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For an n-dimensional simplex in Rn, a generalization of the Bolzano theorem is 
given. A proof based on the classical Knaster–Kuratowski–Mazurkiewicz covering 
lemma is obtained.
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1. Introduction

The very important and pioneering Bolzano theorem (also called intermediate value theorem) states 
that [2,11]:

Bolzano’s theorem: If f : [a, b] ⊂ R → R is a continuous function and if it holds that f(a)f(b) < 0, 
then there is at least one x ∈ (a, b) such that f(x) = 0.
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Its first proofs, given independently by Bolzano in 1817 [2] and Cauchy in 1821 [5], were crucial in the 
procedure of arithmetization of analysis (which was a research program in the foundations of mathematics 
during the second half of the 19th century).

A straightforward generalization of Bolzano’s theorem to continuous mappings of an n-cube (parallelo-
tope) into Rn was proposed without proof by Poincaré in 1883 and 1884 in his work on the three-body
problem [23,24]. The Poincaré theorem was soon forgotten and it has come to be known as “Miranda’s 
theorem” [20] which partly explains the nomenclature “Poincaré–Miranda theorem” [18] as well as “Bolzano–
Poincaré–Miranda theorem” [33].

The Bolzano–Poincaré–Miranda theorem states that [20,32,34]:

Bolzano–Poincaré–Miranda theorem: Suppose that P =
{
x ∈ R

n | |xi| < L, for 1 � i � n
}

and let 
the mapping Fn = (f1, f2, . . . , fn): P → R

n be continuous on the closure of P such that Fn(x) �= θn =
(0, 0, . . . , 0) for x on the boundary of P , and

(a) fi(x1, x2, . . . , xi−1, −L, xi+1, . . . , xn) � 0, for 1 � i � n,

(b) fi(x1, x2, . . . , xi−1, +L, xi+1, . . . , xn) � 0, for 1 � i � n.

Then, there is at least one x ∈ P such that Fn(x) = θn.

Miranda in 1940 [20] showed that this theorem is equivalent to the Brouwer fixed point theorem [4]. It is 
worth noting that the Bolzano–Poincaré–Miranda theorem is closely related to important theorems in anal-
ysis and topology as well as it is an invaluable tool for verified solutions of numerical problems by means of 
interval arithmetic [14,21,22,27]. For a short proof as well as for a generalization of the Bolzano–Poincaré–
Miranda theorem using topological degree theory see [34]. Also, for a generalization of this theorem to 
an infinite-dimensional setting see [26,27]. Furthermore, for interesting relations between the theorems of 
Bolzano–Poincaré–Miranda, Borsuk [3], Kantorovich1 [13] and Smale2 [30] with respect to the existence of 
a solution of a system of nonlinear equations, we refer the interested reader to [1].

In the paper at hand, a generalization of the Bolzano theorem for simplices is proposed. The obtained 
proof is based on the Knaster–Kuratowski–Mazurkiewicz lemma (KKM lemma for short, often called the 
KKM covering theorem or KKM covering principle). The KKM covering principle simply states that [15]:

KKM covering principle: A family of (n + 1) closed subsets covering an n-dimensional simplex and 
satisfying the Knaster–Kuratowski–Mazurkiewicz boundary conditions have a non-empty intersection.

For a mathematical formulation of this statement the reader is referred to Lemma 2.1 below. The KKM 
lemma constitutes the basis for the proof of many theorems (including the famous Brouwer fixed point theo-
rem). It is worth noting that three pioneering classical results, namely, the Brouwer fixed point theorem [4], 
the Sperner lemma [31], and the KKM lemma [15] are mutually equivalent in the sense that each one can 
be deduced from another.

The KKM lemma has numerous applications in various fields of pure and applied mathematics. In partic-
ular, among others, in the field of mathematical economics, the very important and pioneering extension of 
the KKM lemma due to Shapley3 [28], customarily called the Knaster–Kuratowski–Mazurkiewicz–Shapley 
theorem (KKMS theorem for short), constitutes the basis for the proof of many theorems on the existence of 
solutions in game theory and in the general equilibrium theory of economic analysis. The Shapley’s KKMS 
covering principle simply states that [25,28]:

1 Nobel Laureate in Economic Sciences in 1975.
2 Fields Medalist in 1966.
3 Nobel Laureate in Economic Sciences in 2012.
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KKMS covering principle: Under Shapley’s boundary conditions on a family of closed subsets of the 
unit simplex, the intersection of the subsets that correspond to a “balanced” family is non-empty.

A mathematical formulation of Shapley’s extension of the KKM Lemma can be given as follows [8,10,28,29]:

Knaster–Kuratowski–Mazurkiewicz–Shapley theorem: Suppose that N is the family of non-empty 
subsets of the set N = {1, 2, . . . , n}. Let ej ∈ R

n be the unit vector with components eji = 0 for
i ∈ N\{j} and ejj = 1. For each S ∈ N consider: (a) its normalized characteristic vector χS =
(1/card{S}) 

∑
j∈S ej, where card{S} denotes the number of elements in the set S, and (b) the convex 

hull co{ej | j ∈ S} denoted by ΔS . Let CS , S ∈ N be a family of closed subsets of ΔN , indexed by 
the members of N , which satisfy the following Shapley’s boundary conditions:

∀ T ∈ N , ΔT ⊂
⋃
S⊂T

CS .

Then, there exists a family B of members of N such that χN ∈ co{χS | S ∈ B} (called balanced family) 
for which

⋂
S∈B CS �= ∅.

It is worth noting that, when CS = ∅ for all S for which card{S} � 2, the KKMS theorem reduces to the 
KKM lemma [10]. Due to its importance, this remarkable theorem has been extended and proved multiple 
times by several different researchers over decades (i.e., see [6,7,9,12,16,17,19,25]).

2. Generalization of the Bolzano theorem

Notation 2.1. We denote by ϑA the boundary of a set A, by clA its closure, by intA its interior and by 
card{A} its cardinality (i.e., the number of elements in the set A). Furthermore, we shall frequently use the 
index sets Nn = {0, 1, . . . , n}, Nn

¬0 = {1, 2, . . . , n} and Nn
¬i = {0, 1, . . . , i − 1, i + 1, . . . , n}. Also, for a given 

set I = {i, j, . . . , �} ⊂ Nn we denote by Nn
¬I or equivalently by Nn

¬ij···� the set {k ∈ Nn | k /∈ I}.

Definition 2.1. For any positive integer n, and for any set of points V = {υ0, υ1, . . . , υn} in some linear space 
which are affinely independent (i.e., the vectors {υ1−υ0, υ2−υ0, . . . , υn−υ0} are linearly independent) the 
convex hull co{υ0, υ1, . . . , υn} = [υ0, υ1, . . . , υn] is called the n-simplex with vertices υ0, υ1, . . . , υn. For each 
subset of (m + 1) elements {ω0, ω1, . . . , ωm} ⊂ {υ0, υ1, . . . , υn}, the m-simplex [ω0, ω1, . . . , ωm] is called 
an m-face of [υ0, υ1, . . . , υn]. In particular, 0-faces are vertices and 1-faces are edges. The m-faces are also 
called facets of the n-simplex.

Notation 2.2. We denote the n-simplex with set of vertices V = {υ0, υ1, . . . , υn} by σn = [υ0, υ1, . . . , υn]. 
Also, we denote the (n − 1)-simplex that determines the i-th (n − 1)-face of σn by σn

¬i = [υ0, υ1, . . . , υi−1,

υi+1, . . . , υn]. Furthermore, for a given index set I = {i, j, . . . , �} ⊂ Nn with cardinality card{I} = κ, we 
denote by σn

¬I or equivalently by σn
¬ij···� the (n − κ)-face of σn with vertices υm, m ∈ Nn

¬I .

Lemma 2.1 (KKM lemma). Let Ci, i ∈ Nn be a family of (n + 1) closed subsets of an n-simplex σn =
[υ0, υ1, . . . , υn] in Rn satisfying the following hypotheses:

(a) σn =
⋃

i∈Nn Ci and

(b) if for each ∅ �= I ⊂ Nn it holds that 
⋂

i∈I σ
n
¬i ⊂

⋃
j∈Nn

¬I
Cj.

Then, it holds that 
⋂

i∈Nn Ci �= ∅.

Definition 2.2. A covering satisfying the conditions in the KKM Lemma 2.1 is called a KKM covering.
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Observation 2.1. The KKM covering can be given as follows:

Each facet of σn is covered by the sets that correspond to the vertices spanning that facet.

Thus, the vertex υi is covered by the closed subset Ci, the edge [υi, υj ] is covered by Ci∪Cj while the facet 
[υi, υj , . . . , υ�] is covered by Ci ∪ Cj ∪ · · · ∪ C� for each index set {i, j, . . . , �} ⊂ Nn.

Definition 2.3. Let ψ be a real number, and let us set

sgnψ =

⎧⎪⎨
⎪⎩

−1, if ψ < 0,
0, if ψ = 0,
1, if ψ > 0.

Then, for any a = (a1, a2, . . . , an) ∈ R
n the sign of a, denoted sgn a, is defined as follows:

sgn a = (sgn a1, sgn a2, . . . , sgn an) .

Next, we give the proposed generalization of Bolzano’s theorem for simplices.

Theorem 2.1 (Generalization of the Bolzano theorem). Assume that σn = [υ0, υ1, . . . , υn] is an n-simplex in 
R

n. Let Fn = (f1, f2, . . . , fn): σn → R
n be a continuous function such that fj(υi) �= 0, ∀ j ∈ Nn

¬0, i ∈ Nn

and θn = (0, 0, . . . , 0) /∈ Fn(ϑσn). Assume that the vertices υi, i ∈ Nn are reordered such that the following 
hypotheses are fulfilled:

(a) sgn fj(υj) sgn fj(x) = −1, ∀x ∈ σn
¬j , j ∈ Nn

¬0 , (1)

(b) sgnFn(υ0) �= sgnFn(x), ∀x ∈ σn
¬0 . (2)

Then, there is at least one x ∈ intσn such that Fn(x) = θn.

Proof. Due to hypotheses (1) and (2) it is evident that the following holds:

sgnFn(υi) �= sgnFn(x), ∀x ∈ σn
¬i, i ∈ Nn. (3)

By virtue of conditions (1) it is obvious that for the vertex υ0 the following relations are also fulfilled:

sgn fj(υ0) sgn fj(υj) = −1, ∀ j ∈ Nn
¬0 , (4)

as well as it is evident that for the vertices υi, i ∈ Nn it holds that:

sgnFn(υi) �= sgnFn(υ�), ∀ i, � ∈ Nn, i �= �. (5)

Furthermore, it is obvious that for all j ∈ Nn
¬0 the j-th component sgn fj(υi) of sgnFn(υi) = (sgn f1(υi),

sgn f2(υi), . . . , sgn fn(υi)) is not the same for all the vertices υi, i ∈ Nn. Therefore, for the following sets 
Sfj we have that:

Sfj =
{
x ∈ intσn

∣∣ fj(x) = 0
}
�= ∅, ∀ j ∈ Nn

¬0. (6)

For each one of the vertices υj , j ∈ Nn
¬0 we consider the corresponding closed set:

Cj = cl
{
x ∈ σn

∣∣ sgn fj(x) = sgn fj(υj)
}
, j ∈ Nn

¬0, (7)
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as well as we consider the following closed set:

C0 = cl
{
x ∈ σn

∣∣ sgnFn(x) = sgnFn(υ0)
}
. (8)

Since by hypothesis we have fj(υi) �= 0, ∀ j ∈ Nn
¬0, i ∈ Nn, it is obvious that the following holds:

intCi �= ∅, ∀ i ∈ Nn. (9)

Furthermore, it is evident that the following relation is valid:

intC0
⋂

⎧⎨
⎩

⋃
j∈Nn

¬0

intCj

⎫⎬
⎭ = ∅. (10)

The above sets Ci, i ∈ Nn are well defined according to the hypotheses of Lemma 2.1, since, the vertex 
υi, i ∈ Nn is covered by the corresponding closed set Ci. That is υi ⊂ Ci, i ∈ Nn. In particular, this 
corresponds to the case of Lemma 2.1 where card{I} = n. This is so, because, if we consider that I = Nn

¬i

for any i ∈ Nn, then we obtain Nn
¬I = {i} and consequently we have that:

υi =
⋂

j∈Nn
¬i

σn
¬j ⊂ Ci, i ∈ Nn. (11)

Let us denote by x∗ any x ∈ σn such that fj(x∗) �= 0, ∀ j ∈ Nn
¬0. It is obvious that for these points x∗ the 

number of values that the function sgnFn(x∗) = (sgn f1(x∗), sgn f2(x∗), . . . , sgn fn(x∗)) can obtain is 2n. 
Let us consider that the function values of sgnFn(x∗) form a set with cardinality card{sgnFn(x∗)}. Due to 
relation (8) for any x∗ ∈ intC0 we obtain that card{sgnFn(x∗)} = 1. On the other hand, due to relation (7), 
for any x∗ ∈ intCj , j ∈ Nn

¬0, we have card{sgnFn(x∗)} = 2n−1. Therefore, for any x∗ ∈ ∪j∈Nn
¬0 intCj we 

obtain card{sgnFn(x∗)} =
∑n

�=1 2n−� or, equivalently, card{sgnFn(x∗)} = 2n − 1. Thus, due to relations 
(9) and (10) we have that for any x∗ ∈ ∪i∈Nn intCi, it holds that card{sgnFn(x∗)} = 2n. Therefore, we 
conclude that the following is valid:

σn =
⋃

i∈Nn

Ci . (12)

Based on the above approach, since for any x∗ ∈ ∪j∈Nn
¬0 intCj we obtain that card{sgnFn(x∗)} = 2n − 1

and since by hypothesis we have that θn /∈ Fn(ϑ σn), due to relation (2) it is easy to conclude that the 0-th 
face σn

¬0 of σn is covered by ∪j∈Nn
¬0 Cj . Furthermore, due to relations (1) and (7), for any x∗ ∈ σn

¬i, i ∈ Nn
¬0, 

we have that card{sgnFn(x∗)} = 2n−1. On the other hand, it is evident that for any x∗ ∈ ∪j∈Nn
¬i

intCj

the function sgnFn(x∗) can obtain 2n−1 values, and in particular 
∑n

�=2 2n−� = 2n−1 − 1 values in the case 
where j �= 0 and one additional value in the case when j = 0. Therefore, we conclude that the following 
holds:

σn
¬i ⊂

⋃
j∈Nn

¬i

Cj , ∀ i ∈ Nn. (13)

Obviously, the above result corresponds to the case of Lemma 2.1 where card{I} = 1.
Let us denote by σn

¬ij the j-th (n −2)-face of σn
¬i. It is evident that σn

¬ij coincides with the i-th (n −2)-face 
of σn

¬j denoted by σn
¬ji. Thus, it holds that σn

¬ij = σn
¬ji = σn

¬i ∩ σn
¬j . Due to relations (3), (12) and (13), 

it is evident that σn
¬ij ⊂ ∪m∈Nn

¬ij
Cm. Therefore, we conclude that σn

¬i ∩ σn
¬j ⊂ ∪m∈Nn

¬ij
Cm. Using the 

same approach as that outlined above, we can easily obtain that for each index set {i, j, . . . , �} ⊂ Nn with 
cardinality κ, 1 < κ < n, and for the corresponding (n − κ)-face σn

¬ij···� of σn it holds that:
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σn
¬ij···� =

⋂
m∈{i,j,...,�}⊂Nn

σn
¬m . (14)

On the other hand we can also easily obtain that:

σn
¬ij···� ⊂

⋃
m∈Nn

¬ij···�

Cm . (15)

Thus, by taking into consideration relations (11), (13), (14) and (15) we conclude that for each ∅ �= I ⊂ Nn

and Nn
¬I = {k ∈ Nn | k /∈ I} the following is valid:

⋂
i∈I

σn
¬i ⊂

⋃
j∈Nn

¬I

Cj . (16)

By taking into consideration relations (12), (13) and (16), by virtue of Lemma 2.1 we obtain that 
∩i∈Nn Ci �= ∅. Consequently, due to the continuity of Fn, it also holds that ∩i∈Nn ϑ Ci �= ∅. Therefore, 
for the following solution set SFn

it holds that:

SFn
=

{
x ∈ intσn

∣∣ fi(x) = 0, ∀ i ∈ Nn
¬0
}
�= ∅.

Thus, the theorem is proved. �
Remark 2.1. For n = 1, the proposed Theorem 2.1 clearly reduces to the Bolzano theorem. For this reason, 
Theorem 2.1 was named “generalization of the Bolzano theorem for simplices”.

3. Synopsis

A generalization of the Bolzano theorem for simplices is given. The obtained proof is stemmed from the 
very important and pioneering Knaster–Kuratowski–Mazurkiewicz covering principle.
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