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Clustering can be defined as the process of “grouping” a collection of objects into subsets or
clusters. The clustering problem has been addressed in numerous contexts and by researchers
in different disciplines. This reflects its broad appeal and usefulness as an exploratory data
analysis approach. Unsupervised clustering algorithms have been developed to address real world
problems in which the number of clusters present in the dataset is unknown. These algorithms
approximate the number of clusters while performing the clustering procedure. This paper is a
first step towards the development of unsupervised clustering algorithms capable of identifying
clusters within clusters. To this end, an unsupervised clustering algorithm is modified so as
to take into consideration the fractal dimension of the data. The experimental results indicate
that this approach can provide further qualitative information compared to the unsupervised
clustering algorithm.
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1. Introduction

Data analysis, in general, aims at extracting knowl-
edge in large collections of data. Clustering algo-
rithms, in this context, are employed as means of
discovering subsets (clusters) in the dataset such
that objects belonging to one cluster are more sim-
ilar to each other than objects in different clusters.

The first references to clustering date back to
Aristotle and Theophrastos in the fourth century
B.C. and Linnaeus [1736] in the 18th century. It
was not until 1939, however, that one of the first
comprehensive foundations of these methods was
published [Tryon, 1939].

The application domain of clustering tech-
niques is very wide including data mining [Fayyad
et al., 1996], text mining [Boley, 1998; Dhillon &

Modha, 2001], statistical data analysis [Aldenderfer
& Blashfield, 1984], compression and vector quanti-
zation [Ramasubramanian & Paliwal, 1992], global
optimization [Becker & Lago, 1970; Törn & Zilin-
skas, 1989] and web personalization [Rigou et al.,
2004].

A plain examination of the objects that sur-
round us reveals that most of them are very com-
plex and erratic in nature [Grassberg & Procaccia,
1983; Pentland, 1984; Sarkar & Chaudhuri, 1992].
Although most man-made objects, can be described
by primitive geometric objects such as cubes and
cones, most objects in nature involve such high
complexity that classical geometry fails to describe
them. The need for a model that has the ability to
describe such erratic behavior was first handled by
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Mandelbrot [1983] who introduced the concept of
“fractals”. A set is called fractal if its Hausdorff–
Besicovitch dimension is strictly greater than its
topological dimension [Sarkar & Chaudhuri, 1992].
Fractal sets can be characterized by their fractal
dimension, that measures their complexity. Man-
delbrot first described an approach to calculate the
fractal dimension while estimating the length of a
coastline.

An established approach to compute the frac-
tal dimension of a set is the box-counting method
[Falconer, 1990; Liebovitch & Toth, 1989]. In detail,
for a set of N points in R

d, and a partition of the
space in grid cells of length l, the fractal dimension
D can be derived from:

D = − lim
l→0

log10 N(l)
log10 l

,

where N(l) represents the number of cells occupied
by at least one point [Falconer, 1990].

Clustering algorithms that employ the fractal
dimension have been proposed in the past. Barbarä
and Chen [2000], proposed a grid based clustering
algorithm, that uses fractal dimension to cluster
datasets. The algorithm, uses a heuristic based algo-
rithm at the initialization stage to form the initial
clusters and then it incrementally adds points to a
cluster, as long as, the fractal dimension remains
constant. Prasad et al. [2003], also proposed a frac-
tal based clustering method for two dimensions.
Both these algorithms are supervised, that is, they
require from the user to provide an a priori estima-
tion of the number of clusters present in the dataset.

In this contribution we extend the unsuper-
vised k-windows clustering algorithm [Tasoulis &
Vrahatis, 2004, 2005; Vrahatis et al., 2002], by tak-
ing under consideration the qualitative information
provided by the fractal dimension. The rest of the
paper is organized as follows. In Sec. 2, the unsuper-
vised k-windows algorithm is briefly described, and
the proposed modification is presented. Section 3 is
devoted to the presentation of the computational
experiments. The paper ends with discussion and
concluding remarks.

2. Unsupervised k-Windows
Clustering Algorithm

The unsupervised k-windows algorithm uses win-
dows to define clusters. Windows are defined as
orthogonal ranges in a d-dimensional space. For a
given set of points the algorithm initializes ran-
domly a number of windows, of a user defined size,

over the data. Next, it employs the procedures of
movement and enlargement, to iteratively update
the windows’ size and center so as to capture each
cluster in the dataset by one or more windows. The
movement procedure updates a window’s center, by
setting it equal to the mean of the patterns cur-
rently included. At the enlargement stage, the size
of the window is increased in order to capture as
many patterns of the underlying cluster as possi-
ble. The enlargement procedure terminates when
the number of patterns included in the window no
longer increases. The two processes are exhibited in
Fig. 1.

The final step of the algorithm, is the merg-
ing procedure. In this step, the resulting windows
from the previous steps that are suspected to cap-
ture patterns that belong to a single cluster are
considered for merging. In detail, for each pair of
overlapping windows the number of points in their
intersection is computed. If the ratio of this num-
ber to the number of points in each window is close
to one, then one of the two windows is disregarded
as the two windows are considered to be identical.
If this ratio, is high the two windows are consid-
ered to capture parts of the same cluster. Finally,
if this ratio is small the windows are considered to
capture two different clusters. Thus by considering
a sufficiently large number of initial windows, the
algorithm is able to provide an approximation for
the number of clusters present in the dataset. An
example of this operation is exhibited in Fig. 2. In
particular, in Fig. 2(a) windows W1 and W2 are
considered to capture the same cluster, and W1 is
deleted. On the other hand, in Fig. 2(b) windows
W3 and W4 are considered to capture parts of the
same cluster. Finally, in Fig. 2(c) windows W5 and
W6, are considered to capture two different clusters.

M1

M3
M2

M4

(a)

E1
E2

M4

(b)

Fig. 1. (a) Sequential movements of the initial window M1
that result in the final window M4. (b) Sequential enlarge-
ments of the initial window M4 that result in the final window
E2.
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Fig. 2. The merging procedure.

The computational complexity of the algo-
rithm depends on the complexity of determining the
points that lie in a specific window. This is the well
studied orthogonal range search problem [Preparata
& Shamos, 1985]. Numerous Computational Geom-
etry techniques have been proposed [Alevizos, 1998;
Bentley & Maurer, 1980; Chazelle, 1986; Preparata
& Shamos, 1985] to address this problem. All these
techniques employ a preprocessing stage at which
they construct a data structure that stores the pat-
terns. This data structure allows them to answer
range queries fast. For applications of very high
dimensionality, data structures like the Multidimen-
sional Binary Tree [Preparata & Shamos, 1985],
and Bentley and Maurer [1980] seem more suit-
able. On the other hand, for low dimensional data
with a large number of points the approach of
Alevizos [1998] appears more attractive. The unsu-
pervised k-windows algorithm has been success-
fully applied in numerous applications including
bioinformatics [Tasoulis et al., 2004a, 2004b], med-
ical diagnosis [Magoulas et al., 2004; Tasoulis
et al., 2003], time series prediction [Pavlidis et al.,
2003] and web personalization [Rigou et al.,
2004].

2.1. Proposed modification

In this paper we propose a modified version of
the unsupervised k-windows clustering algorithm,
that guides the procedures of movement, enlarge-
ment and merging using the estimation of the frac-
tal dimension of the set of points included in a
window.

In detail, the movement and enlargement of a
window is considered valid only if the associated
change of the fractal dimension is not significant.
It is also possible to guide the merging procedure
on the fractal dimension by allowing two windows
to merge only if the estimated fractal dimensions
are almost equal. Thus, the merging of windows

(a) (b)

Fig. 3. Clusters with regions of different density. The pro-
posed algorithm is able to discover the different sections of
the same clusters.

that capture regions of a cluster with different frac-
tal dimension is prevented. Such clusters appear in
datasets where the density of points in the neigh-
borhood of the cluster center is significantly higher
than that of areas located further away from the
center. Thus, the algorithm discovers the cluster
center more efficiently and moreover, it identifies
regions with qualitative differences within a single
cluster. Consider for example the case exhibited in
Fig. 3. The enlargement and movement procedures
restrain window W3 from enclosing the right part of
the cluster since the fractal dimension of this region
is much higher [see Fig. 3(b)]. Similarly, window W4
is restrained from capturing the left part of the clus-
ter. The proposed modification of the algorithm also
recognizes that although the windows have many
points in common [see Fig. 3(a)], the difference in
the value of the fractal dimension between them is
sufficiently large so as to consider them as two dis-
tinct regions of the same cluster.

3. Experimental Results

To illustrate the impact of the proposed modifi-
cation on the workings of the algorithm we firstly
employ an artificial two-dimensional dataset Dset1
that contains 1200 points. The dataset, as well as,
the outcomes of the original and the proposed algo-
rithm are demonstrated in Fig. 4, where different
colors correspond to different clusters. As it is evi-
dent both algorithms are able to discover the cen-
ters of the two main clusters. In contrast to the
original algorithm, the proposed algorithm identi-
fies the regions around the cluster centers that are
characterized by higher density.

Next we consider the four-dimensional Iris
dataset Dsetiris from the UCI machine learning
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Fig. 4. Dset1 with the results of the unsupervised k-windows algorithm (left) and the proposed version (right).

repository [Blake & Merz, 1998]. This dataset is
among the best known databases to be found in
the pattern recognition literature. It contains 150
records of four features. The features are measure-
ments of the sepal and petal length and width of
three different types of the iris plant (Setosa, Versi-
colour and Virginica). The 150 records are equally
distributed in three classes, each corresponding to
a different type of the plant.

The confusion matrices depicted in Table 1,
report the number of members of each discovered
cluster that correspond to each class. Ideally, each
cluster should contain patterns that belong to a sin-
gle type of the Iris plant. In terms of the confusion
matrix this implies that all the nondiagonal entries
are zero. Both algorithms recognize three clusters
thus the physical meaning of the data is discovered
by both. The only difference lies in the number of
points that have different class and cluster labels,
eight for the original unsupervised k-windows and
six for the proposed modification.

The final benchmark problem considered,
Dseteq, is a two-dimensional dataset of the longi-
tudes and latitudes of the earthquakes with a mag-
nitude greater than 4, in the Richter earthquake

scale, that occurred in the period 1983 to 2003 in
Greece. The dataset was obtained from the Insti-
tute of Geodynamics of the National Observatory of
Athens [Catalogue, n.d.]. This dataset is employed
not to obtain a further insight with respect to the
earthquake phenomenon, but rather to study the
applicability of the proposed algorithm to a real
world dataset.

Figure 5 illustrates the results of the unsuper-
vised k-windows algorithm applied on Dseteq, while
Fig. 6 exhibits the results obtained by the modi-
fied algorithm. In both figures, different colors cor-
respond to different clusters. As in the previous
two cases, the modified algorithm separates regions
characterized by different fractal dimensions, that
were assigned to a single cluster by the original algo-
rithm. In Fig. 6 characteristic examples of clusters
that were separated by the modified algorithm are
enclosed in black squares. Notice that the coastline
of Greece appearing in these figures is not precise
and is included to provide an approximate visual-
ization of the relative positions of the earthquakes.

This is a preliminary investigation of the appli-
cation of clustering algorithms to earthquake data.
An exhaustive investigation requires the inclusion

Table 1. Confusion matrices for Dsetiris.

Unsupervised k-Windows Proposed Version

Iris Class Iris Class

Setosa Versicolour Virginica Setosa Versicolour Virginica

Cluster 1 50 0 0 50 0 0
Cluster 2 0 46 4 0 46 4
Cluster 3 0 4 46 0 2 48
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Fig. 5. Dseteq with the results of the unsupervised k-windows algorithm.

Fig. 6. Dseteq with the results of the proposed modification.
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of additional parameters like magnitude, depth, and
time.

4. Discussion and Concluding
Remarks

This paper presents preliminary results of a new
clustering algorithm that incorporates information
about the fractal dimension of the underlying clus-
ters in order to partition a d-dimensional dataset.
To perform such clustering within clusters analy-
sis it is important to use an unsupervised cluster-
ing algorithm. Unsupervised clustering algorithms
have the desirable property that they do not require
from the user to specify the number of clusters
present in the dataset prior to their execution.
As a first step, we considered the unsupervised
k-windows algorithm. This algorithm uses a win-
dowing technique to capture the clusters, and per-
forms three procedures, movement, enlargement,
and merging, to produce the final clustering result.
The approximation of the fractal dimension, using
the box-counting method, occurs at each step of the
algorithm and provides additional, qualitative,
information to determine the positioning and size
of the windows, as well as, the final cluster number.

The proposed approach enables the identi-
fication of regions with different fractal dimen-
sion even within a single cluster. The design and
development of algorithms that can detect clusters
within clusters is particularly attractive in numer-
ous applications where further qualitative infor-
mation is valuable. Examples include time-series
analysis, image analysis, medical applications, and
signal processing.

Future directions will include the thorough
investigation of this approach on other real life
applications like the aforementioned ones.
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Barbarä, D. & Chen, P. [2000] “Using the fractal dimen-
sion to cluster datasets,” Knowledge Discovery in
Databases (ACM Press), pp. 260–264.

Becker, R. W. & Lago, G. V. [1970] “A global optimiza-
tion algorithm,” Proc. 8th Allerton Conf. Circuits and
Systems Theory, pp. 3–12.

Bentley, J. L. & Maurer, H. A. [1980] “Efficient
worst-case data structures for range searching,” Acta
Inform. 13, 155–168.

Blake, C. L. & Merz, C. J. [1998] UCI Repository of
Machine Learning Databases.

Boley, D. [1998] “Principal direction divisive partition-
ing,” Data Min. Knowl. Discov. 2, 325–344.

Catalogue, Earthquake, http://www.gein.noa.gr/
services/cat.html, Institute of Geodynamics, National
Observatory of Athens.

Chazelle, B. [1986] “Filtering search: A new approach to
query-answering,” SIAM J. Comput. 15, 703–724.

Dhillon, I. S. & Modha, D. S. [2001] “Concept decom-
positions for large sparse text data using clustering,”
Mach. Learn. 42, 143–175.

Falconer, K. [1990] Fractal Geometry — Mathematical
Foundations and Applications (John Wiley & Sons,
Chichester).

Fayyad, U. M., Piatetsky-Shapiro, G. & Smyth, P. [1996]
Advances in Knowledge Discovery and Data Mining
(MIT Press).

Grassberg, P. & Procaccia, I. [1983] “Characterization
of strange attractors,” Phys. Rev. Lett. 50, 346–349.

Liebovitch, L. S. & Toth, T. [1989] “A fast algorithm to
determine fractal dimensions by box counting,” Phys.
Lett. A 141, 386–390.

Linnaeus, C. [1736] Clavis Classium in Systemate
Phytologorum in Bibliotheca Botanica, (Biblioteca
Botanica, Amsterdam, The Netherlands).

Magoulas, G. D., Plagianakos, V. P., Tasoulis, D. K.
& Vrahatis, M. N. [2004] “Tumor detection in
colonoscopy using the unsupervised k-windows clus-
tering algorithm and neural networks,” Fourth Euro-
pean Symp. “Biomedical Engineering.”

Mandelbrot, B. B. [1983] The Fractal Geometry of
Nature (Freeman, NY).

Pavlidis, N. G., Tasoulis, D. K. & Vrahatis, M. N. [2003]
“Financial forecasting through unsupervised clus-
tering and evolutionary trained neural networks,”
Congress on Evolutionary Computation, pp. 2314–
2321.

Pentland, A. P. [1984] “Fractal-based description of nat-
ural scenes,” IEEE Trans. Patt. Anal. Mach. Intell.
6, 661–674.

Prasad, M. G. P., Dube, S. & Sridharan, K. [2003]
“An efficient fractals-based algorithm for clustering,”
IEEE Region 10 Conf. Convergent Technologies for
The Asia-Pacific.



Unsupervised Clustering Using Fractal Dimension 2079

Preparata, F. & Shamos, M. [1985] Computational
Geometry (Springer Verlag, NY, Berlin).

Ramasubramanian, V. & Paliwal, K. [1992] “Fast k-
dimensional tree algorithms for nearest neighbor
search with application to vector quantization encod-
ing,” IEEE Trans. Sign. Process. 40, 518–531.

Rigou, M., Sirmakessis, S. & Tsakalidis, A. [2004] “A
computational geometry approach to web personal-
ization,” IEEE Int. Conf. E-Commerce Technology
(CEC’04), pp. 377–380.

Sarkar, N. & Chaudhuri, B. B. [1992] “An efficient
approach to estimate fractal dimension of textural
images,” Patt. Recogn. 25, 1035–1041.

Tasoulis, D. K., Vladutu, L., Plagianakos, V. P.,
Bezerianos, A. & Vrahatis, M. N. [2003] “On-line
neural network training for automatic ischemia
episode detection,” Lecture Notes in Computer Sci-
ence 2070, 1062–1068.

Tasoulis, D. K. & Vrahatis, M. N. [2004] “Unsupervised
distributed clustering,” IASTED Int. Conf. Parallel
and Distributed Computing and Networks (Innsbruck,
Austria), pp. 347–351.

Tasoulis, D. K., Plagianakos, V. P. & Vrahatis,
M. N. [2004a] “Unsupervised cluster analysis in
bioinformatics,” Fourth European Symp. “Biomedical
Engineering”.

Tasoulis, D. K., Plagianakos, V. P. & Vrahatis,
M. N. [2004b] “Unsupervised clustering of bioinfor-
matics data,” European Symp. Intelligent Technolo-
gies, Hybrid Systems and their implementation on
Smart Adaptive Systems, Eunite, pp. 47–53.

Tasoulis, D. K. & Vrahatis, M. N. [2005] “Unsupervised
clustering on dynamic databases,” Patt. Recogn. Lett.
26, 2116–2127.
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