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Summary

Objective: The paper aims at improving the prediction of superficial bladder recur-
rence. To this end, feedforward neural networks (FNNs) and a feature selection
method based on unsupervised clustering, were employed.
Material and methods: A retrospective prognostic study of 127 patients diagnosed
with superficial urinary bladder cancer was performed. Images from biopsies were
digitized and cell nuclei features were extracted. To design FNN classifiers, different
training methods and architectures were investigated. The unsupervised k-windows
(UKW) and the fuzzy c-means clustering algorithms were applied on the feature set to
identify the most informative feature subsets.
Results: UKW managed to reduce the dimensionality of the feature space signifi-
cantly, and yielded prediction rates 87.95% and 91.41%, for non-recurrent and
recurrent cases, respectively. The prediction rates achieved with the reduced feature
set were marginally lower compared to the ones attained with the complete feature
set. The training algorithm that exhibited the best performance in all cases was the
adaptive on-line backpropagation algorithm.
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1. Introduction

Transitional cell cancer (TCC) of the bladder is a
heterogeneous group of tumors accounting for
approximately 90% of neoplasms arising in the urin-
ary bladder [1]. Superficial bladder tumors (stages
Ta, TIS and T1) account for 70—80% of neoplasms,
while the remaining 20—30% are invasive (T2, T3,
T4), or metastatic at the time of initial presenta-
tion. Over 60% of patients affected with superficial
tumors will have one or more recurrences after
initial treatment [2]. If left undetected and
untreated, recurrent tumors may progress, thereby
worsening the prognosis of the patient [3]. The early
detection of recurrence is therefore crucial for
patient management. Typically, the detection of
recurrence is achieved by regular patient follow-
up with cytoscopy and cytological examinations.
The relatively low sensitivity of these methods
has motivated the development of more effective
and non-invasive techniques for monitoring patients
[4,5]. The alternatives investigated up to date con-
stitute improvements of cytoanalysis that replace
subjective qualitative methods with quantitative
assessments [6,7], as well as, enhancements of
recurrence predictability at patient level [2]. In
[6], high-resolution image cytometry was employed
to distinguish with high reliability urothelial neo-
plasia from normal urothelium, examining only
diploid cell nuclei. In [7] the authors report that
the measurement of the rapidly hydrolyzed compo-
nent of DNA present in the nuclei of bladder urothe-
lium offers a highly sensitive and reliable
supplement to the qualitative and subjective cyto-
logic procedures currently in practice. In this study
we explore means to improve the prognosis of can-
cer recurrence by examining specimens of transi-
tional cell carcinomas. We further attempt to
identify prognostic markers that enable the predic-
tion of real differences in the biological behavior of
tumors.

To predict the biological behavior of superficial
TCCs, histological grade, clinical stage, urinary
cytology, tumor number and tumor size, are com-
monly used [8]. These factors, however, have been
reported to be unsatisfactory for the prediction of
tumors and their results have a rather low reprodu-
cibility for the prognosis of tumor recurrence [2].
The need to improve prediction at patient level, has
motivated an ongoing research on computerized
methods based mainly on artificial intelligence
approaches [3,9—11]. Previous approaches for the
prediction of cancer recurrence require information
obtained, either subjectively from pathologists
(including stage, grade and tumor size among
others) [9—11], or through tedious and costly tech-
niques for evaluating molecular markers [3]. The
proposed prognostic system for superficial TCC
recurrence exploits quantitative information about
cell nuclei appearance. In cancer, cell nuclei
undergo significant changes which, if quantified,
can allow the diagnosis and potentially the predic-
tion of the course of the disease [12—14]. Van
Velthoven et al. [15] applied computer assisted
microscopy to Feulgen stained nuclei to character-
ize the risk of recurrence in patients with superficial
TCC. Kaplan—Meier discriminant analysis indicated
a cut-off value (p< 10�5) for distinguishing
between TCC cases with remission for more than
60 months and cases presented with recurrence
within 12 months. In this work, a panel of 36 cell
nuclei features was estimated from hematoxylin—
eosin stained tissue sections from patient biopsies,
using quantitative light microscopy.

Artificial neural networks (ANNs), and in particu-
lar feedforward neural networks (FNNs), were
employed to determine the prognostic information
conveyed by nuclear features for the prediction of
bladder cancer recurrence. The capabilities of ANNs
have attracted considerable attention in numerous
clinical, diagnostic and prognostic tasks [16—18].
One of the most widely known applications of ANNs
in medicine is the PAPNET system which is designed
for the automated cytological screening of cervical
smears [19]. Kolles et al. [20] created a system for
grading astrocytomas based on immunohistochemi-
cally and DNA stained microscopic images. ANN
based decision tools for breast cancer diagnosis have
been investigated by several researchers [21—23].
Downs et al. [24] studied pruning strategies to
design ANNs capable of shifting the balance
between sensitivity and specificity, depending on
the requirements of the medical application.

To identify feature subsets that convey the most
significant prognostic information, a feature selec-
tion methodology based on clustering was
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Conclusions: FNNs can contribute to the accurate prognosis of bladder cancer
recurrence. The proposed feature selection method can remove redundant informa-
tion without a significant loss in predictive accuracy, and thereby render the prog-
nostic model less complex, more robust, and hence suitable for clinical use.
# 2006 Elsevier B.V. All rights reserved.
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employed. We considered two clustering algo-
rithms, fuzzy c-means (FCM) [25] and the unsuper-
vised k-windows algorithm (UKW) [26,27]. The main
contribution of the paper is the identification of
appropriate network architectures and training
algorithms to construct FNNs capable of predicting
cancer recurrence with high accuracy, and in the
investigation of the impact of feature selection
through cluster analysis on classification accuracy.
Figure 1 Time interval between initial treatment and
the first recurrent event for all patients, and for each
grade category.
2. Material and methods

The proposed methodology was applied on data
collected from 127 patients with bladder cancer.
Patients were diagnosed and followed-up during the
period 1991—2000 at the University Hospital of
Patras, Greece. The follow-up period was at least
60 months. Out of the 127 patients, 56 patients had
no recurrence during the observation interval. The
remaining 71 patients experienced recurrence of
the tumor over a time period ranging between 1
month and 5 years. In Table 1, the grade diagnosis
and follow-up of the patients is reported, while
Fig. 1 depicts the time interval between initial
treatment and the first recurrent event for all
recurrent cases.

The software used for all the experiments per-
formed, for the training and the evaluation of the
FNNs and the clustering algorithms for feature
selection was developed under the Linux operating
system using the C++ programming language, and
the gcc 3.3.4 compiler. Additionally, all the numeric
data values for each feature were rescaled in the
range ½�1; 1�.

2.1. Image acquisition and feature
extraction

Hematoxylin—eosin tissue sections from the biopsies
of the 127 different patients were collected from
the Department of Pathology at the University Hos-
pital of Patras. For each slide (tissue section), a
pathologist specified the most representative
region. From this region, images were acquired
(at a resolution of 768� 576 � 8 bit) using a light
Table 1 Grade diagnosis and follow-up of 127 patients
with urinary bladder carcinoma

Number Recurrent
cases

Non-recurrent
cases

Grade I 33 18 15
Grade II 57 35 22
Grade III 37 18 19
Zeiss Axiostar Plus microscope connected to an
Ikegami color video camera. Histological images
of a recurrent bladder TCC, and a non-recurrent
bladder TCC are presented in Fig. 2. For each case,
36 features were estimated automatically from
morphological and textural nuclear features [28].
Information about nuclear size and shape was cap-
tured by 18 morphological features, which consti-
tuted measurements of nuclear area, roundness and
concavity [28]. The feature of concavity, attempts
to measure the severity of concavities, or the inden-
tations of a nucleus [28]. In each case, the mean
value, standard deviation, range, skewness and
kurtosis of each morphological feature was com-
puted to describe non-uniform modifications of
nuclear morphology. Non-uniform alterations in
nuclear size and shape have proved to convey sig-
nificant diagnostic and prognostic information
[11,28]. Taking into consideration that only a few
malignant cells might occur in a given sample, the
maximum value for each morphological feature was
estimated, by averaging the three largest values.

The remaining 18 features were textural features
that encoded chromatin distribution of the cell
nucleus. These features were estimated by means
of nuclear histograms and the co-occurrence matrix
[29]. Nuclear chromatin-texture quantification has
been examined in several studies, and has proved to
carry significant diagnostic information in the ana-
lysis of pathologic material [30—32]. To quantify
texture properties of nuclei, textural features were
formed from first order statistics and from spatial
gray tone co-occurrence probability matrices
[29,33]. The gray level co-occurrence matrix was
used for second order texture information extrac-
tion from cell nuclei. A co-occurrence matrix P is
an estimate of the second order joint conditional
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Figure 2 Histological images of a recurrent bladder TCC (left) and a non-recurrent bladder TCC (right).
probability density function (PDF) Pði; jjd;FÞ;F� ¼
f0�; 45�; 90�; 135�g. Each Pði; jjd;FÞ is the probabil-
ity of transition from gray level i to gray level j,
given an inter-sample spacing of d, and the direction
is given by the angle F. Numerous features can be
extracted from co-occurrence matrices and a large
number of such features has been proposed [29,33].
Most authors, however, agree that in practice only a
few of these are independent. In this work we
adopted the following features, which appear to
be the most effective in texture discrimination,
as it is also reported by other researchers
[31,34,35].
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Each co-occurrence feature was estimated for
inter-sample spacing d ¼ 1 and 3. Since each gray
level is not efficiently employed to describe the cell
nucleus, the co-occurrence matrix (Ng � Ng) should
have fewer entries than the total number of pixels in
the nucleus to avoid a sparse matrix. To reduce the
number of gray levels, each nuclear image was re-
quantized to 16 levels (i; j2Ng;Ng ¼ f17; 33; 49;
65; 80; 96; 112; 128; 144; 160; 176; 192; 207; 223; 239;
255g) via histogram equalization. Thus, sufficient
resolution was retained to characterize the texture
of each nucleus and Ng � Ng was small enough com-
pared to the total number of pixels in the nucleus
[35,36]. In Tables 2 and 3 the,minimum (min), mean,
maximum (max) values, as well as, the standard
deviation for each cell nuclei descriptor is reported.
2.2. Supervised training of FNN classifiers

The efficient supervised training of FNNs is a subject
of considerable ongoing research and numerous
algorithms have been proposed to this end. Super-
vised training amounts to the global minimization of
the network’s error function. To select an appro-
priate training algorithm for the TCC recurrence
data, the following methods were considered:
� r
esilient backpropagation (RPROP) [37];

� i
mproved resilient backpropagation (IRPROP)

[38];

� s
caled conjugate gradient (SCG) [39];

� b
ackpropagation with variable stepsize (BPVS)

[40];

� a
daptive on-line back propagation (AOBP) [41].

Other classical neural network training algo-
rithms, such as the backpropagation (BP) training
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Table 2 Overview of morphometry cell nuclei descriptors used in the study

Morphometry

Min Mean Max S.D.

Area
Mean 544.06 1025.9 1885.1 299.52
Standard deviation 64.265 339.265 1782.420 230.938
Kurtosis 1.7581 4.1067 23.9840 3.2643
Skewness � 0.46917 0.76624 4.58530 0.78870
Maximum 674.00 1746.2 5390.70 772.56
Range 226 1486.8 10435 1186.6

Roundness
Mean 1.0463 1.1638 1.4200 0.0566
Standard deviation 0.031300 0.084055 0.387450 0.044857
Kurtosis 1.8883 5.0353 32.3880 4.0712
Skewness � 4.17600 0.96778 2.94850 0.91763
Maximum 1.13210 1.3551 2.33400 0.1512
Range 0.13875 0.39229 1.988 0.25768

Concavity
Mean 0.0357 0.1136 0.1732 0.0301
Standard deviation 0.0295160 0.0482554 0.0776810 0.0084507
Kurtosis 1.57440 2.6949 6.74940 0.60625
Skewness � 0.76241 0.21314 1.71540 0.37863
Maximum 0.111231 0.204260 0.302060 0.036419
Range 0.123400 0.199437 0.349740 0.03702
algorithm [42], the adaptive BP [40], and the BP
withmomentum [40] were also tested. However, the
classification accuracy obtained through these
methods was lower than that of the more advanced
methods used here. Regarding network architec-
Table 3 Overview of texture cell nuclei descriptors used i

Texture

Min

Densitometry
Mean density 92.869
Mean variance 7.6913
Mean skewness � 0.551440
Mean kurtosis 2.11332

Co-occurrence features, d ¼ 1
Mean energy 0.0085558
Mean entropy 4.36491
Mean inertia 1091.14
Mean local homogeneity 0.158023
Mean correlation 0.556898
Mean cluster Shade 1.8137e + 05
Mean cluster Prominence 1.4885e + 05

Co-occurrence features, d ¼ 3
Mean energy 0.0047239
Mean entropy 4.69565
Mean inertia 3040.2
Mean local homogeneity 0.075
Mean correlation 0.029414
Mean cluster shade 1.3372e + 05
Mean cluster prominence � 5.3057e + 04
ture, it has been shown that FNNs with a single
hidden layer can approximate any continuous func-
tion uniformly on any compact set and any measur-
able function to any desired degree of accuracy
[43,44]. Based on this theorem, we restricted the
n the study

Mean Max S.D.

141.535 171.584 17.992
27.510 50.9261 11.2179
0.068525 0.983200 0.278486
2.97061 4.57328 0.37377

0.0111559 0.0187034 0.0017259
4.82126 5.06320 0.14185
2107.08 3265.34 431.07
0.198898 0.256618 0.019235
0.7178 0.846328 0.0531
3.5332e + 08 6.6557e + 08 1.4974e + 08
2.0678e + 07 3.9880e + 08 7.5839e + 07

0.0067035 0.0125843 0.0013918
5.17909 5.43461 0.15972
6131.4 9429.1 1324
0.099478 0.141362 0.013314
0.195414 0.461123 0.081314
1.8989e + 08 3.7098e + 08 7.9582e + 07
1.1791e + 07 2.1182e + 08 4.3213e + 07
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network topology of FNNs to one hidden layer. The
number of nodes in the hidden layer was determined
experimentally.

To evaluate the performance of FNNs the leave-
one-out (LOO)methodwas employed [45]. According
to this method, an FNN is trained using all the pat-
terns from the training set excluding one. The
excluded pattern is subsequently used to assess the
classification ability of the network. This process is
repeatedexcluding adifferent pattern of the training
set each time until all patterns of this set are
excluded once. The LOO method is typically used
in cases where the size of the training set is so small
that cross validation and early stopping using a sepa-
rate validation set result in a training set of insuffi-
cient size. In general, the optimal choice of network
architecture, and number of training epochs for a
particular training algorithm is a very hard task. To
this end, single hidden layer networks with the num-
ber of hidden neurons ranging from three to ten were
considered. For each network architecture and train-
ing algorithm the number of training epochs was
varied from 100 to 1000 with a step size of 100.
Finally, for each combination of training algorithm,
network architecture and number of training epochs,
100 simulations were performed.

A comparative evaluation of the performance of
FNNs with well-known and widely used classifiers,
namely the Bayesian classifier, probabilistic neural
networks and the k-nearest neighbor classifier, was
carried out.

2.3. Feature selection through cluster
analysis

An important issue, in any classification task is to
determine the features that significantly contribute
to classification accuracy. This procedure is called
dimension reduction, and it has been extensively
studied in the context of classification [46]. The
problem of high dimensionality is often tackled by
asking the user to specify the subspace (a subset of
the dimensions) of interest. However, user-identifi-
cation of subspaces is error-prone. Another approach
is to apply a dimensionality reduction method to the
dataset. Methods such as principal component ana-
lysis [46], optimally transform the original data space
into a lowerdimensional spaceby formingdimensions
that are linear combinations of given attributes. The
new space has the property that distances between
points remain approximately the same as before the
transformation. These techniques can be successful
in reducing the dimensionality while retaining a suf-
ficiently large portion of the information content of
the original data. However, the new dimensions are
difficult to interpret. Moreover, to compute the new
subset of dimensions, information from all the origi-
nal dimensions is required. Other commonly used
techniques are random projections to subspaces
[47,48] and the selection of a subset of attributes
through clustering [49,50]. In this paper we perform
dimension reduction through two clustering algo-
rithms, namely UKW [27], and FCM [25]. The algo-
rithms are applied over the entire dataset to detect
clusters of features. Feature selection is performed
by selecting from each feature cluster one represen-
tative feature. In particular, the feature with the
minimum Euclidean distance to the cluster center is
selected as the most representative feature of the
cluster.

2.3.1. The unsupervised k-windows clustering
algorithm
Thek-windowsclustering algorithmuses awindowing
technique to discover the clusters present in a data-
set. Assuming that the dataset lies in d dimensions,
the algorithm initializes a number of d-dimensional
windows (d-ranges) over the dataset. Subsequently,
it iteratively moves and enlarges these windows, in
order to capture all the patterns of a cluster within a
window. Themovement andenlargement procedures
are guided by the number of points that lie within a
window, and are terminated when they do not
increase this number significantly. The final set of
windows is the result of the algorithm.

A fundamental issue in cluster analysis, indepen-
dent of the particular clustering technique applied,
is the determination of the number of clusters pre-
sent in a dataset. For instance well-known and
widely used iterative techniques, such as the k-
means algorithm [51], as well as the FCM algorithm,
require from the user to specify the number of
clusters present in the dataset prior to the execu-
tion of the algorithm. On the other hand, the UKW
algorithm approximates the number of clusters
through an extension of the original algorithm.
For a comprehensive description of the algorithm
and an investigation of its capability to automati-
cally identify the number of clusters present in a
dataset, refer to [26,52—56].

2.3.2. The fuzzy c-means clustering algorithm
This algorithm [25], considers each cluster as a fuzzy
set. It initializes a number, c, of prototype vectors
(centroids), pj, over the dataset, that represent the
centers of the clusters. It then computes the degree
of membership of each data vector, xi, to each
cluster through the following membership function:

m jðxiÞ ¼
Xc
l¼1

kxi � pjk
kxi � plk

� �1=r�1 !�1
; (12)
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Table 4 Best results for all the considered training algorithms (complete feature set)

Min Mean Max S.D.

RPROP 36-3-2 for 300 epochs
Specificity 83.93 89.52 94.64 2.09
Sensitivity 87.32 91.55 95.77 1.67
Overall accuracy 87.40 90.65 93.70 1.38
AUC 0.905 0.932 0.961 0.012

iRPROP 36-3-2 for 400 epochs
Specificity 83.93 89.27 94.64 2.16
Sensitivity 84.51 90.68 95.77 2.10
Overall accuracy 86.61 90.05 92.91 1.54
AUC 0.889 0.921 0.953 0.014

SCG 36-5-2 for 200 epochs
Specificity 75.00 85.34 92.86 3.19
Sensitivity 83.1 90.00 94.37 2.26
Overall accuracy 83.46 87.94 92.13 1.75
AUC 0.880 0.917 0.947 0.012

BPVS 36-4-2 for 400 epochs
Specificity 85.71 89.80 92.86 1.35
Sensitivity 88.73 92.94 94.37 1.26
Overall accuracy 89.19 91.56 93.70 0.96
AUC 0.913 0.931 0.963 0.009

AOBP 36-7-2 for 500 epochs
Specificity 87.50 90.43 94.64 1.23
Sensitivity 90.14 92.83 94.37 1.08
Overall accuracy 89.76 91.77 93.70 0.84
AUC 0.913 0.936 0.954 0.008
which assumes values in the interval [0,1], where
r 2 ð1;1Þ determines the fuzziness of the partition.
If r tends to 1þ, then the resulting partition asymp-
totically approaches a crisp partition. If on the other
hand, r tends to 1, the partition becomes a maxi-
mally fuzzy partition. Next, the c prototypes are
updated using the equation:

P j ¼
Pn

i¼1½mjðxiÞ�
r
xiPn

i¼1½mjðxiÞ�r
: (13)

This procedure is executed iteratively until the
change in the distortion measure,d:

d ¼
Xc
j¼1

Xn
i¼1
½mjðxiÞ�

r � jjxi � pljj2; (14)

drops below a user defined threshold.
3. Presentation of experimental
results

The performance of the different FNNs was evalu-
ated in terms of specificity, sensitivity and overall
classification accuracy. Furthermore, a receiver
operating characteristic (ROC) curve analysis, and
in particular the area under the curve (AUC) was
employed to measure the general predictiveness of
each classifier. The AUC has an appealing statistical
property: the AUC of a classifier is equivalent to the
probability that the classifier will rank a randomly
chosen positive instance higher than a randomly
chosen negative instance, which is equivalent to
the Wilcoxon test of ranks [57]. Table 4, reports
the best results obtained for each method with the
36-dimensional feature vector. More specifically,
the table depicts the minimum (min), mean, max-
imum (max) and the standard deviation (S.D.), over
100 simulations. In Fig. 3 the performance of each
classifier is illustrated through ROC curves. In parti-
cular, for each classifier, the ROC curves that corre-
spond to the minimum, mean and maximum AUC in
the 100 simulations are shown. Note that the ROC
curve that corresponds to the mean AUC depicts the
ROC curve of the classifier whose AUC is closer to the
mean AUC over the 100 simulations. All the training
algorithms tested exhibited remarkably high classi-
fication accuracy, with BPVS and AOBP slightly out-
performing the other methods. This is a clear
indication of the concise and proper feature extrac-
tion techniques used.

Subsequently, we employed the UKWand the FCM
clustering algorithms to identify the most informa-
tive features for TCC recurrence prediction. The
application of the UKW algorithm over the feature
space for the 127 cases produced 11 clusters of
features. The parameters of the UKWalgorithm used
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Figure 3 ROC curves: (a) RPROP, (b) iRPROP, (c) SCG, (d) BPVS and (e) AOBP (complete feature set)
were: The values of the parameters fue; um; uc; uvg
were set to {0.8,0.1,0.2,0.02} for the UKW algo-
rithm [55].

As previously mentioned, from each cluster the
feature closest to the corresponding cluster center
was selected. From the eleven features five were
textural descriptors. In detail, one was derived from
cell nuclei histogram (mean variance) and four were
obtained from the co-occurrence matrices (mean
energy, mean entropy, mean cluster shade andmean
cluster prominence). The remaining features
describe non-uniform distributions of nuclear size
and shape (maximum of area, skewness of area,
maximum concavity, skewness of concavity, skew-
ness of roundness and kurtosis of roundness). These
features were used as an input to the FNN classifiers.
To determine the appropriate network architecture
and number of epochs for each training algorithm
we employed the same experimental setting as in
the complete feature case. The results obtained are
summarized in Table 5, while the corresponding ROC
curves are illustrated in Fig. 4. As in the full feature
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case, the best performing methods were BPVS and
AOBP. A comparison of the results exhibited in
Tables 4 and 5, suggests that for RPROP, iRPROP
and SCG, the performance of the classifiers trained
on the reduced feature set is worse than that of
classifiers trained on the complete feature case with
respect to all performance measures. The classifiers
trained through BPVS and AOBP, on the other hand,
achieved the same performance in the two cases
with respect to the AUC measure. Regarding net-
work architecture, the best results of the RPROPand
the iRPROP methods were obtained by networks
having the same number of hidden units as in the
complete feature case. SCG was the only algorithm
that required less hidden units. BPVS and AOBP
yielded FNNs with more hidden units that also
required more epochs to train.

To evaluate the results obtained through the UKW
algorithm we also tested the FCM algorithm. The
FCM algorithm requires the explicit determination
of the number of clusters, c, present in the dataset.
As this quantity is a priori unknown, we experimen-
ted with all integer values in the range [2,30].
Furthermore, since the result of the algorithm
depends on its initialization, 10 executions were
performed for each value of c. The fuzziness of
the partition, r, had the fixed value 2, and the
Table 5 Best results for all the methods considered (11-di

Min

RPROP 11-3-2 for 300 epochs
Specificity 78.57
Sensitivity 83.10
Overall accuracy 81.89
AUC 0.825

iRPROP 11-3-2 for 100 epochs
Specificity 76.78
Sensitivity 83.10
Overall accuracy 83.46
AUC 0.832

SCG 11-3-2 for 200 epochs
Specificity 71.43
Sensitivity 81.69
Overall accuracy 78.74
AUC 0.844

BPVS 11-10-2 for 800 epochs
Specificity 85.71
Sensitivity 88.73
Overall accuracy 88.19
AUC 0.924

AOBP 11-10-2 for 1000 epochs
Specificity 85.71
Sensitivity 90.14
Overall accuracy 88.98
AUC 0.924
algorithm was considered to converge when the
change d in the distortion measure, was less than
0.001. As in the case of the UKW algorithm, the
features that were selected at each execution of the
algorithm were the ones closest to the cluster cen-
ters. The final subset of features for each value of c
was determined by the features that were selected
most frequently in the 10 experiments. For each
subset of selected features 100 experiments were
performed with the AOBP algorithm. We chose the
AOBP algorithm, since it exhibited a predictable and
robust performance. AOBP was allowed to perform
1000 training epochs. The FNN topology selected
was x—10—2, where x represents the dimension of
the reduced feature set. This architecture was
selected as it yielded the best results for the UKW
case.

The best result for the feature selection scheme
using the FCM algorithm was obtained for a feature
space of dimension 24. The corresponding total
classification accuracy was 92.28%, and in terms
of specificity and sensitivity 90.71% and 93.52%,
respectively. It should be noted that these classifi-
cation rates are higher than the full feature case. On
the other hand, classification performance was very
low when 2 or 25 features were selected. This
finding, highlights the importance of the correct
mensional feature vector)

Mean Max S.D.

85.44 92.86 2.82
88.07 91.55 1.93
86.91 92.13 1.79
0.885 0.924 0.018

84.54 91.07 2.82
88.68 92.96 1.99
86.85 91.34 1.68
0.888 0.925 0.017

82.75 91.07 3.53
87.07 92.96 2.22
85.16 89.76 1.91
0.882 0.929 0.016

88.71 91.07 1.01
90.58 91.55 0.71
89.75 91.34 0.59
0.935 0.943 0.004

87.95 91.07 1.06
91.41 92.96 0.55
89.88 91.34 0.56
0.936 0.942 0.004
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Figure 4 ROC curves: (a) RPROP, (b) iRPROP, (c) SCG, (d) BPVS and (e) AOBP (reduced feature set)
choice of the number of clusters and the sensitivity
of the overall outcome with respect to this para-
meter. In Fig. 5 the mean accuracy over the 100
different experiments for each value of the para-
meter c is exhibited. The vertical line plotted
around each value depicts the minimum and the
maximum values obtained.

Comparing the feature selection performed by
the two clustering algorithms, the first point to note
is the ability of the UKW algorithm to provide an
estimation of the number of clusters. This fact, does
not burden the user with the determination of this
critical, for the resulting classification accuracy,
parameter. Furthermore, the classification perfor-
mance obtained by the UKW feature selection algo-
rithm is very close to the best one obtained by the
FCM algorithm, when the latter uses twice as many
features. Moreover, the estimation of the number of
clusters provided by UKW is at a point where the
curve of overall accuracy with respect to different
values of c employed by the FCM algorithm exhibits
a plateau. This is a further indication that the
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Table 6 Classification results employing alternative
classification methods

Classifier Specificity Sensitivity Overall
accuracy

Bayesian 57.14 83.09 71.65
PNN 57.14 76.05 67.72
KNN 71.42 85.92 79.53

Figure 5 FNN classification performance
estimated cluster number provided by the UKW
algorithm is close to the minimum number of fea-
tures necessary to describe the phenomenon satis-
factorily.

For a comparative evaluation, we also conducted
experiments with other classification schemes.
Table 6, reports the performance of the Bayesian
classification scheme [58], probabilistic neural net-
works (PNNs) [59], and the k-nearest neighbor clas-
sifier (KNN) [58], on the same task. To highlight the
superior performance of FNNs, for each classifier the
feature vector employed was the one that yielded
the best results among all possible combinations of
features.
4. Discussion and concluding remarks

The prognostic characterization of TCC is a critical
component of clinical management for the survival
and cure of patients. Patients with non-invasive TCC
of the urinary bladder are often observed without
tumor progression, but many of them experience
recurrence of disease. Currently, a number of con-
ventional clinicopathological factors are used to
predict the disease outcome. Histological grade
and clinical stage are the most frequently
employed, while other predictive indicators used
include tumor size, tumor location and patient age.
Several researchers have attempted to model TCC
bladder cancer recurrence. Naguib et al. [10]
employed FNNs trained through the error backpro-
pagation algorithm to predict bladder cancer recur-
rence from clinical and pathological information,
exhibiting specificity and sensitivity of 76% and 55%,
respectively. Patient follow-up ranged from 8
months to 24 years. Lynn et al. [9] also considered
FNNs to predict the early recurrence of bladder
tumor. The FNNs employed clinical and pathological
variables to predict recurrence at first check cysto-
scopy (3 months) with sensitivity and specificity of
75% and 73%, and recurrence within the first year
with sensitivity and specificity of 77% and 71%,
respectively. Neural networks based on self organiz-
ing maps and the radial basis function algorithm
have been used by Qurechi et al. [3] to predict
recurrence within 6 months. The network exhibited
a sensitivity of 70% and a specificity of 80% using
clinicopathological and molecular markers. In a
recent work [11], histopathological parameters
evaluated by pathologists, in conjunction with
nuclear features were used as an input to an arti-
ficial neural network to predict tumor recurrence.
The system exhibited an accuracy of 74.5% and
71.1% for recurrence and non-recurrence cases,
respectively, for a follow-up period of at least 5
years.

In this work, we analyzed the prognostic value of
quantitative descriptors of nuclear morphometry by
means of efficient classification engines based on
FNNs. The choice of FNNs was guided by our previous
experience [60], as well as, by their capability to
address highly complex problems effectively and
efficiently. Our approach managed to achieve high
predictive rates for both recurrent and non-recur-
rent cases. Including all the 36 variables as input to
the FNN the mean correct prediction rates reached
90.43% and 92.83% for the non-recurrent and recur-
rent cases, respectively. The mean overall accuracy
was 91.77%, and the mean area under the ROC curve
was 0.936.

Reducing the feature space dimensionality is of
particular importance, since the removal of redun-
dant information, renders the predictive model
more robust, less complex and consequently more
suitable for clinical use. Moreover, from the view-
point of a medical expert it is important to have an
insight to the information used by the prognostic
system. Understanding the quantification of a cer-
tain number of descriptors might help pathologists
to reconsider and improve their prognostic criteria.
To identify a lower dimensional subspace that satis-
factorily explains the original data, we used a fea-
ture selection method based on clustering. For this
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task, the UKW and FCM clustering algorithms were
examined. The UKW algorithm reduced drastically
the feature space dimensionality by identifying a
feature vector of eleven features. When this feature
vector was used as input to the FNNs the mean
overall accuracy was 89.88%. The accuracy for the
non-recurrent and recurrent cases was 87.95% and
91.41%, respectively, and the mean area under the
ROC curve was 0.936. The results obtained through
alternative classification methods like the probabil-
istic neural networks, the Bayesian classifier and k-
nearest neighbor classifiers, indicate that FNNs are
more suitable for identifying the complex non-linear
relationships between dependent and independent
variables. Considering the training methods used,
the AOBP method followed by BPVS proved to be the
most efficient. To the best of our knowledge, the
classification accuracies reported in Tables 4 and 5
are the highest reported in the literature.

In conclusion, the advantages of the proposed
prognostic model for superficial TCC urinary bladder
cancer recurrence are the following: (i) it is highly
accurate; (ii) it uses objective, quantitative infor-
mation of the cell nuclei; (iii) it does not require
specialized staining protocols, or the use of costly
biomolecular markers; and (iv) it is capable of
automatically selecting the most informative pre-
dictive variables.
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