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Abstract

Clustering algorithms typically assume that the available data constitute a random sample from a stationary distri-

bution. As data accumulate over time the underlying process that generates them can change. Thus, the development of

algorithms that can extract clustering rules in non-stationary environments is necessary. In this paper, we present an

extension of the k-windows algorithm that can track the evolution of cluster models in dynamically changing databases,

without a significant computational overhead. Experiments show that the k-windows algorithm can effectively and effi-

ciently identify the changes on the pattern structure.

� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Clustering can be defined as the process of

partitioning a set of patterns into disjoint and

homogeneous meaningful groups, called clusters.

Clustering is fundamental in knowledge acquisi-
tion, and has been applied in numerous fields
0167-8655/$ - see front matter � 2005 Elsevier B.V. All rights reserv

doi:10.1016/j.patrec.2005.03.023

* Corresponding author. Address: Computational Intelli-

gence Laboratory, Department of Mathematics, University of

Patras, GR-26110 Patras, Greece. Tel./fax: +30 2610997348.

E-mail addresses: dtas@math.upatras.gr (D.K. Tasoulis),

vrahatis@math.upatras.gr (M.N. Vrahatis).
including, statistical data analysis (Aldenderfer

and Blashfield, 1984), compression and vector

quantization (Ramasubramanian and Paliwal,

1992), global optimization (Becker and Lago,

1970; Törn and Žilinskas, 1989), and image analy-

sis. It has also been extensively used in social
sciences (Aldenderfer and Blashfield, 1984).

Most clustering algorithms rely on the assump-

tion that the input data constitute a random sam-

ple drawn from a stationary distribution. As data

is collected over time the underlying process that

generates them can change, sometimes radically.

A non-stationary environment is characterized by
ed.
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the insertion of new data and the deletion of exist-

ing data. In this setting the issue at hand is to up-

date the clustering result at appropriate time

intervals with low computational cost. Cluster

maintenance deals with this problem. A close
examination of clustering algorithms reveals that

most of them are unsuitable for this task (Can,

1993). In the literature there are few maintenance

algorithms, most of which are developed for

growing databases. The application domain of

these algorithms includes database re-organization

(Zou et al., 1998), web usage user profiling (Nasra-

oui and Rojas, 2003) as well as, document cluster-
ing (Willett, 1988).

From the broader field of data mining, a tech-

nique for maintaining association rules in data-

bases that undergo insertions and deletions has

been developed in (Cheung et al., 1997). A gener-

alization algorithm for incremental summarization

has been proposed in (Ester and Wittmann, 1998).

An incremental document clustering algorithm
that attempts to maintain clusters of small dia-

meter as new points are inserted in the database

has been proposed in (Charikar et al., 2004). An-

other on-line star-algorithm for document cluster-

ing has been proposed in (Aslam et al., 1999). A

desirable feature of this algorithm is that it does

not impose any constraint on the number of clus-

ters. Finally, an incremental extension to the
GDBSCAN algorithm (Sander et al., 1998) has

been proposed in (Ester et al., 1998), along with

experimental results for the speedup achieved

under a large number of updates. This extension

assumes that the parameters of the algorithm re-

main fixed over time. Using a similar technique

an incremental version of the OPTICS algorithm

(Ankerst et al., 1999) has been proposed in (Krie-
gel et al., 2003). The speedup achieved by this

incremental algorithm (Kriegel et al., 2003) is sig-

nificantly lower than that of (Ester et al., 1998).

This is attributed to the higher complexity of

OPTICS, but Kriegel et al. (2003) claim that the

incremental version of OPTICS is suitable for a

broader range of applications.

In this paper we propose an extension of the
unsupervised k-windows clustering algorithm

(Vrahatis et al., 2002) that can efficiently mine

clustering rules from databases that undergo
insertion and deletion operations over time. The

proposed extension incorporates the Bkd-tree

structure (Procopiuc et al., 2003). The Bkd-tree is

able to efficiently index objects under a significant

load of updates, and also provides a mechanism
that determines the timing of the updates.

The rest of the paper is organized as follows; in

Section 2 we briefly present the unsupervised k-

windows clustering algorithm and its computa-

tional complexity. Section 3 describes the Bkd-tree

structure along with its computational complexity

bounds. The proposed modification of the k-win-

dows algorithm is discussed in Section 4 along
with a theoretical investigation for the complexity

of the proposed approach. Computational experi-

ments are presented in Section 5. The paper ends

with concluding remarks.
2. Unsupervised k-windows clustering algorithm

For completeness purposes we briefly discuss

the workings of the original k-windows algorithm

and its unsupervised extension that automatically

approximates the number of clusters. Intuitively,

the k-windows algorithm tries to capture all the

patterns that belong to one cluster within a d-

dimensional window (Vrahatis et al., 2002). To

meet this goal it employs two procedures: move-

ment and enlargement. The movement procedure

centers each window at the mean of the patterns

it encloses. The movement procedure is iteratively

executed, as long as, the distance between the new

and the previous centers exceeds the user-defined

variability threshold, hv. The enlargement process

on the other hand, tries to augment the window

to include as many patterns from the cluster as
possible. To this end, enlargement takes place at

each coordinate separately. Each range of a win-

dow is enlarged by a proportion he/l, where he is

user-defined and l stands for the number of pre-

vious successful enlargements. To consider an

enlargement successful firstly the movement pro-

cedure is invoked. After movement terminates

the proportional increase in the number of pat-
terns included in the window is calculated. If this

proportional increase exceeds the user-defined

coverage threshold, hc, then the enlargement is
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Fig. 2. (a) W1 and W2 satisfy the similarity condition and W1 is

ignored. (b) W3 and W4 satisfy the merge operation and are

considered to belong to the same cluster. (c) W5 and W6 have a
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considered successful. In the case that, enlarge-

ment was successful for coordinate c 0 P 2, then

all coordinates c00, with c00 < c 0, undergo enlarge-

ment assuming as initial position the current posi-

tion of the window. Otherwise, the enlargement
and movement steps are rejected and the position

and size of the d-range are reverted to their prior

to enlargement values. The movement and enlarge-

ment processes are illustrated in Fig. 1.

The determination of the number of clusters

present in a dataset is a fundamental and unre-

solved issue in cluster analysis. Well-known and

widely used iterative techniques, such as the k-
means algorithm (Hartigan and Wong, 1979),

require from the user to specify the number of clus-

ters present in the data prior to the execution of the

algorithm. The unsupervised k-windows algorithm

generalizes the original algorithm by approximat-

ing the number of clusters at a final stage of the

algorithm. The key idea to attain this goal is to

apply the k-windows algorithm using a ‘‘suffi-
ciently’’ large number of initial windows and then

identify windows that capture patterns belonging

to a single cluster. The windowing technique of

the k-windows algorithm allows for a large number

of initial windows to be examined, without a signif-

icant overhead in time complexity. Once movement

and enlargement of all windows terminate, over-

lapping windows are considered for merging. The
merge operation is guided by two thresholds the

merge threshold, hm, and the similarity threshold,

hs. Having identified two overlapping windows,

the number of patterns that lie in their intersection

is computed. Next, the proportion of this number

to the total number of patterns included in each

window is calculated. If the mean of these two
E1
E2

(b)

M1

M4
M3

M2
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Fig. 1. (a) Sequential movements of the initial window M1 that

result to the final window M4. (b) Sequential enlargements of

the initial window M4 that result to the final window E2.
proportions exceeds hs, then the two windows are

considered to be identical and the one containing

the smaller number of points is ignored. Otherwise,

if the mean exceeds hm, the windows are considered
to belong to the same cluster and are merged. This
operation is illustrated in Fig. 2. Specifically, in

Fig. 2(a), the extent of overlapping between win-

dowsW1 andW2 exceeds the hs threshold, and thus

W1 is ignored. On the other hand, in Fig. 2(b), the

extent of overlapping between windowsW3 andW4

exceeds only the merge threshold so the algorithm

considers both to belong to a single cluster, unlike

in Fig. 2(c), where windows W5 and W6, capture
two different clusters. For a comprehensive

description of the algorithm and an investigation

of its capability to automatically identify the num-

ber of clusters present in a dataset, refer to (Alevi-

zos et al., 2002, 2004; Tasoulis and Vrahatis, 2004;

Tasoulis et al., 2003).

An example of the overall workings of the algo-

rithm is presented in Fig. 3. In Fig. 3(a) a dataset
that consists of three clusters is shown, along

with six initial windows. In Fig. 3(b) after the

movement, enlargement and merging procedures

the algorithm has correctly identified the three

clusters.
small overlapment and capture two different clusters.

(a) (b)

Cluster 1

Cluster 2

Cluster 3

Fig. 3. An example of the application of the k-windows

algorithm.



Table 1

Methods for orthogonal range search with the corresponding time and space complexity (n is the number of points, d is their dimension

and s is the result of the query)

Method Preprocessing Query time

Time Space

Preparata and Shamos (1985) h(dn logn) h(dn) O(s + dn1�(1/d))

Preparata and Shamos (1985) O(n logd�1n) O(n logd�1n) O(s + logdn)

Preparata and Shamos (1985) O(n logd�1n) O(n logd�1n) O(s + logd�1n)

Chazelle (1986) O(n logd�1n) O n
logd�1n
log log n

 !
O(s + logd�1n)

Chazelle and Guibas (1986) O(n logd+1n) O(n logdn) O(s + logd�2n)

Alevizos (1998) O(n logd�1n) O(n logd�1n) O(s + logd�2n)

Bentley and Maurer (1980) O(n2d�1) O(n2d�1) O(s + d logn)

Bentley and Maurer (1980) O(n1+e) O(n1+e) O(s + logn)

Bentley and Maurer (1980) O(n logn) O(n) O(ne)
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The computationally demanding step of the

algorithm is the determination of the points that

lie in each d-range. This problem is also referred

to as the range search problem, and numerous

Computational Geometry techniques have been

proposed to address it. All these techniques have

in common the existence of a preprocessing stage

at which they construct a data structure for the
patterns. This data structure allows them to

answer range queries fast. In Table 1 the computa-

tional complexity of various such approaches is

summarized.
3. The Bkd-tree

In databases that undergo a significant load of

updates, the problem of indexing the data arises.

An efficient index should be characterized by high

space utilization and small processing time of que-

ries under a continuous updating process. Further-

more, the processing of the updates must be fast.

To this end, we employ the Bkd-tree structure pro-

posed in (Procopiuc et al., 2003), that maintains
high space utilization and excellent query and up-

date performance, regardless of the number of up-

dates performed.

For completeness purposes we briefly present

the Bkd-tree structure. The Bkd-tree is based on a

well-known extension of the kd-tree, called the

K-D-B-tree (Robinson, 1981), as well as, the so-

called logarithmicmethod formaking a static struc-
ture dynamic. Extensive experimental studies have

shown that the Bkd-tree is able to achieve almost

100% space utilization and also fast query process-

ing of a static K-D-B-tree (Procopiuc et al., 2003).

Unlike the K-D-B-tree, however, these properties

are maintained under a massive load of updates.

The Bkd-tree structure, instead of maintaining

one tree and dynamically re-balancing it after each
insertion, it maintains a set of log2(n/M) static

K-D-B-trees and updates are performed by

rebuilding a carefully chosen set of structures at

regular intervals. Note that in the expression

log2(n/M), M stands for the capacity of the mem-

ory buffer, in terms of number of points, while n

represents the total number of d-dimensional

points in the database. To answer a range query
using the Bkd-tree, all the log2(n/M) trees are que-

ried. Despite this fact, the worst-case behavior of

the query time is

C ¼ Oðdn1�ð1=dÞ þ sÞ; ð1Þ
where s is the number of retrieved points. Using an

optimal O(n logm(n)) bulk loading algorithm an

insertion is performed in O(logm(n)log2(n/M)).

A deletion operation is executed by simply query-

ing each of the trees to find the tree Ti that

stores the point and delete it from this tree. Since

there are at most log2(n/M) trees, the number of
operations performed by a deletion is at most

log(n)log2(n/M) (Procopiuc et al., 2003).

Insertions are handled completely differently.

Most insertions ((M � 1) out of M consecutive



2120 D.K. Tasoulis, M.N. Vrahatis / Pattern Recognition Letters 26 (2005) 2116–2127
ones) take place on the T0 tree structure. When-

ever T0 reaches the maximum number of points

it can store (M points) the smallest j, such that

Tj is an empty kd-tree, is found. Subsequently,

all points from T0 and Ti for 0 6 i < j are extracted
and bulk loaded in the Tj structure. In other

words, points are inserted in the T0 structure and

periodically re-organized towards larger kd-trees

by merging small kd-trees into one large kd-tree.

The larger the kd-tree, the less frequently it needs

to be re-organized.

Extensive experimentation (Procopiuc et al.,

2003) has shown that the range query performance
of the Bkd-tree is on par with that of existing

data structures. Thus, without sacrificing range

query performance, the Bkd-tree makes significant

improvements in insertion performance and space

utilization: insertions are up to 100 times faster

than K-D-B-tree insertions, and space utilization

is close to a perfect 100%, even under a massive

load of insertions.
W2
W4

W3

W1

Fig. 4. The application of the k-windows algorithm over the

inserted points.
4. Unsupervised k-windows on dynamic databases

The proposed dynamic version of the unsuper-

vised k-windows algorithm utilizes the Bkd-tree

structure. The Bkd-tree is selected because it en-

ables the fast processing of range queries and also
provides a criterion for the timing of the update

operations on the clustering result. The workings

of the dynamic algorithm are outlined in the fol-

lowing framework:

(a) Assume an execution of the algorithm on the

initial database has been performed yielding

a set of windows that describe the clustering
result.

(b) At specified periods execute the following

steps:

(1) Treatment of insertion operations.

(2) Treatment of deletion operations.

(c) After each of the above steps is completed

update the set of windows.

Through this framework the dynamic algorithm

yields a clustering model that adapts to the

changes in the database. In the following subsec-
tions the treatment of the insertion and deletion

operations is thoroughly described along with

theoretical results concerning the worst-case time

complexity of these operations. The section ends,

with a high level description of the overall
procedure.

4.1. Treatment of insertions

It is assumed that the static unsupervised k-win-

dows algorithm has been applied on the initial

database, producing a set of windows that describe

the clustering result.
As the number of insertions through time

causes the T0 structure to reach the maximum

number of points it can store (M) a number of

windows is initialized over these points. Subse-

quently, the movement and enlargement proce-

dures of the unsupervised k-windows algorithm

are applied on these windows as in the static case.

Note that the range queries operate over the entire
Bkd-tree, and not only over T0. After movement

and enlargement of the new windows have termi-

nated they are considered for similarity and merg-

ing with all the existing windows. Thus, as new

windows are processed by the algorithm only the

most representative ones are retained, thereby

restraining the clustering result to a relatively small

size. This procedure is demonstrated in Fig. 4. Spe-
cifically, in this figure, the filled circles represent

the initial points while the empty circles represent

the inserted points. Windows W1 and W2 have

been finalized from the initial run of the algorithm.

Windows W3 and W4 are initialized over the

inserted points (empty circles). After movement

and enlargements operations forW3 andW4 termi-

nate, they are considered for similarity and merg-
ing. Windows W1 and W3 satisfy the merge

operation and are considered to belong to the
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same cluster. On the other hand, windows W2 and

W4 satisfy the similarity condition and W2 is

ignored.

Assuming an upper bound L for the number

of range searches that the k-windows algorithm
is allowed to perform for the processing of each

window, the following lemma can be stated.

Lemma 1. Let D be the set of the n initial points in

the database. Suppose that m insertions of points
occur, forming the set D 0. Assume further that the

unsupervised k-windows algorithm is applied on D

using k = cjDj, 0 < c 6 1, initial windows resulting

in k final windows. Then, the dynamic algorithm,

applied on D [ D 0, using k 0 = cjD 0j initial windows
obtained from the set D 0 only, and considering the k
windows for the merging and similarity operations,

achieves a better worst-case time over the static
algorithm applied on D [ D 0 using k00 = cjD [ D 0j
initial windows.

Proof. Following the above assumptions, and by

Eq. (1), the worst-case time performance of the

static unsupervised k-windows algorithm, applied

on the set D [ D 0 is:

Cs ¼ OðLk00ðdjD [ D0j1�ð1=dÞ þ s1ÞÞ

¼ OðLcjD [ D0jðdjD [ D0j1�ð1=dÞ þ s1ÞÞ; ð2Þ

where s1 is the upper bound of the total retrieved

points, which is bounded by the size jD [ D 0j of
the dataset. On the other hand, the dynamic k-win-

dows algorithm has a worst run time complexity:

Cd ¼ OðLk0ðdjD0j1�ð1=dÞ þ s2ÞÞ

¼ OðLcjD0jðdjD0j1�ð1=dÞ þ s2ÞÞ; ð3Þ

where s2 represents the upper bound of the total

retrieved points, and is bounded by jD 0j. Now,

since jD [ D 0j < jD 0j it is evident that Cd < Cs. h
W1

W2

W3

W5

W6W4

(a) (b)
W7

Fig. 5. (a) The application of the k-windows algorithm over the

deleted points. (b) The application of the k-windows algorithm

over the non-deleted points contained in initial window W1.
4.2. Treatment of deletions

To address the deletions of points, a second
Bkd-tree structure is maintained. Each time a

point is deleted, it is removed from the main data

structure and is inserted in the second Bkd-tree.

When this Bkd-tree, reaches its maximum size, a

number of windows is initialized over the points
it contains. These windows are subjected to the

movement and enlargement procedures of the k-

windows algorithm, that operates only on the sec-

ond database. Subsequently, they are considered

for similarity with the windows that have been al-
ready processed. If a processed window is found to

be similar with a window that contains deleted

points, the former window is ignored. If the pro-

cessed window that is ignored contained a large

number of points new windows are initialized over

these points and they are processed as new win-

dows. After all the windows that contain deleted

patterns are considered for similarity with the pro-
cessed ones, the Bkd-tree that stores the deleted

points is emptied. In Fig. 5, the deletion process

is illustrated. The filled circles represent the points

that remain in the database, while the empty cir-

cles represent the deleted points. Window W1 has

been finalized from the initial run of the algorithm.

Windows W2 and W3 are initialized over the de-

leted points (empty circles). After movement and
enlargement, they are considered for similarity

with the initial window, W1. Window W1 satisfies

the similarity condition with W2 and W3 and thus

it is ignored. Since window W1 contained a large

number of points four windows are initialized over

these points (Fig. 5(b)). The movement and

enlargement operations on these yield windows

W4, W5, W6 and W7. These windows are consid-
ered for merging and similarity. Windows W4

and W7 satisfy the similarity operation and thus

window W7 is ignored. Windows W5 and W6 sat-

isfy the merge operation thus they are considered

to enclose points belonging to the same cluster.

By clustering the deleted objects the dynamic

algorithm is able to identify the windows that need

to be re-organized in the initial results. Thus, the
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speedup that can be achieved depends not only on

the size of the updates, but also on the change they

impose on the clustering result. Formally, the fol-

lowing lemma can be stated under the assumption

of an upper bound, L, on the number of allowable
range searches for the processing of each window.

Lemma 2. Let D be the set of points of the initial n

points in the database. Suppose that m deletions of

points occur forming the set D0 � D, under the
restriction that jD0j 6 0.5jDj. Assume further that

the k-windows algorithm is applied on the set D

using k = cjDj, 0 < c 6 1 initial windows resulting

in k final windows. Suppose further, that the k-

windows algorithm applied on the set D � D0 using

k 0 = cjD � D0j windows, results in k 0 final windows,
while applying the k-windows algorithm on the set

D0 using k0 = cjD0j initial windows results in k0 final
windows. Then, the dynamic k-windows algorithm

achieves a better worst-case time complexity than

the static algorithm, as long as, jD 0j 6 j Dj � 2jD0j
where D 0 is the set that contains the points in D,

over which new windows need be initialized.

Proof. Following the above assumptions, the

worst time performance of the static k-windows
algorithm, applied on the set D � D0 is:

Cs ¼ OðLk0ðdjD� D0j1�ð1=dÞ þ s1ÞÞ

¼ OðLcjD� D0jðdjD� D0j1�ð1=dÞ þ s1ÞÞ; ð4Þ

where s1 is the upper bound of the total retrieved

points, that is bounded by the size jD � D0j of
the dataset D � D0.

On the other hand, the worst-case time com-

plexity of the dynamic algorithm is:

Cd ¼ OðLk0ðdjD0j1�ð1=dÞ þ s2ÞÞ
þOðLk00ðdjD� D0j1�ð1=dÞ þ s3ÞÞ

¼ OðLcjD0jðdjD0j1�ð1=dÞ þ s2ÞÞ
þOðLcjD0jðdjD� D0j1�ð1=dÞ þ s3ÞÞ; ð5Þ

where k00 denotes the number of new windows

that need to be initialized, over D 0, and s2 and s3,

are the upper bounds of the total retrieved points

which are bounded by jD0j and jD � D0j, respec-
tively.
Since jD0j 6 jD � D0j and s2 6 s3, we obtain the

following bound for Cd:

Cd 6 OðLcjD0jðdjD� D0j1�ð1=dÞ þ s2ÞÞ
þOðLcjD0jðdjD� D0j1�ð1=dÞ þ s3ÞÞ

6 OðLcðjD0j þ jD0jÞðdjD� D0j1�ð1=dÞ þ s3ÞÞ.
ð6Þ

Now since it is assumed that, jD 0j 6 jDj � 2jD0j we
have:

jD0j þ jD0j 6 jD� D0j. ð7Þ
Using relations (4), (6) and (7), it holds that:

OðLcðjD0j þ jD0jÞðdjD� D0j1�ð1=dÞ þ s3ÞÞ

6 OðLcjD� D0jðdjD� D0j1�ð1=dÞ þ s1ÞÞ. ð8Þ

From the above we conclude that Cd 6 Cs. h
4.3. Proposed algorithm

Based on the procedures previously described,

we propose the following high level algorithmic

scheme:

Dynamic unsupervised k-windows

01. Set {the input parameters of k-windows

algorithm}.

02. Initialize an empty set W of d-ranges.

03. Each time the T0 tree of the Bkd-tree struc-

ture is full:
04. Initialize a set I of k d-ranges, over the T0

tree.

05. Perform movements and enlargements of

the d-ranges in I.

06. Update W to contain the resulting d-

ranges.

07. Perform merging and similarity operations

of the d-ranges in W.
08. If a large enough number of deletions has

been performed:

09. Initialize a set D of k d-ranges over the

deleted points.

10. Apply k-windows on the d-ranges in D.

11. If any windows in D satisfy the similarity

condition with windows in W:
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12. Then delete those windows from W and

13. If the deleted windows from W con-

tained any not deleted points, apply k-

windows over them.

14. Report the groups of d-ranges that comprise
the final clusters.

Using the previously stated lemmata, we formu-

late the following theorem for the worst-case time

complexity of the aforementioned algorithm:

Theorem 3. Suppose that the assumptions of Lem-

mata 1 and 2 are satisfied. Then the dynamic

algorithm achieves a better worst-case time com-

plexity for the insertion and deletion stages over the

static algorithm.

Proof. The proof is obvious by Lemmata 1 and
2. h

An important parameter for the execution of

the above scheme is the selection of the size, M,
of the T0 component of Bkd-tree structure. This

parameter indirectly determines the timing of

the update operation of the database (Procopiuc

et al., 2003), which in turn triggers the update of

the clustering result. Therefore, when applying

the proposed algorithm the value of M must be

set according to the available computational
(a)

(c)

Fig. 6. Applying k-windows into fou
power, the desired update intervals of the cluster-

ing result, as well as, the size of the application

at hand.
5. Presentation of experimental results

To evaluate the performance of the proposed

dynamic unsupervised k-windows algorithm two

artificial datasets (Dset1 and Dset2), and one real

life dataset (Dset3), were used. Both artificial

datasets are two-dimensional to allow the visual

inspection of the algorithm�s performance. Data-
sets of this kind have been used for the evaluation

of various clustering algorithms (Guha et al., 1998;

Karyapis et al., 1999; Sander et al., 1998).

Dset1 contains 1600 points organized in four

different clusters of different sizes. The dataset

was segmented into four parts, each containing

400 points. The parts of the dataset were gradually

presented to the algorithm. Each time a part was
presented, the algorithm initialized a set of 32 win-

dows over the new points. These windows were

processed through the algorithmic procedure de-

scribed above. The clustering results for each step

are presented in Fig. 6. In detail, in parts (a)

and (b) of the figure, seven clusters are identified,

an outcome that appears reasonable by means of
(b)

(d)

r different instances of Dset1.
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visual inspection. In part (c) the algorithm detects

five clusters by correctly identifying the top right

and bottom left clusters. The bottom right cluster

is still divided into two clusters. Finally, at step

(d) all the clusters are correctly identified, using
seven windows.

The second artificial dataset, Dset2, contains

2760 points, organized in three convex and one

non-convex cluster. Dset2 was split into five parts.

The first part contains 920 points, while the

remaining four parts contain 460 points each.

When a new part is presented to the algorithm

64 windows are initialized over the new points.
The results of the algorithm are depicted in

Fig. 7. As it is exhibited in parts (a) and (b), the

algorithm correctly identifies two of the clusters

present in the dataset. In parts (c)–(e) the algo-

rithm identifies the three convex clusters, as well

as, the non-convex one. At the end of the cluster-
(a)

(c)

(e)

Fig. 7. Applying k-windows into si
ing process all four clusters are identified correctly

using in total 151 windows. At a next step, 460

points are removed from the database. At this

point the algorithm triggers the deletion phase,

where the deleted points are removed from the
database and are inserted in the second database

created for this purpose. Subsequently, 64 win-

dows are initialized over the deleted points and

the algorithmic procedure of k-windows is applied.

Next, the previously discovered windows are con-

sidered for similarity with these windows. After

this procedure concludes the algorithm correctly

identifies five final clusters which are exhibited in
part (f) of Fig. 7.

Dataset Dset3 is a part of the KDD 1999 Cup

dataset (KDD, 1999). This dataset was generated

by the 1998 DARPA Intrusion Detection Evalua-

tion Program that was prepared and managed by

the MIT Lincoln Labs. The objective was to
(b)

(d)

(f)

x different instances of Dset2.
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survey and evaluate research in intrusion detec-

tion. A standard set of data to be audited was pro-

vided, which includes a wide variety of intrusions

simulated in a military network environment.

The 1999 KDD intrusion detection contest uses a
version of this dataset. For the purposes of this

paper the first 100000 records of KDD 1999 Cup

train dataset were used. This part of the dataset

contains 77888 patterns of normal connections

and 22112 patterns of Denial of Service (DoS) at-

tacks. Out of the 42 features the 37 numeric ones

were considered. The dataset was randomly per-

mutated, and then split into 10 partitions of
10000 points each. Partitions were presented to

the algorithm one at a time. To evaluate the results

of the algorithm we will compare them with those

obtained by applying k-windows to the entire

dataset. When the algorithm is applied over this

dataset with 16 initial windows it results in seven

clusters out of which one contains 22087 DoS pat-

terns. The other six clusters contain normal pat-
terns exclusively, with the exception of one

cluster that also contains 24 DoS patterns. On

the other hand, applying the dynamic version at

each partition of the dataset the algorithm yielded

22 clusters. For each partition 8 windows are ini-

tialized. From the 22 clusters, one contained

22087 DoS patterns while the other clusters con-

tained normal patterns, with the exception of 24
DoS patterns that were assigned to four different

clusters, with 17, 5, 2 and 1 patterns, respectively.

Thus, the dynamic k-windows algorithm produced

results of the same quality as the static algorithm.

For comparative purposes with the work of

Kriegel et al. (2003) and Sander et al. (1998), we

also calculated the speedup achieved by the dy-

namic version of the algorithm. To this end, we
constructed a 10-dimensional dataset, Dset4, by

uniformly sampling 100 cluster centers in the

[10,200]10 range. Around each cluster center 1000

points were sampled from a normal distribution

with standard deviation along each dimension a

random number in the interval [1,3]. To measure

the speedup we computed the CPU time that the

static algorithm requires when it is re-executed
over the updated database with respect to the

CPU time consumed by the dynamic version.

The results are exhibited in Figs. 8 and 9. For
the insertions case (Fig. 8) the dynamic version
manages to achieve a speedup factor of 906.96

when 100 insertion operations occur in database

of original size 90000. For a larger number of

insertion operations 1000 the speedup obtained

although smaller 92.414 appears to be analogous

to the ratio of the number of updates to the total

size of the database.

For the case of deletions (Fig. 9) the speedup
factors obtained are larger. For example when

the size of the database is 900100 the speedup

reaches 2445.23 and 148.934 for 100 and 1000 ran-

dom deletions, respectively. It is important to note

that in the case of deletions the speedup does not
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increase monotonously with the difference between

the size of the database and the number of updates

because the time complexity of the algorithm also

depends on the impact deletions impose on the

clustering result.
6. Concluding remarks

Databases, nowadays, accumulate data at an

astonishing rate and over extensive periods of

time. These facts generate new challenges for data

mining. One such challenge is to develop algo-
rithms that can track changes that occur incre-

mentally. In this paper we present a technique

capable of tracking changes in cluster models.

Our technique extends the unsupervised k-win-

dows clustering algorithm (Vrahatis et al., 2002),

and incorporates a dynamic tree data structure

(Bkd-tree) that maintains high space utilization

and excellent query and update performance
regardless of the number of updates performed

on it. For the proposed approach we provide a

proof for the lower worst-case time complexity

achieved. Moreover, in the experimental results

we firstly illustrate that the algorithm by only

updating its cluster model was able to identify

the changes in datasets in cases of insertions and

deletions. Secondly, measurements of the achieved
speedup, indicate the high efficiency of the algo-

rithm, that is on par with other similar approaches

(Ester et al., 1998; Kriegel et al., 2003).
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