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ABSTRACT. Miranda gave in [5] an equivalent formulation of the famous
Brouwer fixed point theorem. We give a short proof of Miranda’s existence
theorem and then using the results obtained in this proof we give a generaliza-
tion of a well-known variant of Bolzano’s existence theorem. Finally, we give a
generalization of Miranda’s theorem.

We shall give here a short proof and a generalization of the following equiv-
alent formulation of the famous L. E. J. Brouwer fixed point theorem [1] given
by C. Miranda [5].

Theorem 1 (Miranda, 1940) [5, 10, 4,6, 3, 11]. Let G={x€ R": x| <L,
for 1 <i < n} and suppose that the mapping F = (f,,f,, ... ,fn):ﬁ—> R" is
continuous on the closure G of G such that F(x)# 6 =(0,0,...,0) for
x on the boundary 9G of G , and

(1) Sl xy, oo x,_s —Lox ..., x,) 20 for  1<i<n, and
(i1) fl(xl,xz,... X +L,x

sV 10

Then, F(x) =6 has a solution in G.

For recent proofs of the above theorem see [10, pp. 37-38] and [3, pp. 118-
119]. Theorem 1 is known to be useful in the theory of differential equations.
Moreover, for some of its implementations in the case of systems of nonlinear
algebraic or transcendental equations, we refer to [4, 6, 11]. Theorem 1, also
, has an important property since it constitutes a straightforward generaliza-
tion of the well-known and very useful, (for iterative approximate procedures
for solving nonlinear equations), Bolzano’s existence theorem which states: “If
f:[a,b] — R is a continuous mapping and f(a) and f(b) have opposite signs,
then for some x € (a,b) , it holds f(x)=0".
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We now give a short proof of Theorem 1. For the details about degree theory
used in the following proof, we refer to [7, 2, 9, 8, 3] .

Proof of Theorem 1. Consider the homotopy,

H:Gx[0,1]cR™ S R", by H(x,1)=(1 - )F(x)+ t(—x).
Then, H(x,1) # 6 for (x,t) € 3G and ¢t €[0,1]. Infact, H(x,0) = F(x) # 6
since 6 ¢ F(9G), while H(x,1) = —x # 6 since 0 ¢ 9G; finally, H(x,?) =
¢ for some ¢t € (0,1) leads to the contradiction F(x) + #(1 — l)“l(—x) =40
because #(1 — t)“1 > 0 and by the assumptions (i) and (ii) for x € 8G there

exist at least one ¢ such that f(x)(—x,) > 0. Thus by the homotopy invariance
theorem of the degree theory, it follows that

deg[F,G,0] = deg[H(-,0),G,0] =deg[H(-,1),G, 0],

(where deg[F,G, 6] indicates the topological degree of F at 6 relative to
G). Hence, |deg[F,G,0]] = 1 # 0 and the result follows by the Kronecker
existence theorem. O

A corollary directly derived from the above result follows:

Corollary 1. Suppose that the conditions of the preceding theorem hold . Assume
that F(x) = 0 has only simple solutions in G, (i.e., the Jacobian determinant
of F does not vanish at any solution). Then F(x) = 0 has an odd number of
solutions in G .

Proof. The result follows from the fact that |deg[F , G, 6]| = 1, which we have
determined in the proof of the previous theorem. 0O

It is readily seen that Corollary 1 generalizes a well-known variant of
Bolzano’s Theorem (odd number of solutions) which states : “If f(a) and f(b)
have opposite signs and whenever f(x) =0 for x € (a,b) holds that f'(x)# 0,
then f(x)=0 has an odd number of solutions in (a,b)”.

A generalization of Theorem 1 follows:

Theorem 2. Let f,,f,,...,8, be n linearly independent vectors in R", let
(-,+) denote the standard inner product and G = {x € R" :|[(B ,x)| < L, for
1 <i < n}. Supposethat F = (f,, f,, ... ,fn):a—» R" is a continuous mapping

such that F(x) # 6 for x € 9G , and

(F(x),B8,) >0 if ﬂ,Tx:—L for 1<i<n, and
(F(x),B)<0 if B'x=+L for 1<i<n.
Then, F(x) =0 has a solution in G and, in fact, |deg[F ,G,0]|=1.
Proof. Consider the mapping,
A:R'"=R", by A(x)=((B,,x),(By,x), ..., (B, X))
Clearly, A is a one-to-one linear mapping. So,

deg[F,G,0] = deg[AFA™',AG, 0],
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which reduces the present theorem to Theorem 1. Finally, following the proof
of Theorem 1 we can obtain |deg[F,G,6]|=1. O
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