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We present MEMPSODE, a global optimization software tool that integrates two prominent population-
based stochastic algorithms, namely Particle Swarm Optimization and Differential Evolution, with well
established efficient local search procedures made available via the Merlin optimization environment.
The resulting hybrid algorithms, also referred to as Memetic Algorithms, combine the space exploration
advantage of their global part with the efficiency asset of the local search, and as expected they have
displayed a highly efficient behavior in solving diverse optimization problems. The proposed software
is carefully parametrized so as to offer complete control to fully exploit the algorithmic virtues. It is
accompanied by comprehensive examples and a large set of widely used test functions, including tough
atomic cluster and protein conformation problems.

Program summary

Program title: MEMPSODE (MEMetic Particle Swarm Optimization and Differential Evolution)
Catalogue identifier: AELM_v1_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AELM_v1_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html
No. of lines in distributed program, including test data, etc.: 14 877
No. of bytes in distributed program, including test data, etc.: 592 244
Distribution format: tar.gz
Programming language: ANSI C, ANSI Fortran-77
Computer: Workstations
Operating system: Developed under the Linux operating system using the GNU compilers v.4.4.3. It has
also been tested under Solaris and the Cygwin environment.
RAM: The code uses O (n × N) internal storage, n being the dimension of the problem and N the
maximum population size. The required memory is dynamically allocated.
Word size: 64 bits
Classification: 4.9
Subprograms used:
Cat Id Title Reference
AAXW_v4_0 MERLIN-3.1.1 CPC 159 (2004) 70
Nature of problem: Optimization is a valuable mathematical tool for solving a plethora of scientific and
engineering problems. Usually, the underlying problems are modeled with objective functions whose
minimizers (or maximizers) correspond to the desired solutions of the original problem. In many cases,
there is a multitude of such minimizers that correspond to solutions either locally, i.e., in their close
neighborhood, or globally, i.e., with respect to the whole search space. There is a significant number
of efficient algorithms for addressing optimization problems. One can distinguish two main categories,
based on their adequacy in performing better global (exploration) or local (exploitation) search. Standard
local optimization algorithms have the ability to rapidly converge towards local minimizers but they are
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also prone to get easily trapped in their vicinity. These algorithms usually exploit local information of the
objective function, including first- and second-order derivatives. On the other hand, global optimization
algorithms are designed to perform better exploration, although at the cost of questionable convergence
properties. Typically, these approaches integrate stochastic operations. The form of the optimization
problem at hand plays a crucial role in the selection of the most appropriate algorithm. Objective
functions that lack nice mathematical properties (such as differentiability, continuity etc.) may raise
applicability issues for algorithms that require derivatives. On the other hand, applications that require
high accuracy may be laborious for stochastic algorithms. The existence of a multitude of local and/or
global minimizers can render these problems even harder for any single optimization algorithm.
Solution method: Evolutionary Algorithms and Swarm Intelligence approaches have been established
as effective global optimization algorithms that make minor assumptions about the objective function.
Particle Swarm Optimization (PSO) and Differential Evolution (DE) possess a salient position among the
most successful algorithms of these categories. Numerous studies indicate that their performance can
be radically improved when combined with efficient local optimization schemes. The resulting hybrid
algorithms offer more balanced search intensification/diversification than the original ones, thereby
increasing both their efficiency and effectiveness. Such hybrid schemes are called Memetic Algorithms,
and they have gained a rapidly growing interest over the past few years.
We present MEMPSODE (MEMetic, PSO and DE), a global optimization software that implements
memetic PSO and DE within a unified framework. The software utilizes local search procedures from
the established Merlin optimization environment. The performance of the implemented approaches is
illustrated on several examples, including hard optimization tasks such as atomic cluster and protein
conformation problems.
Restrictions: The current version of the software uses double precision arithmetic. However, it can be
easily adapted by the user to handle integer or mixed-integer problems.
Unusual features: The software takes into account only bound constraints. General constraints may be
tackled by user-defined penalty or barrier functions that can be easily incorporated in the source code of
the objective function.
Additional comments: The use of the Merlin Optimization Environment 3.1.1 (see subprograms above) is
optional.
A comprehensive user manual is provided that covers in detail the installation procedure and provides
detailed examples of operation.
Running time: The running time depends solely on the complexity of the objective function (and its
derivatives, if used) as well as on the available computational budget (number of function evaluations).
The test run provided (Rastrigin function n = 10), requires 2.5 × 106 function evaluations (2.8 seconds on
an i7-920 CPU).

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Many scientific and engineering problems may be reformulated as optimization problems. This is possible by developing appropriate
objective functions that accurately model the problem at hand. Usually, the global minimizers of the objective functions correspond to
optimal solutions of the original problem. There are numerous applications that require the solution of global optimization problems
as intermediate tasks. Among others, we mention applications related to signal processing, telecommunications, finance and opera-
tions research, networks and transportation, engineering design and control, molecular biology, hardware and software design, as well
as biomedical engineering [1–5].

Global Optimization (GO) problems that involve objective functions with strong mathematical properties (such as differentiability,
Lipschitz continuity etc.) and adequate simplicity (e.g., functions with a unique minimizer) can be addressed efficiently by classical de-
terministic optimization algorithms. Usually, these approaches use first- and second-order derivative information of the objective function
and they are characterized by high rates of convergence [6,7].

However, in most realistic cases the relevant objective functions do not share these smoothness properties. Indeed, the nature of the
physical problem itself can pose modeling limitations that prohibit the development of mathematically well-behaved objective functions
with desirable characteristics. Multitude of local minimizers, noisy or black-box objective functions, inexact measurements due to equip-
ment failure, are just a few of the issues that must be addressed in modeling real-world problems. In such situations, more tolerant
algorithms than the traditional gradient-based approaches should be considered.

Over the past 20 years, Evolutionary Algorithms (EAs) and Swarm Intelligence (SI) approaches have been established as powerful
optimization tools for solving optimization problems [8–15]. These algorithms are based on models that draw their inspiration from
physical systems. Based on natural selection, DNA structures exhibit a remarkable capability of evolving, producing populations with fitter
individuals. Animal herds and fish schools exhibit striking self-organization and collective behavior, based solely on primitive interactions
among them. The inherent optimization capabilities of such systems can be modeled using stochastic analysis and discrete dynamical
system models, producing new population-based algorithms with significant tolerance in uncertain environments and minimal demands
regarding the objective function properties, which in turn creates obstacles to the mathematical analysis of their convergence properties
and proper parameter settings. Nevertheless, despite the occasional criticism, EAs and SI approaches have been used in a vast number of
applications, offering solutions in problems where other methods usually fail [9,15].

Genetic Algorithms (GAs) [16] where the first EAs used in engineering applications. The binary population representation that was used
in the early versions, rendered them attractive for engineering design problems. Later, Evolution Strategies [17] gained popularity due to
their ability to solve continuous optimization problems and adapt their parameters during the optimization procedure. The development
of Particle Swarm Optimization (PSO) [18] and Differential Evolution (DE) [19] started in the mid nineties. During the first years, the
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new approaches were shadowed by the established EAs. However, their popularity has been gradually increased due to implementation
simplicity that made them accessible to researchers in diverse fields, as well as due to the increased efficiency of recent variants. Today,
PSO and DE have been distinguished as two of the most promising population-based approaches.

The rise of EAs and SI algorithms has sparked the development of a closely related category, namely the Memetic Algorithms (MAs). MAs
constitute a class of hybrid meta-heuristics that combine population-based optimization algorithms with local search procedures [20–22].
The rationale behind their development was the necessity for powerful algorithms where the global exploration capability of EAs and SI
approaches would be complemented with the efficiency and accuracy of classical local optimization techniques.

The first implementations of MAs were hybrid algorithms that employed GAs as their global search module and a local search (LS)
procedure applied on some individuals at each iteration [23–26]. The resulted GA-LS algorithms have evolved mainly in two classes
depending on the employed LS type. The first class hybridizes the GA with local optimization methods such as stochastic hill-climbing,
the nonlinear simplex method, conjugate gradient and quasi-Newton methods. In the other class, LS is performed by using specialized
crossover operators for local refinement. The first promising results were obtained from the approximate solution of NP-hard optimization
problems, where the cooperation of the global and local search modules was observed to be advantageous. [14,27–29].

The successful application of MAs in the discrete domain was followed by a rapid development of continuous optimization variants.
Very effective MAs that exhibit outstanding performance both on standard continuous global optimization benchmarks as well as on real-
world problems have been developed [30–34]. Recently, PSO and DE have been also used as the global search components of efficient MA
schemes [12,34–37].

Since MAs contain a part based upon heuristics, their performance depends on configuration parameters that are determined experi-
mentally. The most important and still open questions, known as the fundamental memetic questions [15], are:

(a) Where should the LS procedures be applied. The user should pick the individuals that will constitute initial points for the LS.
(b) When should the LS procedures be applied. The application frequency of LS shall be determined in order to attain a wise exploitation

of the available computational budget.
(c) How much of the budget should the LS procedures spend. The user must specify the fraction of the available computational budget that

will be devoted to LS.

All these issues were studied in [36], resulting in a very efficient PSO-based memetic strategy.
In the paper at hand, we propose a software that follows closely the PSO-based memetic approaches reported in [36] and extends them

also to the DE framework. More specifically, the Unified PSO (UPSO) approach [38,39], which harnesses the strengths of standard local and
global PSO variants is implemented. The standard PSO is derived directly as a special case of UPSO. The five fundamental operators of the
DE algorithm are implemented as well. In both cases, direct calls to LS procedures are facilitated via the established Merlin optimization
environment [40,41], providing the ability to develop a variety of MAs. Of course, the user may simply run the UPSO and DE code without
employing LS, if not desirable. It must be stressed that no single algorithm or combination of algorithms can address efficiently all possible
optimization problems. This is not only intuitively expected but there is significant theoretical evidence suggesting that there is no panacea
in optimization [42,43]. This justifies the inclusion of different algorithms in our software.

MEMPSODE is a contemporary software package with state-of-the-art algorithmic components that can serve as an effective general
purpose continuous GO tool. MEMPSODE is fully parametrized, enabling thus the user to easily configure the algorithms, taking in account
the decisions made as far as the fundamental memetic questions are considered. It may be used either as a standalone executable or as
a user-callable routine, thus enabling integration with other software packages. In addition, the source code is designed to easily accept
additions of external source code without requiring specialized expertise in programming. Alternatively, the user can simply run the
software using the proposed default parameters without any further intervention. The proposed software treats both smooth and non-
smooth objectives functions. It includes an arsenal of gradient-based and gradient-free methods provided by Merlin environment and an
extension to user provided local search algorithms via the Merlin plug-in mechanism. It also provides a unique interface to the Tinker
software [44] for molecular mechanics calculations, thus enabling its application on numerous force fields and molecules.

The rest of the paper is organized as follows: the employed UPSO and DE algorithms are sketched in Section 2, along with a brief
description of the Merlin environment and its supported LS procedures. Section 3 is devoted to the description of the most important
algorithmic issues related to the proposed software, while Section 4 offers a detailed documentation of the software, including installation,
execution and application examples. Finally, we present concluding remarks on this work in Section 6.

2. Background information

In the following sections, we present in brief the three major algorithmic components of the proposed software, namely UPSO, DE and
the LS optimization artillery provided by the Merlin optimization environment. Without loss of generality, we will assume that all the
considered optimization problems refer to the minimization case. Maximization can be equivalently treated as minimization by flipping
the sign of the objective function.

2.1. Unified particle swarm optimization

PSO was introduced by Eberhart and Kennedy [18,45]. The main concept of the method includes a population, also called swarm, of
search points, also called particles, searching for optimal solutions within the search space, simultaneously. The particles move in the
search space by assuming an adaptable position shift, called velocity, at each iteration.

Moreover, each particle retains in a memory the best position it has ever visited, i.e., the position with the lowest function value.
This information can be regarded as the particle’s experience and it is communicated to other particles. For this purpose, each particle
is assigned a neighborhood, which determines the indices of its mates that will share its experience. Intuitively, a neighborhood can be
depicted as a graph of nodes that represent the particles and edges that represent their communication links. This is often called the
neighborhood’s topology. Fig. 1 illustrates two such neighborhood topologies, namely the ring (left) and the star (right).



1142 C. Voglis et al. / Computer Physics Communications 183 (2012) 1139–1154
Fig. 1. The ring (left) and the star (right) neighborhood topology of PSO.

Obviously, the neighborhood scheme affects the flow of information among the particles. For example, in the popular ring topology
each particle is assumed to communicate only with its mates with adjacent indices. Such schemes correspond the local PSO variant,
usually called lbest PSO. Here, locality refers only to the information exchange scheme and should not be confused with local search. It is
easily inferred that the communication restrictions of lbest PSO, result in slower flow of information among the particles.

If the whole swarm constitutes a single neighborhood, any new information (best position) is immediately advertised to every single
particle in each iteration. This is also called the global (or gbest) PSO model. Taking into consideration that the shared experience of a
particle is one of the two crucial factors that govern its motion in the search space, we understand that the neighborhood topology can
have a significant impact on PSO’s convergence speed. In practice, it has been noticed that lbest PSO has slower convergence, but it retains
a thorough exploration capability. On the other hand, the gbest PSO model exhibits faster convergence however at the cost of possible
entrapment in the vicinity of local minimizers.

Putting our description in a mathematical framework, let us assume the n-dimensional continuous optimization problem:

min
x∈X⊂Rn

f (x), (1)

where the search space X is an orthogonal hyperbox in R
n:

X ≡ [l1, r1] × [l2, r2] × · · · × [ln, rn].
A swarm of N particles is a set of search points:

S = {x1, x2, . . . , xN },
where the i-th particle is defined as:

xi = (xi1, xi2, . . . , xin)
� ∈ X, i = 1,2, . . . , N.

The velocity (position shift) of xi is denoted as:

vi = (vi1, vi2, . . . , vin)
�, i = 1,2, . . . , N,

and its best position as:

pi = (pi1, pi2, . . . , pin)
� ∈ X, i = 1,2, . . . , N.

In the proposed software we implemented the popular ring neighborhood topology. If m denotes the neighborhood’s radius, then the
neighborhood of xi consists of the indices of those particles that share information with xi and it is denoted as:

Ni = {i − m, . . . , i − 1, i, i + 1, . . . , i + m}.
Obviously, in the ring topology the two ends of the ring coincide, i.e., the indices recycle at the end.

Let gi denote the best particle in Ni , i.e.:

gi = arg min
j∈Ni

f (p j),

and t denote the algorithm’s iteration counter. Then, the particle positions and velocities are updated at each iteration according to the
equations [46]:

v(t+1)
i j = χ

[
v(t)

i j + c1r1
(

p(t)
i j − x(t)

i j

) + c2r2
(

p(t)
gi j − x(t)

i j

)]
, (2)

x(t+1)
i j = x(t)

i j + v(t+1)
i j , i = 1,2, . . . , N, j = 1,2, . . . ,n, (3)

where χ is the constriction coefficient; c1 and c2 are positive constants called cognitive and social parameter, respectively; and r1, r2, are
random numbers drawn from a uniform distribution in the range [0,1]. The PSO model defined in Eqs. (2) and (3) was proposed by Clerc
and Kennedy in [46] and it is considered as one of the most promising state-of-the-art PSO variants and therefore we have adopted this
model in our implementation.

The best position of each particle is updated at each iteration as follows:
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p(t+1)
i j =

⎧⎨
⎩

x(t+1)
i j , if f (x(t+1)

i j ) < f (p(t)
i j ),

p(t)
i j , otherwise.

(4)

Clerc and Kennedy [46] provided also a stability analysis of the PSO model described above. According to it, the parameters shall be
set in proper values such that:

χ = 2

|2 − ϕ − √
ϕ2 − 4ϕ| , (5)

for ϕ = c1 + c2 > 4. Thus, the values:

χ = 0.729, c1 = c2 = 2.05,

were proposed as the default parameter set. Alternative setups were proposed by Trelea in [47]. The swarm and velocities are usually
initialized randomly and uniformly within the search space.

The described PSO model was generalized in the UPSO scheme by combining the lbest and gbest velocity updates. The motivation
behind it, stemmed from the speculation that harnessing search directions with different exploration/exploitation properties could lead
to more efficient schemes. Thus, if we assume that G(t+1)

i and L(t+1)
i denote the velocity update of xi in the gbest and lbest PSO model,

respectively [38,39]:

G(t+1)
i j = χ

[
v(t)

i j + c1r1
(

p(t)
i j − x(t)

i j

) + c2r2
(

p(t)
g j − x(t)

i j

)]
, (6)

L(t+1)
i j = χ

[
v(t)

i j + c1r1
(

p(t)
i j − x(t)

i j

) + c2r2
(

p(t)
gi j − x(t)

i j

)]
, (7)

where g is the index of the overall best particle, i.e.:

g = arg min
j=1,...,N

f (p j),

then the particle is updated as follows [38,39]:

U (t+1)
i j = uG(t+1)

i j + (1 − u)L(t+1)
i j , (8)

x(t+1)
i j = x(t)

i j + U (t+1)
i j , i = 1,2, . . . , N, j = 1,2, . . . ,n. (9)

The parameter u ∈ [0,1] is called the unification factor and it balances the influence (trade-off) of the global and local velocity update.
Obviously, the lbest PSO model is retrieved for u = 0, while for u = 1 the gbest PSO model is obtained. All intermediate values produce
combinations with diverse convergence properties.

In addition to the standard UPSO model, a mutated one was also proposed [38,39]. According to it, a stochastic parameter is incorpo-
rated in UPSO’s velocity update, imitating the mutation operation in EAs. Thus, Eq. (8) can be redefined as:

U (t+1)
i j = ur3G(t+1)

i j + (1 − u)L(t+1)
i j , (10)

which is mostly based on the lbest term, or as:

U (t+1)
i j = uG(t+1)

i j + (1 − u)r3L(t+1)
i j , (11)

which favors the gbest term. The parameter r3 ∼ N(μ,σ 2 I), is a normally distributed random variable and I stands for the identity matrix.
Convergence in probability for these variants was studied in [38,39]. Experiments on a set of diverse problems, suggested that UPSO can
provide remarkably better results than the standard lbest or gbest PSO models alone [38,39,48,49].

2.2. Memetic particle swarm optimization

As already mentioned, MAs combine EAs and LS procedures producing hybrid schemes that exploit the advantages of both approaches.
In [36] a Memetic PSO (MPSO) was introduced and theoretically analyzed. The proposed MPSO was a combination of the standard PSO
with the Random Walk with Direction Exploitation [50] algorithm. The reported results, including unconstrained, constrained, minimax
and integer programming problems, suggested that MPSO can be considerably more efficient than the standard PSO. Later, this was also
confirmed in fixed points and machine learning problems [51,52].

The design of MPSO in [36] was based on three fundamental schemes, henceforth called the memetic strategies:

Scheme 1: LS is applied only on the overall best position, pg , of the swarm.
Scheme 2: LS is applied on each locally best position, pi , i = 1,2, . . . , N , with a prescribed fixed probability, ρ ∈ (0,1].
Scheme 3: LS is applied both on the best position, pg , as well as on some randomly selected locally best positions, pi , i ∈ {1,2, . . . , N}.

These schemes can be applied either at each iteration or whenever a specific number of consecutive iterations has been completed.
Of course, many other memetic strategies can be considered. For instance, a simple one would be the application of LS on every

particle. However, such an approach would be costly in terms of function evaluations. In practice, only a small number of particles are
considered as start points for LS, as pointed out in [25]. The memetic strategies proposed in [36] were also adopted in MEMPSODE for
both PSO- and DE-based MAs. Further technical details are reported in Section 3.
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2.3. Differential evolution

The Differential Evolution (DE) algorithm was introduced by Storn and Price [19,53] as a population-based stochastic optimization
algorithm for numerical optimization problems. DE is formulated similarly to PSO. A population:

P = {x1, x2, . . . , xN},
of N individuals is utilized to probe the search space, X ⊂ R

n . The population is randomly initialized, usually following a uniform distri-
bution within the search space.

Each individual is an n-dimensional vector:

xi = (xi1, xi2, . . . , xin)
� ∈ X, i = 1,2, . . . , N,

serving as a candidate solution of the problem at hand. The population is iteratively evolved by applying two operators, mutation and
recombination, on each individual to produce new candidate solutions. Then, the new and the old individuals are merged and selection
takes place to construct the new population consisting of the N best individuals. The procedure continues in the same manner until a
termination criterion is fulfilled.

2.3.1. Mutation
The mutation operator produces a new vector, vi , for each individual, xi , i = 1,2, . . . N , by combining some of the rest individuals of

the population. There are five basic operators proposed to accomplish this task:

OP1: v(t+1)
i = x(t)

g + F
(
x(t)

r1 − x(t)
r2

)
, (12)

OP2: v(t+1)
i = x(t)

r1 + F
(
x(t)

r2 − x(t)
r3

)
, (13)

OP3: v(t+1)
i = x(t)

i + F
(
x(t)

g − x(t)
i + x(t)

r1 − x(t)
r2

)
, (14)

OP4: v(t+1)
i = x(t)

g + F
(
x(t)

r1 − x(t)
r2 + x(t)

r3 − x(t)
r4

)
, (15)

OP5: v(t+1)
i = x(t)

r1 + F
(
x(t)

r2 − x(t)
r3 + x(t)

r4 − x(t)
r5

)
, (16)

where t denotes the iteration counter; F ∈ (0,1] is a fixed user-defined parameter; g denotes the index of the best individual in the
population, i.e., the one with the lowest function value; and r j ∈ {1,2, . . . , N}, j = 1,2, . . . ,5, are mutually different randomly selected
indices that differ also from the index i. Thus, in order to be able to apply all mutation operators, it must hold that N > 5. All vector
operations in Eqs. (12)–(16) are performed componentwise. The operators that use the best individual in the population can be considered
as operators with higher exploitation property while the others can be considered as operators with higher exploration property.

2.3.2. Recombination
After the mutation, a recombination operator is applied producing a trial vector:

ui = (ui1, ui2, . . . , uin), i = 1,2, . . . , N,

for each individual. This vector is defined as follows:

u(t+1)
i j =

⎧⎨
⎩

v(t+1)
i j , if R j � CR or j = RI(i),

x(t)
i j , if R j > CR and j �= RI(i),

(17)

where j = 1,2, . . . ,n; R j is a random variable uniformly distributed in the range [0,1]; CR ∈ [0,1] is a user-defined crossover constant;
and RI(i) ∈ {1,2, . . . ,n}, is a randomly selected index.

Finally, each trial vector is compared against the corresponding individual and the best between them comprise the new individual in
the next generation, i.e.:

x(t+1)
i =

{
u(t+1)

i , if f (u(t+1)
i ) < f (x(t)

i ),

x(t)
i , otherwise.

(18)

Compared to PSO, DE appears to be a greedier algorithm since always the population consists of the best discovered individuals and search
directions are always produced through their combinations. Also, special care shall be taken for the determination of the parameters F
and CR. Experimental results suggest a significant sensitivity of DE on their values.

2.4. Bound constrained nonlinear local optimization

A local solution to the problem in Eq. (1) is obtained by applying bound (or box) constrained nonlinear local optimization methods. The
hybrid schemes implemented in MEMPSODE have a need for deterministic local search procedures that require a starting point, x0 ∈ X ,
and generate a sequence of points, {xk}∞k=0 in X , in order to determine a minimizer within a prescribed accuracy.

The generation of a new point, xk+1, in the sequence is based on information collected for the current iterate, xk . Typically, this
information includes the function value at xk , as well as the first- and probably second-order derivatives of f (x) at xk . In all cases, the
aim is to find a new iterate with lower function value than the current one.

There is a large number of LS algorithms proposed in the literature. The description of these methods is beyond the scope of the
current paper. However, there is a plethora of comprehensive sources where the interested reader can find further information [6,7,54].

In the proposed software, we employed only unconstrained LS algorithms. The constrained case can be tackled as unconstrained by
using proper penalty functions. However, the development of specific constraint handling techniques is planned for a future version.
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Algorithm 1: UPSO and DE common operation framework.

// Initialization:
1 Randomly initialize swarm.
2 Evaluate swarm.
// Main iteration loop:

3 for i = 1,2, . . . do
4 Update swarm (Eqs. (8)–(9) for PSO, Eqs. (12)–(17) for DE).
5 Evaluate swarm.
6 Update best positions (Eq. (4) for PSO, Eq. (18) for DE).
7 Check stopping criterion.
8 end

2.5. The Merlin optimization environment

The Merlin optimization environment [41] is an efficient and robust general purpose optimization package. It is designed to solve
multi-dimensional optimization problems in the form of Eq. (1). Merlin offers a variety of well established gradient-based and gradient-
free optimization algorithms.

Gradient-based algorithms include three methods from the conjugate gradient family [55–57], the method of Levenberg–Marquardt [58–
60], the DFP [61] and several variations of the BFGS algorithm [62–64]. The gradient-free algorithms include a pattern search [65] and the
nonlinear simplex method [66,67].

Merlin can be used interactively as a standalone program, admitting instructions from an available repertoire. In addition it can be
called as a subprogram from another code that requires local optimization. An important feature of Merlin is its ability to control an
optimization process through the Merlin Control Language (MCL) [40]. MCL is a high-level programming language with a rich syntax
including, among others, variables, loops, condition checks, file handling, I/O procedures and subprograms. Through the use of MCL, one
can implement complex and effective optimization strategies.

The usage of a versatile environment, such as Merlin, for local optimization is crucial to our implementation. It provides the capability
to deploy different algorithms at the local search step of an MA, suited to the specific form of the objective function (e.g., noisy, nonlinear
sum-of-squares, discontinuous derivatives etc.) Assigning the local optimization task to Merlin, one has the immediate benefit that the
customization (i.e., selection of the most proper method) requires no intervention in the original source code but only a proper entry into
an input file.

3. Algorithmic description

In this section we present some algorithmic details of the MEMPSODE software. To avoid repetitions, we will assume that all presented
concepts referring to the swarm, best positions and particles in PSO, hold also for the population and individuals in DE, respectively.

The fundamental goals of the MEMPSODE’s architecture were modularity and reusability. At the beginning, the apparent structural sim-
ilarities between UPSO and DE were identified and the corresponding procedures were implemented as autonomous modules. A thorough
examination of both algorithms exposes the following common features:

(1) They both operate on a set of potential solutions.
(2) They share the same operation framework, as reported in Algorithm 1.
(3) The LS schemes can be uniformly incorporated within the algorithms’ general framework.

The memetic strategies implemented in MEMPSODE were adopted from [36] and described in Section 2.2. According to them, a set of
initial points (best positions) is probabilistically selected and an LS procedure is applied on each one. If a strictly descending LS algorithm
is used, then each LS application is likely to result in a minimizer of the objective function. This minimizer will substitute the original
initial point. However, the best positions in PSO do not necessarily change at each iteration. Thus, the probabilistic selection of initial points
among them fosters the danger of applying LS on the same points repetitively, gratuitously increasing the algorithm’s computational cost.

This problem can be alleviated by exploiting the Merlin’s capability of computing the gradient and its norm at a given point. This
is done either automatically by using suitable finite difference methods or by using user-provided derivatives of the objective function.
Thus, the memetic strategies with strictly descending deterministic LS are subject to a slight modification such that LS is started only
from probabilistically selected initial points that are not previously detected minimizers. The pseudocode of these strategies is given in
Algorithm 2.

The gain from this implementation detail is twofold. On the one hand, we avoid the futile waste of function evaluations and, on
the other hand, we can detect a situation were all best positions are previously detected local minima. In the later case, the user may
face a situation where velocities become very small and best positions remain unchanged for a number of iterations, resulting in search
stagnation.

Provided that the termination criteria are not satisfied, this situation can be tackled by applying a different strategy to boost the
algorithm’s exploration capability. In MEMPSODE, we address this deficiency by retaining the particle with the global best position and
reinitializing the positions and/or velocities of every other particle. This is experimentally shown to be adequate to enhance the exploration
capabilities of the algorithm, as it will be revealed in our example experiments in following sections.

The complete pseudocode of the MAs implemented in MEMPSODE is given in Algorithm 3. Lines 1–7 describe the initialization step,
followed by the main iteration loop from line 10 to the end. The UPSO update steps are described in lines 11–26, while DE is described
in lines 27–38. The memetic strategies of Algorithm 2 are evoked in line 50, and the loop is completed with the restarting procedure.
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Algorithm 2: Pseudocode of the memetic strategies implemented in MEMPSODE.
Input: Swarm size, N; best positions, p1, p2, . . . , pN ; global best index, g; memetic scheme, scheme; probability of local search, ρ; particle local minimum indicator,

local; tolerance, ε > 0; objective function, f .

// Apply local search on the overall best position
1 if ((scheme= 1) OR (scheme= 3)) then
2 if (localg = 0) then
3 pg ← LocalSearch(pg )

4 if (‖∇ f (pg )‖� ε) then
5 localg ← 1
6 end
7 end
8 end
// Apply local search on other best positions

9 if ((scheme= 2) OR (scheme= 3)) then
10 for i = 1,2, . . . N do
11 if ((rand() < ρ) AND (locali = 0)) then
12 pi ← LocalSearch(pi)

13 if (‖∇ f (pi)‖� ε) then
14 locali ← 1
15 end
16 end
17 end
18 end

4. Software description

MEMPSODE may be built either as a standalone executable, or as a library providing a user callable interface. In both cases all algorith-
mic parameters are controlled by a rich variety of options. It’s main components are written in ANSI C and are linked against the Merlin
optimization environment in case the user wishes to apply local optimization procedures. The software contains a large set of sample ob-
jective functions including an interface to the Tinker [44] package for molecular mechanics calculations. During optimization MEMPSODE
prints informative messages on the screen and upon termination appropriate output files are created. For installation instructions and
detailed examples we refer the interested reader to the user’s manual contained in the software distribution.

4.1. User-written subprograms

The user must provide the following subprograms:

(1) void Objective_F (double x[], int n, double *f)
Returns the value of the objective function evaluated at x.

x (input) Array containing the point at which the calculation is desired.
n (input) The dimensionality of the function.
f (output) Objective function value.

(2) void Bounds_F(double l[], double r[], int n)
Returns the double-precision array l with the lower bounds and the double-precision array r with the upper bounds of the variables.

n (input) The dimensionality of the function.
l (output) Array containing the lower bounds.
r (output) Array containing the upper bounds.

If the first-order derivatives are analytically known, they can be provided by the following optional subprogram:

(3) void Objective_G (double x[], int n, double g[])
Returns the gradient vector evaluated at x.

x (input) Array containing the point at which the calculation is desired.
n (input) The dimensionality of the function.
g (output) Gradient vector.

4.2. Installation and execution of the standalone version

Assuming that the above user-written subprograms are included in file fun.c, the standalone executable can be built using the make
utility:

make OBJECTIVE=fun

Subsequently, execution is initiated from the command line:
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Algorithm 3: Pseudocode of the implemented memetic algorithm.
Input: Objective function, f : X ⊂ R

n →R; algorithm PSO/DE: algo; swarm size: N; memetic strategy: memetic, maximum function evaluations: maxfev;
unification factor: UF; use mutation: mut; probability for local search: ρ

Output: Best detected solution: x∗ , f (x∗).

// Initialization

1 for i = 1,2, . . . , N do
2 Initialize position xi and velocity ui

3 Set pi ← xi // Initialize best position
4 f i ← f (xi(0)) // Evaluate particle

5 f p
i ← f i // Best position

6 locali ← 0 // Best position is minimum is set to false

7 end
// Update Best Indices

8 Calculate global best index g1 and local best index array g2

// Main Iteration Loop

9 Set t ← 0
10 while termination criterion do

// Update Swarm
11 if algo = ’pso’ then
12 for i = 1,2, . . . , N do
13 Calculate local best velocity update ul

i using g1

14 Calculate global best velocity update ug
i using g2(i)

15 if mut= 1 then
// Unified PSO with mutation

16 R ← N(μ,σ )

17 if rand() � 0.5 then
18 ui ← RUFul

i + (1 − UF)ug
i // Unified PSO + Mutate local term

19 else
20 ui ← UFul

i + R(1 − UF)ug
i // Unified PSO + Mutate global term

21 end
22 else
23 ui ← UFul

i + (1 − UF)ug
i // Unified PSO

24 end
25 xi = xi + ui // Update particle’s position

26 end
27 else if algo = ’de’ then
28 for i = 1,2, . . . , N do
29 xi ← pi // Replicate best positions p to swarm array x
30 end
31 for i = 1,2, . . . , N do
32 Calculate ui using a strategy from Eqs. (12)–(16)
33 jrand ← �n · rand()�
34 for j = 1,2, . . . ,n do
35 if rand() � C R or j = jrand then
36 xij ← uij

37 else
38 xij ← pij

39 end
40 end
41 end
42 end

// Evaluate Swarm
43 for i = 1,2, . . . , N do
44 f i ← f (xi) // Evaluate particle
45 end

// Update Best Positions
46 for i = 1,2, . . . , N do
47 if f i < f (pi) then
48 pi ← xi

49 f p
i ← f i

50 end
51 end

52 Calculate global best index g1 and local best index array g2

53 Apply one of the schemes of Algorithm 2 using ρ

54 Calculate global best index g1 and local best index array g2

// If all best positions are local minima, restart

55 if
∑N

i=1 locali = N then
56 Keep global best particle and reinitialize the swarm
57 end
58 end
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mempsode -d 20 -a pso -l 2 -s 100 -f 10000
problem’s

dimension

choice between

UPSO and DE

memetic

scheme

swarm size maximum function

evaluations

The above command executes MEMPSODE using UPSO (option -a pso) on the 20-dimensional instance of the provided objective function
(option -d 20), using swarm size 100 (option -s 100), maximum number of function evaluations 10 000 (option -f 10000) and the
second memetic scheme (option -l 2). An exhaustive list of all available command line options is provided in the user’s manual.

During the optimization procedure, the software provides informative printout information (iterations, function evaluations, minimum
objective function value) and upon termination a detailed message containing the minimum, the total number of function evaluations, the
number of local searches etc. The user’s manual contains a detailed description of several output files produced during execution.

4.3. Installation and use of the library version

MEMPSODE may be built as a library by issuing:

make lib

This will create the file libmempsode.a which contains a set of interface routines. In order to use them, the user must provide
appropriate call statements as illustrated below:

#include "mempsode.h"
...
init_mempsode();
set_mempsode_iparam("dimension", 20);
set_mempsode_cparam("algorithm", "pso");
set_mempsode_iparam("memetic", 2);
set_mempsode_iparam("swarm-size", 100);
set_mempsode_iparam("max-fun-evals", 10000);
mempsode();
get_mempsode_min("minval", &val);
...

The above code sets various MEMPSODE parameters, calls the main optimization routine and finally retrieves the best function value
found. Assuming that file main.c contains the above code fragment and file fun.c contains the objective function, they may be linked
against the MEMPSODE library using:

gcc main.c fun.c -L/path/to/mempsode -I/path/to/mempsode -lmempsode

The complete list of interface routines as well as various installation options are described in the user manual.

4.4. Ready to use functions

A large set of objective functions established in the literature for the assessment of global optimization algorithms, are provided in
the software distribution (file SOURCE_problems.c). Among others the well known Rastrigin [68], Ackley [69], Griewank [70], Levy [2],
Bohachevsky [71], and Guilin Hills [72] functions are included. The Lennard-Jones interaction potential for modeling atomic clusters is
provided in file lj.c. In addition, an interface to the Tinker molecular modeling package is provided (file tinker.c) that evaluates the
energy of biomolecular systems using a selection of different force fields.

4.5. Stopping criteria

Execution of the software terminates when any one of the following criteria is met:

(a) The number of function evaluations performed so far (calls to the user supplied routine Objective_F) exceeds a user-defined upper
bound which is specified using the -f command line option.

(b) The number of gradient evaluations performed so far (calls to the user supplied routine Objective_G) exceeds a user-defined upper
bound which is specified using the -g command line option.

(c) The number of UPSO or DE cycles exceeds a user-defined upper bound, which is specified using the -i command line option.
(d) The value of the objective function reaches or falls below a user-defined target value, which is specified using the -t command line

option.

If any one of the -g, -i or -t options is not supplied then the corresponding termination criterion is not used. In case the -f option
is not specified then a upper bound of 100 000 × n function evaluations is assumed.

5. Sample applications

We provide three sample applications to illustrate the use of MEMPSODE and demonstrate its applicability in various types of problems.

5.1. The Rastrigin objective function

The Rastrigin function is well established in the assessment of global optimization methods. It is given by:
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f (x) = 10n +
n∑

i=1

(
x2

i − 10 cos(2πxi)
)
, (19)

where xi ∈ [−5.12,5.12], i = 1,2, . . . ,n. This function has a global minimizer, x∗ = (0,0, . . . ,0)� , with value f (x∗) = 0. In the software
distribution the Rastrigin function is coded in rastrigin.c. The user compiles MEMPSODE using the command:

make OBJECTIVE=rastrigin

We focus on the 30-dimensional instance of this function, using UPSO with unification factor 1.0 (standard gbest PSO), swarm size 20,
memetic Scheme 2 with local search probability 0.1, and a maximum of 5 × 105 function evaluations. In addition intermediate results
are displayed every 500 iterations and the initial velocity scaling factor is 0.01. Since local search is used, the user must also define
the LS method and its parameters. In this example we use the BFGS method with a maximum of 1000 function evaluations per LS. The
corresponding file is defined with the -y command line option and contains the following line:

bfgs noc 1000

The program is executed through the command:

mempsode -d 30 -a pso -l 2 -s 20 -f 500000 -c 0.01 -u 1.0 -n 1 -D 500 -y in.dat

and produces the following screen output:

----------------------------------
Experiment 0
----------------------------------
Iter: 500, FunEvals: 63121, Val: 3.283363E+01, Std: 4.250217, Vel: 0.102400
Iter: 1000, FunEvals: 106916, Val: 1.492438E+01, Std: 3.148346, Vel: 0.102400
Iter: 1500, FunEvals: 127425, Val: 1.492438E+01, Std: 3.146285, Vel: 0.102400
Iter: 2000, FunEvals: 166089, Val: 1.094454E+01, Std: 3.068551, Vel: 0.102400
Iter: 2500, FunEvals: 196388, Val: 8.954626E+00, Std: 3.407066, Vel: 0.102400
Iter: 3000, FunEvals: 229887, Val: 5.969754E+00, Std: 3.105790, Vel: 0.102400
Iter: 3500, FunEvals: 266735, Val: 4.974795E+00, Std: 2.830046, Vel: 0.102400
Iter: 4000, FunEvals: 312303, Val: 4.974795E+00, Std: 3.100652, Vel: 0.102400
Iter: 4500, FunEvals: 356134, Val: 2.984877E+00, Std: 3.757278, Vel: 0.102400
Iter: 5000, FunEvals: 395173, Val: 1.989918E+00, Std: 2.084046, Vel: 0.102400
Iter: 5500, FunEvals: 426884, Val: 9.949591E-01, Std: 2.120236, Vel: 0.102400
Iter: 6000, FunEvals: 464246, Val: 9.949591E-01, Std: 3.980862, Vel: 0.102400
----------------------------------
PROBLEM PARAMETERS
Problem : 0
Dimension : 30
NumOfExp : 1
Seed : 1
MaxIter : inf
MaxFev : 500000
MaxGev : inf
Target : -inf
Xmin : [ -5.120 -5.120 -5.120 -5.120 -5.120 -5.120 -5.120 -5.120 ...
Xmax : [ 5.120 5.120 5.120 5.120 5.120 5.120 5.120 5.120 5.120 ...

UPSO PARAMETERS
Memetic : 2
UF : 1.000
Vscale : 0.010
Prob : 0.010
x, c1, c2 : 0.729 2.050 2.050
Nradius : 1
R3use : 0
R3mean : 0.00
R3std : 1.00
SS : 20
==================================================================================================
EXP - S - F(SOL) - ITER - FEVALS - LOCAL - GEVALS - LAST HIT - BPUPD - CPU TIME

ITER , FEVALS, GEVALS, LOCAL

1 - 0 - 0.000000E+00 - 6388 - 500667 - 502 - 0 - [ 6053, 473070, 0, 470] - 7602 - 4.38
==================================================================================================
Execution Complete
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Table 1
Results for the Rastrigin test problem.

Prob. dim. DE-Scheme 2 UPSO-Scheme 2

Succ. LOCAL FEVALS Succ. LOCAL FEVALS

n = 10 100% 215 114 571 100% 397 231 690
n = 30 100% 2039 2 020 261 100% 3241 3 389 970
n = 50 100% 4836 6 879 354 98% 6140 9 257 422

Prob. dim. DE-Scheme 3 UPSO-Scheme 3

Succ. LOCAL FEVALS Succ. LOCAL FEVALS

n = 10 100% 222 118 884 100% 428 254 345
n = 30 100% 2024 2 016 684 100% 3106 3 249 649
n = 50 100% 4972 7 012 893 98% 6001 9 063 438

In the upper part of the output, MEMPSODE prints intermediate results every 500 iterations (Iter). Note that an iteration of the algorithm
corresponds to a complete cycle where all particles are updated. The output includes the number of function evaluations (FunEvals)
performed up to the specific iteration (including those of the local search) and the best approximation to the global minimum found so
far (Val). In addition the output contains the standard deviation of the average swarm position, defined as:

Std=
N∑

i=1

(xi − x̃)�(xi − x̃),

where x̃ = 1

N

N∑
i=1

xi . In the case of PSO the output also contains the maximum velocity component defined as:

Vel= max
i=1,...,N
j=1,...,n

|vij|. (20)

When execution completes, MEMPSODE prints a complete list of the parameters used in the experiment(s) as well as the final output
in a single line per experiment. EXP is the serial number of the experiment and S is a flag that is equal to 1 if the algorithm successfully
reached the target value (as specified by the -t command line option). Two sets of counters are reported: ITER, FEVALS, LOCAL and
GEVALS are the total number of iterations, function evaluations, local searches and gradient evaluations respectively, that were performed
by the algorithm. The value of these counters at the time the lowest function value was discovered is displayed under the heading
LAST HIT. BPUPD is the total number of best position updates and CPU TIME is the execution time for the specific experiment in
seconds. MEMPSODE writes the global minimizer in an output file that follows a specific naming convention and ends in _sol (details
are given in the user’s manual).

Using this test function we performed a series of runs for (n = 10,30,50) using both UPSO and DE with the default operator (OP1)
on a swarm of 50 particles. In each case two different memetic schemes (Schemes 2 and 3) were employed. Each run was repeated 50
times and was terminated when the target value 0.0 or a maximum number of 107 function evaluations was reached. For the local search
we applied the BFGS method with an upper bound of 5000 function evaluations. For the Rastrigin instance with n = 10, the following
command lines were used:

mempsode -d 10 -a pso -l 2 -s 50 -f 10000000 -t 0.0 -e 50 -y in.dat
mempsode -d 10 -a pso -l 3 -s 50 -f 10000000 -t 0.0 -e 50 -y in.dat
mempsode -d 10 -a de -l 2 -s 50 -f 10000000 -t 0.0 -e 50 -y in.dat
mempsode -d 10 -a de -l 3 -s 50 -f 10000000 -t 0.0 -e 50 -y in.dat

The percentage of successful runs (those that approximate the global minimum value within 10−6, the average number of local searches
conducted and the average number of function evaluations are presented in Table 1. The global minimum was located with 100% probabil-
ity with the exception of UPSO in the case n = 50. However when we increased the maximum number of function evaluations to 2 × 107

the success rate of this case also reached 100%. The experiments indicate that for this test, hybrid DE with Schemes 2 and 3, performs
better than the corresponding hybrid UPSO. Schemes 2 and 3 appear to have almost the same performance.

5.2. Lennard-Jones clusters

The study of atomic clusters has attracted much interest during the past decades due to their unique properties and their potential
applications. Finding the global minimum conformation for a cluster of atoms interacting under two-body central forces, belongs to the
class of NP-hard problems [73,74]. In this example application, we find the global minimum of atomic clusters with m = 5,13,19 and 25
atoms interacting through the Lennard-Jones potential. The total potential energy of the cluster is given:

E =
m∑

i< j

4ε

[(
σ

ri j

)12

−
(

σ

ri j

)6]
, (21)

where ri j is the distance between atoms i and j.
The above function, using reduced units (σ = ε = 1), is provided in file lj.c. The cluster size was set to 5,13,19 and 25 atoms

resulting in 15,39,57 and 75 optimization variables respectively. The same parameters as in the previous example were used, with the
exception of the target value (-t). In the case where m = 5 the following command lines were executed:
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Fig. 2. Lennard-Jones clusters.

Table 2
Results for the Lennard-Jones cluster problem.

Cluster size DE-Scheme 2 UPSO-Scheme 2

Succ. LOCAL FEVALS Succ. LOCAL FEVALS

5 100% 1 3016 100% 1 2628
13 100% 67 318 368 100% 66 313 052
19 100% 334 1 641 552 100% 313 1 525 869
25 94% 644 3 179 776 92% 561 2 772 891

Cluster size DE-Scheme 3 UPSO-Scheme 3

Succ. LOCAL FEVALS Succ. LOCAL FEVALS

5 100% 1 185 100% 1 415
13 100% 45 216 352 100% 62 287 993
19 100% 246 1 212 390 100% 311 1 510 478
25 98% 621 2 918 633 98% 589 2 955 767

mempsode -d 15 -a pso -l 2 -s 50 -f 10000000 -e 50 -y in.dat
mempsode -d 15 -a pso -l 3 -s 50 -f 10000000 -e 50 -y in.dat
mempsode -d 15 -a de -l 2 -s 50 -f 10000000 -e 50 -y in.dat
mempsode -d 15 -a de -l 3 -s 50 -f 10000000 -e 50 -y in.dat

The global minimum for the four different clusters is displayed in Fig. 2 and it is in accordance with previously reported results [75].
In addition, in Table 2 we list the percentage of successful runs, the average number of local searches and the average number of function
evaluations. Since we do not provide a target value, the numbers in Table 2 were taken from the reported LAST HIT counters. The cluster
with m = 25 atoms appears to be a difficult case since all tested methods exhibit a small failure percentage. However when the maximum
number of function evaluations was raised to 2 × 108 the success rate reached 100%. Hybrid UPSO performs better when combined with
Scheme 2, while hybrid DE shows increased performance in combination with Scheme 3.

5.3. Protein conformation

In order to understand the diverse functionality of proteins at the molecular level, it is necessary to determine their three-dimensional
structure. This task is often formulated as a global optimization problem of a suitable chosen potential energy function. In this example
we find the minimum energy conformation of a gas phase Alanine octamer. For the potential energy we employ the Amber [76] force
field which has the form:
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Fig. 3. Global minimum conformation of Alaline octamer (E = −44.45 kcal/mol).

Table 3
Dihedral angles (degrees) for the global minimum conformation.

Residue φ ψ ω χ

1 −153.3 143.2 −179.1 60.3
2 −50.2 120.0 −173.3 62.7
3 61.2 −65.6 −167.9 66.5
4 −46.0 −41.1 −174.5 −58.0
5 −136.4 62.3 164.8 −62.6
6 60.4 −76.9 −176.3 65.3
7 −142.3 −82.4 −164.6 59.2
8 −153.4 145.0 −175.8 −59.9

E =
∑

bonds

kr(r − r0)
2 +

∑
angles

kθ (θ − θ0)
2 +

∑
dihedrals

Vn

2

[
1 + cos(nφ − γ )

] +
∑
i< j

[
Aij

r12
i j

− Bij

r6
i j

]
+

∑
i< j

[
qiq j

εri j

]
.

The parameters are taken from the 1996 parametrization [77]. In order to implement the above energy function we have used the Tinker,
molecular modeling package [44]. In the software distribution we provide the file tinker.c which offers an interface to the Tinker
energy function and its gradient. In order to enable Tinker support, one must supply the full path of the Tinker installation. Consequently
MEMPSODE is built by using:

make OBJECTIVE=tinker TINKER=/path/to/tinker/source

Before running the executable the user has to prepare a Tinker input file containing the description of the protein in internal coordinates.
The dimensionality of the problem is determined by the number of free dihedral angles in the input. In this example we use an Alanine
octamer blocked by the Acetyl and N-Methyl groups. Each Alanine residue has four dihedral angles (φ, ψ , ω, χ ) resulting in 35 optimiza-
tion variables. A corresponding input file (vp8.int) is provided in the distribution, while further details on running the software with
Tinker support, is provided in the user manual.

We performed 20 experiments using UPSO on a 100 particle swarm, with unification factor 1.0 memetic strategy 2 and probability
0.1 for the local search. Since Tinker provides analytic gradients, they were utilized by the local search procedure. A maximum of 5 × 107

function evaluations was imposed.
All experiments succeeded in locating the global minimum conformation which is shown in Fig. 3, while the corresponding dihedral

angles are listed in Table 3. Our result is in agreement with the one reported in [78] using the same force field.

6. Conclusions

Particle Swarm and Differential Evolution are effective and robust population based algorithms. Combined with local search procedures
the effectiveness of these methods is enhanced. In this work we presented an implementation of a hybrid algorithm that combines the
above population based methods with local searches. The new software is easy to install and use and offers complete control via a plethora
of command line options. One of the assets of the software is the use of the Merlin optimization environment that has proved to be a
highly effective and versatile package for local optimization. We present three applications of variable complexity and many local minima.
For molecular modeling problems we provide an interface to the Tinker package that facilitates the use of a variety of force fields. Our
computational experiments confirm the applicability of the hybrid algorithm in diverse optimization problems.
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