BULLETIN OF THE GREEK MATHEMATICAL SOCIETY VOLUME 27, 1986

AN ERROR ESTIMATION FOR THE METHOD OF BISECTION IN IRⁿ

BY

Michael N. Vrahatis

ABSTRACT. A formula for the Euclidean distance of each vertex of an m-simplex in \mathbb{R}^n from its barycenter is given. This is used to derive an upper bound for the Euclidean distance of any point in an m-simplex in \mathbb{R}^n from its barycenter. Finally we apply the above result to obtain an error estimate for the method of Bisection in \mathbb{R}^n (applied to root-finding) and we give a proof of convergence of this method.

1. Introduction.

Let $S_0^m = \langle X_0, X_1, ..., X_m \rangle$ be an m-simplex (generalized triangle) in \mathbb{R}^n . We "bisect" simplexes as follows. We choose a longest edge, say $\langle X_i, X_j \rangle$, of S_0^m ; calculate its midpoint $Y = (X_i + X_j)/2$ and define two new m-simplexes S_{1i}^m and S_{1i}^m , by replacing X_i by Y and X_j by Y respectively. Next, we bisect each S_{1k}^m , k = 1, 2, to form four new m-simplexes S_{2k}^m , k = 1, 2, 3, 4, and so on. This "generalized bisection" process has a number of applications; see, e.g. [4], [5], [7], [10], [11], [15]. In addition, several methods for the solution of a system of nonlinear equations

(1.1)
$$F^n(X) = \Theta^n$$
, where $F^n = (f_1, f_2, ..., f_n)^T : S^n \to \mathbb{R}^n$ is continuous and $\Theta^n = (0, 0, ..., 0)^T \in \mathbb{R}^n$

which implement the "generalized bisection" process have been proposed in the past few years, [5], [7], [11].

Define now the diameter D_p to be the length of the longest edge among the edges of an m-simplex S_p^m which is formed after p repeated iterations of the "generalized bisection" process applied to an original m-simplex S_n^m in \mathbb{R}^n . In [6, Theorem 3.1] an explicit bound is obtained for the rate of convergence of D_p :

 $D_p \leq (\sqrt{3}/2)^{\lfloor p/m \rfloor} D_0$, where $\lfloor p/m \rfloor$ is the largest integer less than or equal to p/m. Better estimates of the rate of convergence of D_p and criteria

of convergence of the "generalized bisection" process have been given in [1], [9], [12], [14] for triangles.

In this paper, we first prove that the Euclidean distance of each vertex X_i , $0 \le i \le m$ of S^m from its barycenter K^m is given by

$$\left\|X_{i}-K^{m}\right\|_{2}=\frac{m}{m+1}\left\{\frac{1}{m}\sum_{\substack{t=0\\t\neq i}}^{m}\left\|X_{i}-X_{t}\right\|_{2}^{2}\right.\\\left.-\frac{1}{m^{2}}\sum_{\substack{k=0\\k\neq i}}^{m-1}\sum_{\substack{t=k+1\\t\neq i}}^{m}\left\|X_{k}-X_{\ell}\right\|_{2}^{2}\right\}^{1/2}$$

This is used to derive un upper bound for the Euclidean distance of any point in S^m from K^m . Then we apply the above results to obtain an error estimate for the "generalized bisection" method applied to root-finding. To do this we consider the barycenter of S^n as an approximate solution of the system (1.1), and next, we prove that after p repeated iterations of the "generalized bisection" method, applied to an original n-simplex S^n_0 , the error for the approximate solution obtained as described above does not exceed $n\{D^2_p - (n-1) M^2_p / 2n\}^{1/2} / (n+1)$, where M_p is the length of the smallest edge of S^n_p . It is also shown that this error estimate is not greater than $n(\sqrt{3}/2)^{\frac{(p/n)}{2}}D_0 / (n+1)$. Moreover a proof of convergence of the above method is given.

2. Preliminaries.

Definition 2.1. The points X_0 , X_1 , ..., X_m in \mathbb{R}^n are said to be linearly independent if the vectors $X_i - X_0$, i = 1, 2, ..., m are linearly independent. An m-simplex in \mathbb{R}^n , $0 \le m \le n$, is the closed convex hull of m+1 linearly independent points in \mathbb{R}^n called its vertices ([2], [3], [6], [7], [11], etc.).

We shall denote m-simplexes by $S^m = \langle X_0, X_1, ..., X_m \rangle$ where the set $\{X_0, X_1, ..., X_m\}$ determines the set of its vertices.

Definition 2.2. If $S^m = \langle X_0, X_1, ..., X_m \rangle$ is an m-simplex in \mathbb{R}^n then the (m-1)-simplex $\langle X_0, X_1, ..., X_{i-1}, X_{i+1}, ..., X_m \rangle$ will be called the i-th face of S^m , while the 1-simplex $\langle X_k, X_j \rangle$, $0 \leq k < j \leq m$ will be called edge of S^m , ([3], [5], [6], [7], etc.).

Definition 2.3. The diameter D, of an m-simplex S^m in \mathbb{R}^n is the length of the largest edge of S^m , while the microdiameter M of S^m is the length of the smallest edge of S^m , where the Euclidean norm is used to measure distances.

We shall denote the Euclidean distance between the points A and B by d(A, B).

Definition 2.4. ([5], [6], [7], [11]). Let $S_0^m = \langle X_0, X_1, ..., X_m \rangle$ be an m-simplex in \mathbb{R}^n , let $\langle X_i, X_j \rangle$ be the/a largest edge of S_0^m and let $Y = (X_i + X_j) / 2$ be the midpoint of $\langle X_i, X_j \rangle$. Then the bisection of S_0^m is the ordered pair of the m-simplexes (S_{11}^m, S_{12}^m) where

$$S_{11}^m = \langle X_0, X_1, ..., X_{i-1}, Y, X_{i+1}, ..., X_j, ..., X_m \rangle$$

and $S_{12}^m = \langle X_0, X_1, ..., X_i, ..., X_{i-1}, Y, X_{j+1}, ..., X_m \rangle$

The m-simplexes S_{11}^m and S_{12}^m will be called lower simplex and upper simplex respectively corresponding to S_0^m , while both S_{11}^m and S_{12}^m will be called elements of the bisection of S_0^m .

Definition 2.5. Suppose that S_0^n is an n-simplex which includes at least one solution of the system of equations (1.1). Suppose further that (S_{11}^n, S_{12}^n) is the bisection of S_0^n and that there is at least one solution of the system (1.1) in some of its elements. Then this element will be called selected n-simplex produced after one bisection of S_0^m and it will be denoted by S_1^n . Moreover, if there is at least one solution of the system (1.1) in both elements, then the selected n-simplex will be the lower simplex corresponding to S_0^n . Suppose now that the bisection is applied with S_1^n replacing S_0^n giving thus the S_2^n . Suppose further that this process continues for p iterations. Then we call S_p^n the selected n-simplex produced after p iterations of S_0^n .

Notation 2.6. The existence, of at least one solution of the system of equations (1.1) in the interior of an oriented n-simplex S_0^n , ([2], [3], [6], [7], [11], etc.), can be secured using the non-zero value of the topological degree of F^n at Θ^n relative to S_0^n , ([2], [3], [4], [5], [8], [11], etc.), denoted deg (F^n, S_0^n, Θ^n) . More specifically if $F^n: S_0^n \to \mathbb{R}^n$ is continuous and $F^n(X) \neq \Theta^n$ anywhere on the oriented boundary $b(S_0^n)$, ([2], [3], etc.), of

 S_0^n , then deg (F^n, S_0^n, Θ^n) is defined. Consequently, if deg $(F^n, S_0^n, \Theta^n) \neq 0$ then by Kronecker's theorem, [8], the system of equations (1. 1) has at least one solution in the interior of S_0^n . Suppose now that (S_{11}^n, S_{12}^n) is the bisection of S_0^n and that there are not solutions of the system (1.1) on $b(S_{11}^n)$ or $b(S_{12}^n)$. Then the topological degree is additive, i.e.

$$deg(F^n, S_0^n, \Theta^n) = deg(F^n, S_{11}^n, \Theta^n) + deg(F^n, S_{12}^n, \Theta^n).$$

Consequently, deg $(F^n, S_1^n, \Theta^n) \neq 0$ and the process continues with S_1^n replacing S_0^n , and so on. Note that the topological degree can be easily evaluated by means of the algorithms described in [5], [7], [11] and [13].

3. Results.

Definition 3.1. Let $S^m = \langle X_1, X_1, ..., X_m \rangle$ be an m-simplex in \mathbb{R}^n , $0 \leq m \leq n$. Then the barycenter of S^m , ([2], [3], etc.), denoted K^m , is a point in \mathbb{R}^n such that

$$K^m = \frac{1}{m+1} \sum_{i=0}^m X_i.$$

Remark 3.2. By convexity, the barycenter of any m-simplex S^m in \mathbb{R}^n is an interior point of S^m .

Definition 3.3. Let $S^m = \langle X_0, X_1, ..., X_m \rangle$ be an m-simplex in \mathbb{R}^n , $0 \leq m \leq n$, and let K^m be its barycenter. Then the radius of S^m , denoted A^m , is an 1-simplex in \mathbb{R}^n , whose vertices are the K^m and a vertex X_a of S^m , such that $d(X_a, K^m) = \max_{0 \leq i \leq m} \{(d(X_i, K^m))\}$. The distance $d(X_a, K^m)$ is called length of the radius of S^m .

Notation 3.4. Let $S^m = \langle X_0, X_1, ..., X_m \rangle$ be an m-simplex in \mathbb{R}^n , $0 \leqslant m \leqslant n$, and let $T_i^{m-1} = \langle X_0, X_1, ..., X_{i-1}, X_{i+1}, ..., X_m \rangle$, $0 \leqslant i \leqslant m$, be the i-th face of S^m . Then the barycenter of T_i^{m-1} will be denoted by K_i^{m-1} and will be given by $\frac{1}{m}\sum_{\substack{k=0\\k\neq i}}^m X_k$. Moreover, if $T_{ij}^{m-2} = \langle X_0, X_1, ..., X_m \rangle$

 $X_{i-1}, X_{i+1}, ..., X_{j-1}, X_{j+1}, ..., X_m >$, where $0 \le i < j \le m$ is the j-th face

of T_i^{m-1} then its barycenter will be denoted by K_{ij}^{m-2} and will be given by $\frac{1}{m-1}\sum_{k=0}^m X_k$.

Lemma 3.5. Let $S^m = \langle X_0, X_1, ..., X_m \rangle$ be an m-simplex in \mathbb{R}^n , $0 \leq m \leq n$, and let K^m be its barycenter. Suppose that X_i is any vertex of S^m and that K_i^{m-1} is as in Notation 3.4. Then the following are valid

(a) The points Xi, Km and Km-1 are collinear points.

(b)
$$d(X_i, K^m) = \frac{m}{m+1} d(X_i, K_i^{m-1}).$$

Proof. To prove (a), we consider the vectors $V_i = K^m - X_i$ and $V_2 = K_i^{m-1} - X_i$. Also, we set $X_k = (x_{k,1}, x_{k,2}, ..., x_{k,n})^T$ where $x_{k,p} \in \mathbb{R}$ for $0 \le k \le m$ and $1 \le p \le n$. Then

$$\begin{split} V_1 = & \left\{ \left[\, \frac{1}{m+1} \, (x_{0,1} \, + \, x_{1,1} \, + \, ... \, + \, x_{m,1}) \, - \, x_{i,1} \right], ..., \right. \\ & \left[\, \frac{1}{m+1} \, (x_{0,n} \, + \, x_{1,n} \, + \, ... \, + \, x_{m,n}) - \, x_{i,n} \right] \right\}^T \end{split}$$

or

$$(3. \ 1) V_1 = \left\{ \frac{1}{m+1} \left[x_{0,1} + x_{1,1} + ... + x_{i-1,1} - m x_{i,1} + x_{i+1,1} + ... + x_{m,1} \right], ..., \right.$$

$$\frac{1}{m+1} \left[x_{0,n} + x_{1,n} + ... + x_{i-1,1} - m x_{i,n} + x_{i+1,n} + ... + x_{m,n} \right] \right\}^T$$

and

$$\begin{split} V_2 = & \left\{ \left[\, \frac{1}{m} \left(x_{0,i} + x_{i,i} + ... + x_{i-1,i} + x_{i+1,i} + ... + x_{m,i} \right) - x_{i,i} \, \right], ..., \right. \\ & \left[\, \frac{1}{m} \left(x_{0,n} + x_{1,n} + ... + x_{i-1,n} + x_{i+1,n} + ... + x_{m,n} \right) - x_{i,n} \, \right] \right\}^T \end{split}$$

or

$$(3. \ 2) \ V_2 = \left\{ \frac{1}{m} \left[\ x_{0,1} + x_{1,1} + ... + x_{i-1,1} - m x_{i,1} + x_{i+1,1} + ... + x_{m,1} \ \right],..., \right.$$

$$\frac{1}{m} \bigg[\; x_{0,n} + x_{1,n} + ... + x_{i-1,n} - m x_{i,n} + x_{i+1,n} + ... + x_{m,n} \; \bigg] \, \bigg\}^{T}$$

Combining (3. 1) and (3. 2) gives

$$(m + 1) V_1 - m V_2 = \Theta^n$$

which proves the part (a) of the lemma.

To prove (b) we implement the following relationships

$$\left[\ d(X_{i,} \ K^m) \ \right]^2 = \ \sum_{p=1}^n \ \left[\ \frac{1}{m+1} \ (x_{0,p} + ... + x_{i-1,p} - m x_{i,p} + x_{i+1,p} + ... + x_{m,p}) \right]^2$$

or

(3. 3)
$$\left[d(X_{i}, K^{m})\right]^{2} = \frac{1}{(m+1)^{2}} \sum_{p=1}^{n} (x_{0,p} + ... + x_{i-1,p} - mx_{i,p} + x_{i+1,p} + ... + x_{m,p})^{2}$$

and

$$\left[\ d(X_i, \, K_i^{m-1}) \ \right]^2 = \ \sum_{p=1}^n \left[\ \frac{1}{m} \left(x_{0,p} + ... + x_{i-1,p} - m x_{i,p} + x_{i+1,p} + ... + x_{m,p} \right) \ \right]^2$$

or

$$(3. \ 4) \left[\ d(X_i, \ K_i^{m-1}) \ \right]^2 = \frac{1}{m^2} \sum_{p=1}^n \left(x_{0,p} + ... + x_{i-1,p} - m x_{i,p} + x_{i+1,p} + ... + x_{m,p} \right)^2$$

Combining (3. 3) and (3. 4) gives

$$(m + 1) d(X_i, K^m) = m d(X_i, K_i^{m-1})$$

which proves the part (b) of the lemma.

Lemma 3.6. Let $S^m = \langle X_0, X_1, ..., X_m \rangle$ be an m-simplex in \mathbb{R}^n , $0 \leq m \leq n$. Suppose that X_i and X_j , $i \neq j$ are any vertices of S^m and let K_i^{m-1} and K_{ij}^{m-2} be as in Notation 3. 4. Then the following are valid

(a) The points X_i, K_i^{m-1} and K_{ij}^{m-2} are collinear points.

(b)
$$d(X_i, K_i^{m-1}) = \frac{m-1}{m} d(X_i, K_{ij}^{m-2}).$$

Proof. The proof is similar to the proof of Lemma 3. 5. □

Lemma 3.7. Let $S^2 = \langle X_0, X_1, X_2 \rangle$ be a 2- simplex in \mathbb{R}^n . Let X_k be a point on any edge of S^2 , say on $\langle X_1, X_2 \rangle$, such that

$$d(X_1, X_k) = \frac{\lambda - 1}{\lambda} d(X_1, X_2),$$

where $\lambda \in \mathbb{R}$ and $\lambda > 1$. Then

$$[d(X_0, X_k)]^2 = \frac{1}{\lambda} [d(X_0, X_1)]^2 + \frac{\lambda - 1}{\lambda} [d(X_0, X_2)]^2 - \frac{\lambda - 1}{\lambda^2} [d(X_1, X_2)]^2$$

Proof. We consider the interior angle a of the triangle $\Delta(X_0 | X_1 | X_2)$, as shown in Fig. 1.

Figure 1. x_0 x_1 x_2 x_2

The law of consines in $\ \Delta(X_0\ X_1\ X_k)$ and $\ \Delta(X_0\ X_1\ X_2)$ yields

$$(3.5) \ [d(X_0,\,X_k)]^2 = [d(X_0,\,X_1)]^2 + [d(X_1,\,X_k)]^2 - 2d(X_0,\,X_1) \ d(X_1,\,X_k) \quad cosa$$
 and

(3.6) $[d(X_0, X_2)]^2 = [d(X_0, X_1)]^2 + [d(X_1, X_2)]^2 - 2d(X_0, X_1) d(X_1, X_2)$ cosa Combining (3.5) and (3.6) we get

$$\begin{split} [d(X_0,\,X_k)]^2 &= [d(X_0,\,X_1)]^2 + [d(X_1,\,X_k)]^2 \\ &- \frac{d(X_1,\,X_k)}{d(X_1,\,X_2)} \; \{ [d(X_0,\,X_1)]^2 + [d(X_1,\,X_2)]^2 - [d(X_0,\,X_2)]^2 \} \end{split}$$

or

$$[d(X_0,\,X_k)]^2=\frac{1}{\lambda}\,[d(X_0,\,X_1)]^2+[d(X_1,\,X_k)]^2$$

$$-\frac{\lambda-1}{\lambda}[d(X_1, X_2)]^2 + \frac{\lambda-1}{\lambda}[d(X_0, X_2)]^2$$

or

$$[d(X_0,\,X_k)]^2 = \frac{1}{\lambda}\,[d(X_0,\,X_1)]^2 + \frac{\lambda-1}{\lambda}\,[d(X_0,\,X_2)]^2 - \frac{\lambda-1}{\lambda^2}\,[d(X_1,\,X_2)]^2.$$

Thus the lemma is proven.

Theorem 3.8. Let $S^m = \langle X_0, X_1, ..., X_m \rangle$ be an m-simplex in \mathbb{R}^n , $0 \leq m \leq n$ and let K^m be its barycenter. Then for each vertex X_i , $0 \leq i \leq m$, of S^m we obtain

$$(3.7) \ d(X_i, K^m) = \frac{m}{m+1} \left\{ \frac{1}{m} \sum_{\substack{t=0 \\ t \neq i}}^{m} [d(X_i, X_t)]^2 - \frac{1}{m^2} \sum_{\substack{k=0 \\ k \neq i}}^{m-1} \sum_{\substack{t=k+1 \\ t \neq i}}^{m} [d(X_k, X_t)]^2 \right\}^{t/2}$$

Proof. The proof will proceed by induction on m. First assume that $S^1 = \langle X_0, X_1 \rangle$ is an 1-simplex in \mathbb{R}^n , then for an arbitrary vertex of S^1 , say X_0 , we have

$$d(X_0, K^1) = \frac{1}{2} d(X_0, X_1),$$

which verifies (3.7).

Assume now that the theorem is true with (m-1) replacing m, where m>1. So, assume that for an (m-1) - simplex S^{m-1} in \mathbb{R}^n we have

$$(3.8) \quad d(X_i, K^{m-1}) = \frac{m-1}{m} \left\{ \frac{1}{m-1} \sum_{\substack{t=0 \\ t \neq i}}^{m-1} \left[d(X_i, X_t) \right]^2 - \frac{1}{(m-1)^2} \sum_{\substack{k=0 \\ k \neq i}}^{m-2} \sum_{\substack{t=\kappa+1 \\ t \neq i}}^{m-1} \left[d(X_k, X_t) \right]^2 \right\}^{1/2}, \quad \text{for} \quad 0 \leqslant i \leqslant (m-1).$$

Also, from (3.8) using Lemma 3.5, we get

$$(3.9) \quad d(X_i, \, K_i^{m-2}) = \left\{ \frac{1}{m-1} \, \sum_{\substack{t=0 \\ t \neq i}}^{m-1} \, \left[d(X_i, \, X_t) \right]^2 - \frac{1}{(m-1)^2} \, \sum_{\substack{k=0 \\ k \neq i}}^{m-2} \, \sum_{\substack{t=k+1 \\ t \neq i}}^{m-1} \right.$$

$$\left[d(X_k, \, X_t) \right]^2 \, \right\}^{1/2}, \quad \text{for} \quad 0 \leqslant i \leqslant (m-1).$$

where the K₁^{m-2} is the barycenter of the i-th face of S^{m-1}.

Suppose now that S^m is any m-simplex in \mathbb{R}^n , let X_i and X_j , $0 \le i \le m$, $0 \le j \le m$, $i \ne j$ be two vertices of S^m and let T^{m-1}_i , K^{m-1}_i , T^{m-2}_{ij} , K^{m-2}_{ij} be as in Notation 3.4. Consider the 2-simplex $< X_i$, X_j , $K^{m-2}_{ij} >$ as shown in Fig 2.

Then from Lemma 3.6 it is apparent that

$$d(X_{j}, K_{i}^{m-1}) = \frac{m-1}{m} d(X_{j}, K_{ij}^{m-2}),$$

From the above relationship using Lemma 3.7, we get

$$(3.10) \quad [d(X_i, K_i^{m-1})]^2 = \frac{1}{m} \ [d(X_i, X_j)]^2 + \frac{m-1}{m} \ [d(X_i, K_{ij}^{m-2})]^2 - \frac{m-1}{m^2}$$

$$[d(X_i, K_{ij}^{m-2})]^2$$

Now, by the inductive hypothesis and since

$$T_{\ j}^{m-1}=\,< X_0,\, X_1,\,...,\, X_{j-1},\, X_{j-1},\,...,\, X_m>$$

is an (m-1) -simplex in \mathbb{R}^n , we obtain using (3.9) that

$$(3.11) \quad [d(X_i, K_{ij}^{m-2})]^2 = \frac{1}{m-1} \sum_{\substack{t=0 \\ t \neq i,j}}^m [d(X_i, X_t)]^2 - \frac{1}{(m-1)^2} \sum_{\substack{k=0 \\ k \neq i,j}}^{m-1} \sum_{\substack{t=k+1 \\ t \neq i,j}}^m [d(X_k, X_t)]^2.$$

Similarly, from the (m-1) -simplex $T_i^{m-1} = \langle X_0, X_1, ..., X_{i-1}, X_{i+1}, ... X_m \rangle$ we obtain that

$$(3.12) \quad [d(X_j, K_{ij}^{m-2})]^2 = \frac{1}{m-1} \sum_{\substack{t=0 \\ t \neq i, \ j}}^{m} [d(X_j, X_t)]^2 - \frac{1}{(m-1)^2} \sum_{\substack{k=0 \\ k \neq i, \ j}}^{m-1} \sum_{\substack{t=\kappa+1 \\ t \neq i, \ j}}^{m} [d(X_k, X_t)]^2$$

Combining (3.10), (3.11) and (3.12) we get

$$\begin{split} [d(X_i,\,K_i^{m-1})]^2 &= \frac{1}{m}\,\,[d(X_i,\,X_j)]^2 + \frac{1}{m}\sum_{\substack{i=0\\t\neq i,\,j}}^m\,\,[d(X_i,\,X_t)]^2 \\ &- \frac{1}{m\,\,(m-1)}\sum_{\substack{k=0\\k\neq i,\,j}}^{m-1}\,\,\sum_{\substack{t=k+1\\t\neq i,\,j}}^m\,\,[d(X_k,\,X_t)]^2 \\ &- \frac{1}{m^2}\sum_{\substack{t=0\\t\neq i,\,j}}^m\,\,[d(X_j,\,X_t)]^2 + \frac{1}{m^2\,\,(m-1)}\sum_{\substack{k=0\\k\neq i,\,j}}^{m-1}\,\,\sum_{\substack{t=k+1\\t\neq i,\,j}}^m\,\,[d(X_k,\,X_t)]^2 \end{split}$$

OT

$$\begin{split} [d(X_i, K_i^{m-1})]^2 &= \frac{1}{m} \sum_{\substack{t=0 \\ t \neq i}}^m [d(X_i, X_t)]^2 - \frac{1}{m^2} \sum_{\substack{t=0 \\ t \neq i, j}}^m [d(X_i, X_t)]^2 \\ &+ \frac{1-m}{m^2 (m-1)} \sum_{\substack{k=0 \\ k \neq i, j}}^{m-1} \sum_{\substack{t=k+1 \\ k \neq i, j}}^m [d(X_k, X_t)]^2 \end{split}$$

or

$$(3.13) \quad [d(X_i, K_i^{m-1})]^2 = \frac{1}{m} \quad \sum_{\substack{t=0 \\ t \neq i}}^m \ [d(X_i, X_t)]^2 - \frac{1}{m^2} \quad \sum_{\substack{k=0 \\ k \neq i}}^{m-1} \quad \sum_{\substack{t=k+1 \\ k \neq i}}^m \ [d(X_k, X_t)]^2$$

Now from (3.13) using Lemma 3.5 we obtain

$$d(X_i, K^m) = \frac{m}{m+1} \left\{ \frac{1}{m} \sum_{\substack{t=0 \\ t \neq i}}^m \left[d(X_i, X_t) \right]^2 - \frac{1}{m^2} \sum_{\substack{k=0 \\ k \neq i}}^{m-1} \sum_{\substack{t=k+1 \\ t \neq i}}^m \left[d(X_k, X_t)^2 \right]^{1/2} \right\}$$

which completes the proof of the theorem.

Remark 3.9. Using Theorem 3.8, it is easy to determine the radius of an m-simplex in Rⁿ.

Corollary 3.10. Let S^m and K^m be as in Theorem 3.8 and let D and M be the diameter and the microdiameter of S^m , respectively. Then for any point T in S^m it is true that

(3.14)
$$d(T, K^{m}) \leq \frac{m}{m+1} \left\{ D^{2} - \frac{m-1}{2m} M^{2} \right\}^{1/2}$$

Proof. Consider the length Q of the radius A^m of S^m. Then, we have that

$$Q = \max_{0 \le i \le m} \{d(X_i, K^m)\}$$

Using Theorem 3.8, we find, apparently, that

$$Q \le \frac{m}{m+1} \left\{ D^2 - \left[\left(\frac{m+1}{2} \right) - m \right] M^2 / m^2 \right\}^{1/2}$$

or

$$Q\leqslant \frac{m}{m+1}\left\{\,D^2-\frac{m-1}{2m}\,M^2\,\right\}^{1/2}$$

Consider now the closed n-ball B (K^m, Q) with center K^m and radius Q. Then it is easy to see that $S^m \subset B$ (K^m, Q) . Consequently, for any point T in S^m we obtain

$$d(T, K^m) \leq Q \leq \frac{m}{m+1} \left\{ D^2 - \frac{m-1}{2m} M^2 \right\}^{1/2}$$

which proves the corollary.

Theorem 3.11. Kearfott [6]). Let S_o^m be an m-simplex in \mathbb{R}^n , let p be any positive integer, and let S_p^m be any m-simplex produced after p bisections of S_o^m . Then

(3.15)
$$D_p \leq (\sqrt{3}/2)^{\lfloor p/m \rfloor} D_0$$

where D_p and D_o are the diameters of S_p^m and S_o^m respectively, and $\lfloor p/m \rfloor$ is the largest integer less than or equal to p/m.

Proof. See [6. pp. 1149-1151]

Corollary 3.12. Let S_o^m , S_p^m , D_o , and D_p be as in Theorem 3.11 and let K_p^m and M_p be the barycenter and the microdiameter of S_p^m , respectively. Then for any point T in S_p^m the following is valid

(3.16)
$$d(T, K_p^m) \leq \frac{m}{m+1} (\sqrt{3}/2)^{\lfloor p/m \rfloor} D_o$$

Proof. By combining (3.14) and (3.15), it follows that

$$d(T, K^m) \le \frac{m}{m+1} \left\{ D_p^2 - \frac{m-1}{2m} M_p^2 \right\}^{1/2} \le \frac{m}{m+1} (\sqrt{3}/2)^{\lfloor p/m \rfloor} D_o$$

which proves the corollary. \square

Remark 3.13. Better estimates of the bound in (3.16) for triangles can be proved using the results of [1], [12] or [14] instead of Theorem 3.11.

Now we shall apply the preceding results to obtain a proof of convergence and an upper error bound for the generalized method of bisection applied to root-finding.

Definition 3.14. Let S^n be an n-simplex in \mathbb{R}^n ; let D and M be the diameter and the microdiameter of S^n , respectively. Suppose that there is a root r of the system (1.1) in S^n . Then we define the barycenter K^n of S^n as an approximation to r and the quantity $E = \frac{n}{n+1} \left\{ D^2 - \frac{n-1}{2n} M^2 \right\}^{1/2}$ as an error estimate for K^n .

Corollary 3.15. Suppose that S_p^n is the selected n-simplex produced after p bisections of an n-simplex S_p^n in \mathbb{R}^n ; let D_p and M_p be the diameter and the microdiameter of S_p^n , respectively. Suppose that r is a solution of the system (1.1), which is included in S_p^n and that K_p^n and E_p are the approximation of r and the error estimate of K_p^n , respectively. Then it can be shown that

(a)
$$E_p \le \frac{n}{n+1} (\sqrt{3}/2)^{\lfloor p/n \rfloor} D_0$$

(b) $E_p \le (\sqrt{3}/2)^{\lfloor p/n \rfloor} E_0$

Proof. By assumption, using (3.16), we have

$$E_p = \frac{n}{n+1} \left\{ \; D_p^2 - \frac{n-1}{2n} \; M_p^2 \; \right\}^{1/2} \leqslant \frac{n}{n+1} (\sqrt{3} \; / \; 2) \; ^{\left\lfloor p \middle/ n \right\rfloor} \; D_o,$$

which proves the first part of the corollary.

Next, using (3.16), we find

$$E_p = \frac{n}{n+1} \left\{ D_p^2 - \frac{n-1}{2n} \ M_p^2 \right\}^{1/2} \leqslant \frac{n}{n+1} \left\{ (\sqrt{3} \, / \, 2)^2 \stackrel{\lfloor p \, / \, n \rfloor}{-} \ D_0^2 - \frac{n-1}{2n} \ M_p^2 \right\}^{1/2}$$

Since $0 \le (\sqrt{3}/2)^2 \frac{\lfloor p/n \rfloor}{} \le 1$ we obtain

$$E_p \leqslant (\sqrt{3} \ / \ 2) \stackrel{\lfloor p/n \rfloor}{-} \frac{n}{n+1} \left\{ \ D_0^2 - \frac{n-1}{2n} \, M_0^2 \ \right\}^{1/2} = (\sqrt{3} \ / \ 2) \stackrel{\lfloor p/n \rfloor}{-} E_0$$

which proves the part (b) of the corollary.

Corollary 3.16. Suppose that r, K_p^n and E_p are as in the preceding corollary. Then

$$E_p \longrightarrow 0$$
 as $p \longrightarrow \infty$
and $K_p^n \longrightarrow r$ as $p \longrightarrow \infty$

Proof. It follows directly from the above corollary.

REFERENCES

- A. Adler. "On the bisection method for triangles", Math. Comp., v. 40, 1983, pp. 571-574.
- P. Alexandroff & H. Hopf. Topologie, Chelsea, New York, 1935, reprinted 1972.
- J. Cronin. Fixed points and topological degree in nonlinear analysis, Amer. Math. Soc. Surveys 11, 1964.
- C. Harvey & F. Stenger. "A two-dimensional analogue to the method of bisections for solving nonlinear equations", Quart. Appl. Math., v. 33, 1976, pp. 351-368.

- R.B. Kearfott. Computing the Degree of Maps and a Generalized Method of Bisection, Ph. D. dissertation, Univ. of Utah, 1977.
- R.B. Kearfott. "A proof of convergence and an error bound for the method of bisection in Rⁿ, Math. Comp., v. 32, 1978, pp. 1147-1153.
- R.B. Kearfott. "An efficient degree-computation method for a generalized method of bisection", Numer. Math., v. 32, 1979, pp. 109-127.
- J.M. Ortega & W.C. Rheinboldt. Iterative solution of nonlinear equations in several variables, N.Y., Acad. Press, 1970.
- I. Rosenberg & F. Stenger. "A lower bound on the angles of triangles constructed by bisecting the longest side", Math Comp., v. 29, 1975, pp. 390-395.
- K. Sikorski, "A three-dimensional analogue to the method of bisections for solving nonlinear equations", Math. Comp., v. 33, 1979, pp. 722-738.
- F. Stenger, "Computing the topological degree of a mapping in R", Numer. Math., v. 25, 1975, pp. 23-38.
- M. Stynes. "On faster convergence of the bisection method for certain triangles", Math. Comp., v. 33, 1979, pp. 717-721.
- M. Stynes. "A simplification of Stenger's topological degree formula", Numer. Math., v. 33, 1979, pp. 147-156.
- M. Stynes. "On faster convergence of the bisection method for all triangles", Math. Comp., v. 35, 1980, pp. 1195-1201.
- M. Stynes. "On the construction of sufficient refinements for computation of topological degree", Numer. Math., v. 37, 1981, pp. 453-462.

(Received by the editors October 10, 1985)

Department of Mathematics University of Patras, 261 10 Patras, Greece