a greater endeavor in automating, coordinating and
controlling systems of interacting robots in a distributed fashion. Applications span from
coordination of mobile agents [3–5], object tracking in sensor networks [6] and network
connectivity maintenance [4], estimation and control [7] and optimization [8, 9]. The study
of social networks is also an active area of research [10].

A basic but integral part of distributed systems is consensus. In this paper, we are interested
in the special case of distributed averaging [11, 12]. In this instance the nodes have to agree on
the average of their initial measurements by communicating through the network. A tutorial
for applications in control can be found in [13] and a recent distributed consensus algorithm
in [14]. It is well-known that the speed with which a system converges to consensus depends
upon the eigenvalues of the underlying network weight matrix. This is the case for both
static models (as we formulate in Section 2) and dynamic models [14]. However, optimizing
network weights for speed is a spectral radius minimization problem [15], which admits a
convex formulation for symmetric weight matrices only. In this paper we show that it is
viable to use evolutionary algorithms to find near optimal non-symmetric weight matrices.
Our experiments show, optimizing non-symmetricweightmatrices hasmerits, the asymptotic
speed of convergence can be considerably faster with asymmetric networkweights.Moreover
our proposed framework allows for applications in doubly-stochastic matrix construction and
(graph) topology discovery.

We consider discrete time distributed averaging with linear update rules. In each commu-
nication round, each node updates its estimate by taking a weighted sum of the estimates of
its neighbors. We are concerned with

(a) the problem of the speed of convergence to the average and
(b) the problem of optimizing the network itself.

In other words, for problem (a) we want to minimize the number of communication rounds
required for all the nodes to approximate the average within an error bound. The asymp-
totic speed of convergence is bounded above by the second largest eigenvalue in magnitude.
We optimize the network weights for speed while respecting the network connectivity con-
straints. For problem (b), given a target for the asymptotic speed of convergence, we aim to
find a network structure that is as sparse as possible. We tackle these problems using the
Unified Particle Swarm Optimization (UPSO) [16–19], and Covariance Matrix Adaptation
Evolutionary Strategy (CMA-ES) [20].

Evolutionary algorithms are (i) easy to parallelize, (ii) can handle non-differentiable and
even discontinuous objective functions, and (iii) it has been showcased that they can find
creative solutions to hard problems [21]. As a result, we are interested to study how these
algorithms perform in the aforementioned problems (a) and (b). We propose a novel frame-
work, called EVolutionary Optimization of Doubly Stochastic Matrices (EvoDSM), that is
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able to optimize arbitrary positive doubly stochastic matrices and provide practical solutions
to problems (a) and (b).

Our contributions can be summarized as follows:

(1) Practical framework for optimizing arbitrary positive doubly stochastic matrices;
(2) An iterative normalization scheme that maps arbitrary matrices to doubly stochastic ones

for making the optimization tractable;
(3) Extensive experimental validation of the proposed method in many different graphs of

different sizes.

The structure of the paper is as follows. Section 2 contains the background material
and relevant approaches in the literature. In Section 3 we present our framework and the
algorithms used in detail. Section 4 contains experiments and analysis and Section 5 provides
a conclusion and directions for future work.

2 Background and related work

Consider a directed graph G(V , E) where V = {1, 2, . . . , n} is the vertex set and E is the
ordered set containing the edges E = {(i, j) : node i listens to node j}. The set of weights
that nodes give to their neighbors can be represented by a stochastic matrixW with elements
W i, j such that:

W i, j =
⎧
⎨

⎩

W i, j > 0, if {i, j} ∈ E,

0, if {i, j} /∈ E .

(1)

Denote by x(0) the vector of initial values held by the nodes such that xi (0) is the value held
by node i . The linear update rule (consensus model of DeGroot [22]) is given by:

x(t + 1) = Wx(t) = W t+1x(0). (2)

The consensus vector denoted by xc is given by the following limit, provided it exists:

xc = lim
t→∞ x(t) = lim

t→∞ W t x(0). (3)

It can be seen that existence and uniqueness of the limit above is equivalent to existence and
uniqueness of a left eigenvector π of W with eigenvalue equal to one:

πx(t + 1) = π(Wx(t)) = (πW)x(t) = · · · = πx(0). (4)

In terms of the graph induced byW , it is well known that necessary and sufficient conditions
for the existence of the limit in (3) are equivalent to G(V , E) being strongly connected
and aperiodic. Aperiodicity is usually enforced by requiring that the diagonal elements of
W are bounded below by a small positive number. Additionally, for average consensus, the
weight structure needs to be balanced in the sense that

∑n
j=1 W i, j = ∑n

j=1 W j,i (see for
example [13]). This is equivalent toW being doubly-stochastic, i.e.

∑n
j W i, j = ∑n

j W j,i =
1 for all i ∈ V .

Provided the necessary and sufficient conditions for consensus are satisfied, it can be seen
that the speed of convergence of (2) depends on the second largest eigenvalue in magnitude.
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Specifically, assuming the matrix W is generic (i.e., non-singular), a spectral decomposition
reveals that:

W = P DP−1 = λ1M1 + λ2M2 + · · · + λnMn

W t = P Dt P−1 = λt1M1 + λt2M2 + · · · + λtnMn

with D the diagonalmatrix D = diag{λ1, λ2, . . . , λn}, P = [ f1, f2, . . . , fn]� where fi ’s are
the right eigenvectors ofW and P−1 = [π1, π2, . . . , πn] where πi ’s are the left eigenvectors
of W . Ordering the eigenvalues in decreasing magnitudes, and since λ1 = 1 is the unique
dominant eigenvalue, it is clear that λ2 has the slowest decay as the number of iterations t
increases. More specifically, by linear independence we have:

fiπ j =
{

0, if i �= j,

1, if i = j .

Then, the matrices Mk for i = 1, 2, . . . , n can be defined as:

Mk = fkπ
T
k =

⎡

⎢
⎢
⎢
⎣

fk(1) πk(1) . . . fk(1) πk(n)

...
. . .

...

fk(n) πk(1) . . . fk(n) πk(n)

⎤

⎥
⎥
⎥
⎦

.

The result follows by checking that:

MiM j =
⎧
⎨

⎩

0, if i �= j,

Mi , if i = j .

Therefore the problem of fast consensus relates to the problem of “second largest eigen-
value magnitude minimization” (SLEM) which solves the Fastest Mixing Markov Chain
(FMMC) problem. We refer the reader to [23] for more details.

Boyd et al. [15, 24] formulated SLEM minimization for symmetric matrices as a Semi-
Definite Program (SDP). More precisely, they formulated the following problems:

min �(W − 11�n−1),

s.t. W ∈ B,

1�W = 1�,

W1 = 1.

and

min
∥
∥
∥W − 11�n−1

∥
∥
∥ ,

s.t. W ∈ B,

1�W = 1�,

W1 = 1.

(5)

The matrix 11�n−1 is known as the averaging matrix and corresponds to a complete graph
with all weights equal to 1/n. The first problemminimizes the spectral radius (i.e., the largest
absolute value of the eigenvalues of the matrix) and is generally hard to solve because it is
non-convex and not Lipschitz continuous [25]. The second problem minimizes the spectral
norm, that is, ‖W‖ is the largest singular value of W . If W is constrained to be symmetric,
then the two problems coincide. The set B represents the communication restrictions of the
network and it corresponds to (1). To get an intuitive understanding of these formulations, one
can observe that the complete graph with equal weights (11�n−1) yields the fastest possible
network. It corresponds to full connectivity (all nodes communicate with all other nodes),
and it converges to the average in one iteration. Furthermore, subtracting the averagingmatrix
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from W deflates the largest eigenvalue (which equals 1) to zero. We would like to attempt
the spectral radius minimization (non-convex) problem with evolutionary algorithms.

3 Optimizing doubly stochastic matrices with swarm and evolutionary
algorithms

In this section, we outline our novel framework for optimizing arbitrary positive doubly
stochastic matrices. We call this framework Evolutionary Optimization of Doubly Stochastic
Matrices (EvoDSM). EvoDSM is capable of optimizing both the weights of a fixed topology
graph as well as the topology itself, that is, identify which weights should be bigger than
zero.

3.1 Optimization of real-valued objective functions

We consider an optimization problem as follows:

θ∗ = argmin
θ

J (θ) (6)

where θ ∈ R
m ,m being the dimensions of the search space and J (·) is the objective function.

In order to practically solve any optimization problem we need to choose:

(a) The optimization algorithm;

(b) The parameterization of the input space θ ;

(c) The objective function J (·).

3.2 Swarm and evolutionary optimization algorithms

In this work, we utilize evolutionary algorithms for solving the optimization problem. Evolu-
tionary algorithms are versatile optimizers that can even optimize discontinuous and highly
non-linear functions [21, 26]. We will experiment with two of the most widely used evo-
lutionary algorithms: (a) Particle Swarm Optimization (PSO) [18, 27] and (b) Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) [28]. We chose PSO as a representative
of simple population-based methods and because it has many common features with pure
genetic algorithms (most importantly, little to no overhead per iteration and big population
sizes), while CMA-ES is one of the most effective algorithms that falls in the evolution
strategies family [29, 30].

Particle Swarm Optimization (PSO) algorithms [18, 27] are stochastic optimization
methods inspired by the aggregating behaviors of populations. A swarm of particles that
communicate through a graph are randomly positioned in the search space. They perform
evaluations of the objective function at their current positions respectively and decide on
favorable directions of movement based on memory of the best positions found in the pro-
cess. The two main strategies are local PSO (PSO-LS) and global PSO (PSO-GS). In the
local strategy, each particle has memory of the its best position ever visited, and the single
best position ever visited by its neighbors. In the global strategy particles maintain memory
of their personal best position and the best position ever found by the swarm in aggregate.
The interested reader can find a MATLAB code for PSO in [27].
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A predetermined set of N particles are initialized at random positions in the search space.
The position of particle i at initialization (first iteration, t = 0) is denoted by θ i (0) ∈ R

m .
Additionally, each particle is provided with a random velocity vector denoted vi (0) ∈ R

m .
At each iteration t + 1, particles update their positions with the following equations:

PSO Local Strategy (PSO-LS)

vi (t + 1) = χ
[
vi (t) + c1r1

(
θbi (t) − θ i (t)

) + c2r2
(
θ lbi (t) − θ i (t)

)]
,

θ i (t + 1) = θ i (t) + vi (t + 1).
(7)

PSO Global Strategy (PSO-GS)

vi (t + 1) = χ
[
vi (t) + c1r1

(
θbi (t) − θ i (t)

) + c2r2
(
θb(t) − θ i (t)

)]
,

θ i (t + 1) = θ i (t) + vi (t + 1).
(8)

where θbi (t) denotes the best position visited by particle i from initialization and up to time
t , and similarly, θ lbi (t) and θb(t) denote the best position ever found by the neighbors of
i and the swarm in aggregate respectively. Scalars c1, c2 are user defined parameters and
r1, r2 ∈ [0, 1] are independent and randomly generated numbers1. Scalar χ is a user defined
parameter similar to what learning rate is in gradient descent.

TheUnifiedParticle SwarmOptimizer (UPSO) is an algorithm that combines the behaviors
of the local and global PSO strategies. The update equations are given by:

UPSO method

gi (t + 1) = χ
[
vi (t) + c1r1

(
θbi (t) − θ i (t)

) + c2r2
(
θb(t) − θ i (t)

)]
,

l i (t + 1) = χ
[
vi (t) + c′

1r
′
1

(
θbi (t) − θ i (t)

) + c′
2r

′
2

(
θ lbi (t) − θ i (t)

)]
,

vi (t + 1) = u gi (t + 1) + (1 − u) l i (t + 1),

θ i (t + 1) = θ i (t) + vi (t + 1),

(9)

where u ∈ [0, 1] is a user defined parameter. Notice that if u = 0, UPSO coincides with
the local strategy, PSO-LS, whereas, if u = 1, UPSO coincides with PSO-GS. In that sense,
UPSO gives the “best of both worlds” by allowing the user to achieve superior performance
with the fine-tuning of a single parameter.

Notice that in all strategies the velocity vectors vi (t) are updated to point towards the
best known positions. Intuitively, PSO-LS’s velocity vectors “simulate” the gradient of the
objective function locally, while PSO-GS slowly directs the particles towards the best position
found globally. The particle count and the communication graph of the particles directly affect
their performance. In this work, we use the UPSO method. The interested reader can find a
MATLAB code for UPSO in [18].

3.2.1 Covariance matrix adaptation evolutionary strategies

CovarianceMatrix Adaptation Evolution Strategy (CMA-ES) [28] is a stochastic, derivative-
free method for numerical optimization of non-linear non-convex continuous optimization

1 The scalar product has the straight-forward interpretation of taking a step towards the personal best position
(θbi (t)) and then taking a step towards the local/global best position ((θb(t) or (θ lb(t))). However, r1 and r2
are usually defined as independent and randomly generated vectors that multiply the corresponding factors
component-wise (i.e. with the Hadamard product).
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problems that has been successfully used in many real-world settings [31, 32]. CMA-ES
models a population of points as amultivariate normal distribution and performs the following
steps at each generation t (for more details see [32]):

(a) Sample λ new offspring according to a multi-variate Gaussian distribution of mean mt

and covariance σ 2
t C t , that is, θ i ∼ N (mt , σ

2
t C t ) for i = 1, 2, . . . , λ;

(b) Rank the λ sampled candidates based on their performance and select the fittest μ indi-
viduals with μ � λ;

(c) To reflect the distribution of the μ best candidates, compute mt+1 by averaging the μ

individuals mt+1 = 1
μ

∑μ
i=1 θ i , and σ 2

t+1C t+1.

3.3 Efficiently encoding doubly stochastic matrices

Now we turn our attention to the parameterization of the input space, θ . First, we need to
recall that we want to optimize over square weight matrices of the form W ∈ R

n×n , where
n is the number of nodes in the graph. We additionally assume that W > 0 and that W is
a doubly stochastic matrix. The most obvious and naíve way would be to unfold the matrix
into a vector θ ∈ R

n2 and create an objective function J that penalizes elements of the matrix
that do not satisfy the constraints. While this is certainly possible, the optimizer will spend
a lot of time to find matrices that satisfy the constraints and it will be difficult to make an
objective function that can incorporate both the constraints and the actual objective that we
want to optimize.

For that reason, for parameterization of the input space we propose using only the non-
zero values of the matrix W without any constraints (i.e., they can take negative values
and do not respect the doubly stochasticity) and employ an iterative normalization scheme
that transforms the input encoding to a valid doubly stochastic matrix. So, overall we first
take the input vector θ and we transform it into a non-negative matrix M. Afterwards, we
perform iterative normalization on M and we obtain a matrix W that is doubly stochastic
by construction. In this manner, the optimizer only needs to handle the optimization of our
actual objective and not how to create doubly stochastic matrices.

The iterative normalization scheme we use is related to the Sinkhorn-Knopp algo-
rithm [33]. Given a non-negative matrix M, the Sinkhorn-Knopp algorithm is concerned
with finding diagonal matrices M1 and M2 such that M1MM2 is doubly stochastic. The
condition for existence and uniqueness of M1, M2 is that M has total support. However, a
process which normalizes iteratively the sums of the rows and columns of M converges to
a doubly-stochastic matrix and only requires support. Trivially, by enforcing that elements
of the main diagonal of M be bounded below by some small positive number (to ensure
aperiodicity), then M immediately satisfies the requirement of iterative normalization. Thus,
iterative normalization serves the purpose of a projection from Rn×n to the convex set of
positive doubly-stochastic matrices.

Algorithm 1 describes the iterative normalization scheme. The argument “iter” controls
how many times to normalize each row and each column. Lines 9-13 check that the resulting
matrix is doubly-stochastic within a predefined tolerance level. For short, we denote the
normalization scheme as N (·). It should be seen that the sparsity pattern of W remains
unchanged, i.e. if W i, j = 0 for some i, j ∈ {1, 2, . . . , n}, and W ′ = N (W), then W ′

i, j = 0
as well. This crucial property enables the use of iterative normalization in the context of
graph topology discovery. Finally, it is shown that this iterative normalization converges in
linear time [33].
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Algorithm 1 Iterative Normalization I
1: function Normalize(W , iter)

2: dim ← the dimension of W , i.e. n

3: for i = 0, 1, . . . , 2 iter do
4: for j = 0, 1, . . . , dim do

5: W j ← W j /
( ∑dim

k=1 W j ,k
)

6: end for
7: W ← W�
8: end for
9: if W is doubly-stochastic then
10: return W
11: else
12: Normalize(W )

13: end if
14: end function

3.4 Objective function for convergence speed

Once we know how to parameterize our matrices in an effective manner, we need to see how
to define the objective function for solving the problems described in the introduction. We
will first consider the problem of consensus convergence speed. As discussed, this problem
is equivalent to the second largest eigenvalue magnitude (SLEM) problem.

To solve this problem, wewill minimize SLEMdirectly. Although, instead of deflating the
dominant eigenvalue like in (5), we calculate the two dominant eigenvalues of W directly.
The reason for this is important: there is a chance that deleting an edge of G(V , E) (i.e.
updating W i, j to zero for some i, j) disconnects the graph in two connected components.
That would result in higher geometric multiplicity of the dominant eigenvalue, which is to
be penalized. Algorithm 2 describes our proposed objective function.

Algorithm 2 SLEM Minimization Objective
1: function JSLEM(θ)

2: W ← the matrix associated of vector θ

3: W ′ ← N (W)

4: λ1, λ2 ← magnitudes of the dominant eigenvalues of W ′
5: if λ1 = λ2 then
6: return ∞
7: else
8: return λ2

9: end if
10: end function

Since W ′ is always a doubly-stochastic matrix, we always have λ1 = 1. As shown in
Section 2, λ1 = λ2 violates the uniqueness of the left eigenvector of W , and therefore,
JSLEM(θ) returns infinite penalty. Otherwise, JSLEM(θ) returns λ2, which is the quantity to
be minimized. Thus, JSLEM is a well-defined objective function for the problem of interest,
penalizing both disconnected graphs and aperiodic graphs.
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3.5 Objective function for graph sparsification

Wewill now consider the problem of optimizing the topology of the network itself to achieve
a specific convergence speed. As discussed, we propose to tackle this problem as the problem
of finding a maximally sparse weight matrix while achieving a specified convergence speed.
We would like our sparse matrix to attain a pre-specified SLEM target, denoted by λt . That
is, we want λ2 = λt . To this end we define a deviation coefficient D(λ2) = max{ λ2

λt
, λt

λ2
}.

Notice that D(λ2) > 1 if λ2 � λt , while D(λ2) = 1 when λ2 = λt . One should further
normalize D by its maximum value given by n2 − n = n(n − 1).

Next we quantify the degree of sparsity of the matrix W . A straight forward approach
would be to count the number of non-zero entries. To further facilitate the evolutionary
optimizers, we find a relaxation of the above that penalizes small entries. This is done with
the help of the adjacency matrix of G(V , E), denoted by A and satisfying:

Ai, j =
{
1, if (i, j) ∈ E,

0, otherwise.
(10)

The L1,1 norm of A, defined as ‖A‖1,1 = ∑
i, j | Ai, j | is a natural count of the edges of

G(V , E). The relaxed measure of sparsity we are interested in, denoted by S, is given by
S = ‖A − W‖1,1. With this definition, a small entry of W contributes more to the measure
of sparsity, S, than a larger entry. This will help the evolutionary algorithms determine
favorable directions of improvement. Observe that the two quantities S and D are competing.
Minimizing S alone would result to the matrix of all zeros, but at the same time induce large
deviation from the target SLEM.We induce a trade-off between S and D by taking the product
SD. The trade-off provides enough leeway for the evolutionary algorithms to deviate from
λt while searching for sparse matrices. We can tighten the search by raising the deviation
term to a power, e.g. SD5, which results to sparse matrices with smaller deviations from λt .
Normalization of the deviation term D is also important for controlling the error, i.e. if W
is a large matrix, deleting multiple edges at once may induce a favorable trade-off no matter
how large the deviation from the target. Therefore, for the remained of the paper, we consider
D(λ2) to be normalized by its maximum possible value n(n − 1).

A final remark concerns the robust calculation of the objective function.With the definition
of A above (10), small entries of W will result in unit entries of A. Adding a threshold in
(10), will result in a miss-match between the calculated eigenvalues λ1, λ2 and graphs related
to adjacency matrix A. The latter might be disconnected, while at the same time we have
λ1 �= λ2 due to the effect of unaccounted small values. This issue is easily avoided by filtering
small entries of W before constructing the adjacency matrix A.

Algorithm 3 Filtering small values
1: function Filter(W , tol)

2: for every entry of W do
3: if W i, j � tol then
4: W i, j = 0

5: end if
6: end for
7: end function
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Algorithm 4 Sparsification Objective
1: function JSPARSIFY(θ)

2: W ← the matrix associated to vector θ

3: W ← FILTER(W , ε)

4: W ← N (W)

5: λ1, λ2 ← magnitudes of the dominant eigenvalues of W
6: A ← adjacency matrix associated with W
7: D ← calculate deviation from target

8: S ← calculate sparsity measure

9: if λ1 = λ2 then
10: return ∞
11: else
12: return SD5

13: end if
14: end function

Algorithm 3 shows the filtering procedure, while Algorithm 4 defines the objective func-
tion JSPARSIFY(·) for the task. Similarly to the previous case, we calculate both λ1 and λ2
to eliminate reducible or aperiodic graphs. Again, lines 2-4 take place inside the objective
function, however, alternatively, there is merit to these calculations taking place in the update
rules of the evolutionary algorithms presented in the following subsections. A final remark
concerns non-positivity of the entries of vector θ . As already mentioned, iterative normaliza-
tion requires non-negativity to converge. If the optimizer of choice cannot enforce boundary
restrictions on the optimization variables, then the user should enforce non-negativity by
taking absolute or exponent values inside the objective functions.

3.6 Practical considerations

In our application, we transform each particle’s (or candidate’s) position with iterative nor-
malization (Algorithm 1) as part of the objective function. When this is the case, one needs
to examine the properties of the transformation and ensure that the velocity vectors of the
swarm (or population) maintain their relevance with respect to the true objective of interest.
For example, in the algorithm UPSO if the transformation replaced the entries of θ i with
random numbers, the velocity vectors vi (t+1)will not be able “simulate” the gradients of the
true objective, and particles at subsequent iterations are unlikely to improve their positions.
When one augments the particle equations with:

θ i (t) ← T (θ i (t)),

where T (·) is the transformation of choice, then the velocity vectors will maintain their
relevance in the transformed space. We refer to this variant as the augmented EvoDSM.With
a proper choice of T (·), one can refine search to their liking. We generally recommend the
augmented version when it is applicable.

123



Optimizing doubly stochastic matrices for average...

4 Experimental results

In this section, we aim at evaluating the effectiveness of our proposed framework. We aim
at answering the following questions:

(a) Is our proposed methodology, EvoDSM, capable of optimizing for consensus?
(b) How does EvoDSM compare to the optimal symmetric matrix solution?
(c) Is EvoDSM able to find solutions in big problems in reasonable time? How does it scale?
(d) Can we optimize the topology of the graph with EvoDSM as well?

In order to answer the above questions, we perform extensive experiments with random
graphs of increasing number of possible nodes. We generate 10 random undirected Erdos-
Renui graphs for each n ∈ {20, 50, 80} nodes respectively. All graphs were generated with
probability equal to the connectivity threshold ln(n)/n. We run each algorithm 20 times on
each graph to assess average performance. The first 10 runs optimize for symmetric weights
and the other 10 allow for asymetries. We used the default settings for CMA-ES which

Fig. 1 Eigenvalue gap performance with graphs of 20 nodes. Solid lines are the median over 10 replicates and
the shaded regions are the regions between the 5-th and 95-th percentiles
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Fig. 2 Eigenvalue gap performance with graphs of 50 nodes. Solid lines are the median over 10 replicates and
the shaded regions are the regions between the 5-th and 95-th percentiles

generates populations of approximately 20 individuals. For the particle optimizer we used n
number of particles (as many as the number of nodes), way less than the usual convention
(four times the dimension of the problem) requires.

4.1 Optimizing for consensus and comparison to SDP

In order to identify whether our proposed method is able to optimize for average consensus
and how close it gets in finding the optimal value, we run 10 replicates of the optimization
procedure for each graph with a budget of 2000 function evaluations. The results showcase
that both EvoDSM (with UPSO and CMA-ES) are competitive at optimizing the weights of
a symmetric matrix and get close to the optimal value as computed by [15, 24] (Fig. 1, 2, 3).
The results also indicate that dropping the symmetry of the weight matrix allows us to find
faster consensus convergence. We provide results for all 10 graphs in the appendix.
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Fig. 3 Eigenvalue gap performance with graphs of 80 nodes. Solid lines are the median over 10 replicates and
the shaded regions are the regions between the 5-th and 95-th percentiles

4.2 Scaling analysis

We are interested in inspecting how our proposed method scales with bigger prob-
lems/matrices. In order to do this, we make the following observations:

(a) UPSO (and any genetic algorithm) is a population-based algorithm with little to no
overhead per iteration;

(b) CMA-ES, on the other hand, is a population-based algorithm that has considerable over-
head per iteration that increases as the dimensions of the problem increase.

Having those observations in mind, we run both UPSO and CMA-ES without any par-
allelization and collect the total wall time for performing 2000 function evaluations. This
procedure gives us the ability to compute timings for different parallelization schemes.
Although the actual real wall times might be affected by many factors (e.g. cache misses,
memory alignment, etc.), we were careful to provide estimates with the max idealized paral-
lelization for each algorithm. In particular, UPSO uses a population of n (same as the number
of nodes), and thus the maximum idealized gain from parallelization is n. On the contrary,
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Fig. 4 Scaling of EvoDSM on graphs with 20 nodes (100 replicates). The box plots show the median (black
line) and the interquartile range; the whiskers extend to the most extreme data points not considered outliers,
and outliers are plotted individually. The number of stars indicates that the p-value of the Mann-Whitney U
test is less than 0.05, 0.01, 0.001 and 0.0001 respectively
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Fig. 5 Scaling of EvoDSM on graphs with 50 nodes (100 replicates). The box plots show the median (black
line) and the interquartile range; the whiskers extend to the most extreme data points not considered outliers,
and outliers are plotted individually. The number of stars indicates that the p-value of the Mann-Whitney U
test is less than 0.05, 0.01, 0.001 and 0.0001 respectively
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Fig. 6 Scaling of EvoDSM on graphs with 80 nodes (100 replicates). The box plots show the median (black
line) and the interquartile range; the whiskers extend to the most extreme data points not considered outliers,
and outliers are plotted individually. The number of stars indicates that the p-value of the Mann-Whitney U
test is less than 0.05, 0.01, 0.001 and 0.0001 respectively
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Fig. 7 Sparse graphs for λt = 0.9

Fig. 8 Sparse graphs for λt = 0.5
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CMA-ES is using smaller population sizes, and thus the maximum idealized gain from par-
allelization is smaller. Overall, the main goal of this evaluation is to provide evidence that
evolutionary algorithms can scale effectively with more CPU or GPU cores, and solve big
problems in small amount of time.

Indeed, the results showcase exactly this, and furthermore we observe that algorithms like
UPSO can scale more effectively since the overhead per iteration is minimal, it is helpful to
use bigger populations and thus we can fully exploit the parallelization (Figs. 4, 5, and 6).

4.3 Optimizing for graph sparsification

In this section we apply the objective function given by Algorithm 4. For these experiments,
we only use UPSO. In particular, we use the augmented version of UPSO which performs
lines 2-4 of Algorithm 4 to transform particle positions prior to objective evaluation. For
asymmetric weight on n nodes, each particle maintains a vector of n2 scalars in the interval
[0, 1]. For symmetric weights, one can either maintain n(n+1)

2 variables corresponding to the
upper triangular part ofW , or further augment theUPSOupdate stepwithwhat corresponds to
W = (W+W�)/2 to “symmetrize” the position.We performed experiments for n ∈ {20, 50}
and for eigenvalue-gap targets λt ∈ {0.1, 0.5, 0.9}. Each experiment was performed once for
symmetric and once for asymmetric weights. In all cases, the number of particles used was n,
the same as the number of nodes, and the algorithm was allowed to perform 4000 objective
evaluations. Figures 7, 8, and 9 show the resulting graphs for each target respectively. The
results are summarized in Table 1.

The results show that asymmetric weights outperform their symmetric counterpart in
terms of sparsity in every experiment. All weight matrices have reached their target with

Fig. 9 Sparse graphs for λt = 0.1
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Table 1 Sparsification Results
Summary

nodes λt λ2 (actual) Non-zero entries

Sym. 20 0.1 0.100 388

Asym. 20 0.1 0.100 335

Sym. 20 0.5 0.500 179

Asym. 20 0.5 0.500 84

Sym. 20 0.9 0.900 93

Asym. 20 0.9 0.900 51

Sym. 50 0.1 0.100 2186

Asym. 50 0.1 0.168 980

Sym. 50 0.5 0.500 565

Asym. 50 0.5 0.500 231

Sym. 50 0.9 0.900 202

Asym. 50 0.9 0.900 93

the exception of Fig. 9(c). By inspection we can see that the graphs with the “slow” target
(λ2 = 0.9) yields single neighbor nodes and/or graphs with larger diameter (Fig. 7 (a),(b)
respectively). For moderate speed (λ2 = 0.5) we get intricately connected structures and for
high speeds (λ2 = 0.1) are dense.

5 Conclusion & future work

We developed the EvoDSM framework which enables evolutionary algorithms to optimize
arbitrary, positive, doubly stochastic matrices. We consider the problem of minimizing the
second largest eigenvalue magnitude (SLEM), which is known to be a convex problem
for symmetric matrices but non-convex for asymmetric ones. Applications can be found in
distributed systems and Markov Chain Monte Carlo methods. Our framework is enhanced
by the use of an iterative normalization scheme that effectively maps the positions of the
particles/candidates to the set of positive doubly stochastic matrices, and does not change
the sparsity pattern.

We performed experiments using the Unified Particle Swarm Optimizer (UPSO), the
Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) and a Semi-Definite Prob-
lem (SDP) solver for benchmarking. Results show that the optimized symmetric matrices
approximate their optimal solutions and their asymmetric counterparts are able to reduce
SLEM even further than the optimal symmetric case. We performed scaling analysis by
computing total wall-times, showing that our framework is competitive with the SDP solver
if implemented in a distributed setting.

Finally, to demonstrate the utility of EvoDSM inmatrix discovery, we developed an objec-
tive function that promotes sparsity and attains a user-defined SLEM target. Our experiments
indicate that, in all cases, asymmetric matrices achieve more sparsity than symmetric ones.
Our framework is simple, effective, accessible, and allows for flexible objective formulations
with no engineering overhead. Our results exhibit the viability and merit of attempting the
non-convex SLEM minimization problem with our framework.

In future work, we aim at exploring different black-box optimizers as well as variations
of the proposed objectives. Moreover, we will consider bigger graphs and attempt to identify
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how the size of the graphs affects the performance of the proposed objective functions and
parameterization. It would also be interesting to perform a comparative sensitivity analysis
between UPSO and CMA-ES (and possibly other black-box optimizers) on the eigenvalue-
gap maximization problem. Questions of interest would be (1) how do the sensitivity indices
change between sparse and dense networks, (2) do sensitivity indices change as the size
of the networks grows, (3) do sensitivity indices change on graphs generated by different
ensembles and (4) can we find good parameter combinations in reasonable time.

Supplementary information We provide a supplementary file (pdf) containing the figures
for all graphs generated as mentioned in Section 4.1. We also provide a supplementary file (a
compressed archive) containing all the graphs generated for the experiments in Section 4.1
and Section 4.2.

Data Availibility The authors declare that all the data supporting the findings of this study are available within
the article and its supplementary information files.
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