
Journal of Computational and Applied Mathematics 114 (2000) 367–386
www.elsevier.nl/locate/cam

A class of gradient unconstrained minimization algorithms with
adaptive stepsize

M.N. Vrahatisa ; ∗ , G.S. Androulakisa, J.N. Lambrinosa, G.D. Magoulasb
aDepartment of Mathematics, University of Patras Arti�cial Intelligence Research Center (UPAIRC), University of

Patras, GR-261.10 Patras, Greece
bDepartment of Informatics, University of Athens, GR-157.71 Athens, Greece

Received 16 April 1997; received in revised form 22 January 1999

Abstract

In this paper the development, convergence theory and numerical testing of a class of gradient unconstrained
minimization algorithms with adaptive stepsize are presented. The proposed class comprises four algorithms: the �rst
two incorporate techniques for the adaptation of a common stepsize for all coordinate directions and the other two allow
an individual adaptive stepsize along each coordinate direction. All the algorithms are computationally e�cient and possess
interesting convergence properties utilizing estimates of the Lipschitz constant that are obtained without additional function
or gradient evaluations. The algorithms have been implemented and tested on some well-known test cases as well as on
real-life arti�cial neural network applications and the results have been very satisfactory. c© 2000 Elsevier Science B.V.
All rights reserved.

MSC: 65K05; 65K10; 49D37; 65C20; 82C32; 68T05

Keywords: Unconstrained optimization; Steepest descent; Gradient method; Lipschitz constant; Line search strategies;
Armijo’s method; Globally convergent method; Arti�cial neural network; Training algorithm

1. Introduction

A well-known class of algorithms for unconstrained minimization of functions f(x) in n real
variables

f : D⊂Rn → R; (1.1)

having Lipschitz continuous �rst partial derivatives whose gradient 3f(x) is available, is the steepest
descent methods [12,13,20,31,33,34,36] �rst proposed by Cauchy in 1847 [11]. The iterations are

∗ Corresponding author. http://www.math.upatras.gr/ ˜vrahatis; Tel.: +30-61-997374; fax: +30-61-992965.
E-mail address: vrahatis@math.upatras.gr (M.N. Vrahatis)

0377-0427/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S 0377-0427(99)00276-9

368 M.N. Vrahatis et al. / Journal of Computational and Applied Mathematics 114 (2000) 367–386

made according to the following equation:

x k+1 = x k − �k3f(x k); k = 0; 1; 2; : : : ; (1.2)

where �k is the smallest nonnegative value of � that locally minimizes f along the direction −3f(x k)
starting from x k . Carry in 1944 [10] showed that any limit point x∗ of the sequence {x k}∞k=0 is a
stationary point; that is, 3f(x k) = 0.
The iterative scheme (1.2) is not a computational method, because the stepsize rule at each step

contains an exact one-dimensional minimization problem. This scheme can be implemented by doing
an inexact minimization, utilizing a more e�cient stepsize rule, �rst proposed by Armijo [3]. It can
be shown that, under mild assumptions the iterative scheme (1.2) converges to a local minimizer x∗

or saddle point of f, but its convergence is only linear and sometimes slowly linear. Speci�cally
if it converges to a x∗ where the Hessian matrix H ∗ ≡ 32f(x∗) of f at x∗ is positive de�nite and
emax and emin are the largest and smallest eigenvalues of H ∗, then it can be shown that the sequence
{x k}∞k=0 satis�es [13]

lim
k→∞

sup
‖ x k+1 − x∗ ‖
‖ x k − x∗ ‖ 6c; c =

emax − emin
emax + emin

: (1.3)

The steepest descent method is particularly useful when the dimension of the problem is very
large. On the other hand its main disadvantages are: (a) each iteration is calculated independently
of the others; that is, no information is stored and used that might accelerate convergence, (b) it is
not generally a �nite procedure for minimizing a positive-de�nite quadratic form and (c) the rate
of convergence depends strongly on the morphology of the objective function; if the ratio of the
maximum to the minimum eigenvalue of the Hessian matrix H of f at any local minimizer x∗ is
large, the steepest descent generates short zigzagging moves in a neighborhood of x∗ [20].
In the algorithmic framework of steepest descent methods, Goldstein proposed in 1962 [16] the

iterative formula:

x k+1 = x k − �’k; k = 0; 1; 2; : : : ; (1.4)

where ’ denotes a bounded map de�ned on the level set S(x0) = {x: f(x)6f(x0)} satisfying the
relation:

〈3f(x); ’(x)〉¿0; (1.5)

so that for a given �¿ 0, there exists �¿ 0 for which

〈3f(x); ’(x)〉¡� implies ‖ 3f(x) ‖¡�; (1.6)

where 〈· ; ·〉 stands for the usual inner product in Rn. He has also proved that the sequence {x k}∞k=0,
generated by (1.4), converges to a local minimizer x∗ of f. Following this approach Goldstein [17]
has derived a formula to determine the stepsize � at the kth iteration for the convergence of the
sequence {x k}∞k=0 to a local minimizer x∗ of f. Furthermore, by making the assumptions that f∈C2
on a bounded S(x0), convergence has been established in case ’(x) ≡ 3f(x). Finally, an estimate
for the ultimate rate of convergence of the gradient vector has been given when a bound for the
norm of the Hessian matrix H of f on S(x0) is known.
Using only values of the objective function f and its gradient, Goldstein and Price have extended

previous results [18] by considering the case ’(x)=Q−1
k 3f(x) where Qk is an approximation of the

M.N. Vrahatis et al. / Journal of Computational and Applied Mathematics 114 (2000) 367–386 369

Hessian matrix at x k . Global convergence of their algorithm is provided at a rate which is eventually
superlinear.
Alternatively, Armijo [3] has provided a modi�cation of the steepest descent method which au-

tomatically adapts the stepsize and has proved convergence under less restrictive assumptions than
those imposed by Goldstein [16]. For an e�cient implementation of the Armijo’s adaptation pro-
cedure as well as the corresponding convergence results we refer to [34]. Some important global
convergence results for various methods using speci�c line search procedures have been given by
[13,29,34,35,46,47,49].
The numerical algorithms proposed in this contribution exploit the local information regarding the

local descent direction and the local Lipschitz constant estimates to provide better convergence. The
paper is organized as follows. In Section 2 the modi�ed steepest descent method due to Armijo and
various line search strategies are briey presented. In Section 3 our methods are derived and the
corresponding algorithms presented. In Section 4 we present numerical results in order to compare
and evaluate the performance of the new algorithms with several unconstrained optimization methods
and �nally end, in Section 5, with some concluding remarks.

2. The modi�ed steepest descent and line search algorithms

Armijo provided in 1966 [3] a modi�cation of the steepest descent method which automatically
adapts the stepsize � of the iterative scheme (1.2). His method and the corresponding convergence
result are as follows:

Theorem 2.1 (Armijo [3]). Suppose that the objective function f : Rn → R is continuous on Rn and
bounded below on Rn. Assume that for a given x0 ∈Rn the function f is continuously di�erentiable
on the bounded level set S(x0) = {x: f(x)6f(x0)} and that there exists a unique point x∗ ∈Rn
which minimizes f. Suppose further that the equation 3f(x) = 0 is satis�ed for x∈S(x0) if and
only if x= x∗ and that 3f is Lipschitz continuous on S(x0); i.e.; there exists a Lipschitz constant
K ¿ 0; such that

‖ 3f(x)−3f(y) ‖6K ‖ x − y ‖; (2.1)

for every pair x; y∈ S(x0). Let �0 be an arbitrary assigned positive number; and consider the
sequence �m = �0=2m−1; m= 1; 2; : : : . Then for the sequence of points {x k}∞k=0 de�ned by

x k+1 = x k − �mk3f(x k); k = 0; 1; 2; : : : ; (2.2)

where mk is the smallest positive integer for which

f(x k − �mk3f(x k))− f(x k)6− 1
2�
mk ‖ 3f(x k) ‖2; (2.3)

it holds that limk→∞ x k = x∗.

The iterative scheme (2.2) and relation (2.3) constitute the Armijo’s method or the Modi�ed
Steepest Descent. Next, we present a high-level description of the Armijo’s algorithm, in which
the corresponding parameters indicate: x0 initial point, �0 an arbitrary large initial stepsize, MIT the
maximum number of iterations required and � the predetermined desired accuracy.

370 M.N. Vrahatis et al. / Journal of Computational and Applied Mathematics 114 (2000) 367–386

Algorithm 1. The modi�ed steepest descent

1. Input {f; x0; �0;MIT; �}.
2. Set k =−1.
3. If k ¡MIT, replace k by k+1, set �=�0; m=1 and go to the next step; otherwise, go to Step 8.
4. If f(x k − �3f(x k))− f(x k)6− 1

2� ‖ 3f(x k) ‖2, go to Step 6; otherwise, set m=m+ 1 and
go to the next step.

5. Set �= �0=2m−1 and return to Step 4.
6. Set x k+1 = x k − �3f(x k).
7. If ‖ 3f(x k) ‖6�, go to Step 8; otherwise go to Step 3.
8. Output {x k ;f(x k);3f(x k)}.

Although Algorithm 1 provides an e�ective and very useful stepsize adaptation procedure for
various applications [1,2,19,44], its exponential schedule is too fast for certain problems [26,27].
In [34, p. 30] an alternative Armijo’s stepsize adaptation procedure is proposed applicable to any
descent direction ’k . This procedure uses two parameters �; �∈ (0; 1) and can be implemented in
two versions depending on the input value of the parameter s.

Algorithm 2. Algorithm model with Armijo line search — ALS

1. Input {f; x0; �; �∈ (0; 1); s∈{0; 1};m∗ ∈Z;MIT; �}.
2. Set k = 0.
3. If ‖ 3f(x k) ‖6� go to Step 6. Else, compute a descent direction ’k .
4. If s= 0, set M ∗ = {m∈Z |m¿m∗}, and compute the stepsize
(a) �k = �mk = argmaxm∈M∗ {�m |f(x k + �m’k)− f(x k)6�m�〈3f(x k); ’k〉}.

Else (s= 1) compute the stepsize �k = �mk , where mk ∈Z is any integer such that
(b) f(x k + �mk’k)− f(x k)6�mk�〈3f(x k); ’k〉 and
(c) f(x k + �mk−1’k)− f(x k)¿�mk−1�〈3f(x k); ’k〉.

5. Set x k+1=x k+�k’k . If k ¡MIT, replace k by k+1, and go to Step 3; otherwise go to Step 6.
6. Output {x k ;f(x k);3f(x k)}.

The selection s=0 is normally used with Newton-like algorithms, with m∗=0 to ensure superlinear
convergence. The selection s = 0 is not very good for �rst-order algorithms because, on average,
it requires considerably more function evaluations than the selection s = 1. So, s = 1 is used in
�rst-order algorithms.
If the objective function f is bounded from below the following subprocedure can be used to

�nd an mk satisfying relations (b) and (c) of Step 4 of Algorithm 2. This subprocedure uses the
last used step length �k−1 = �mk−1 as the starting point for the computation of the next step [34].

Stepsize subprocedure

1. If k = 0, set m′ = m∗. Else set m′ = mk−1.
2. If mk = m′ satis�es relations (b) and (c) of Step 4 of Algorithm 2, stop.
3. If mk = m′ satis�es (b) but not (c), replace m′ by m′ − 1, and go to Step 2.
If mk = m′ satis�es (c) but not (b), replace m′ by m′ + 1, and go to Step 2.

M.N. Vrahatis et al. / Journal of Computational and Applied Mathematics 114 (2000) 367–386 371

In practice, only a very small number of iterations of the above subprocedure are required to com-
pute the Armijo stepsize. When a very small stepsize occurs for several iterations, causing slow
convergence, the user can revert to setting s= 0 for one or two iterations.
The search strategy of Algorithm 2 allows us to establish the following useful convergence theorem

due to Polak et al. [34, p. 33]. This theorem requires the search direction ’k to be bounded from
above, it imposes a restriction on the angle between 3f(x k) and ’k (see relation (2.6) below) and
states that Algorithm 2 is well de�ned in the sense that whenever 3f(x k) 6= 0, the search for a
stepsize �k is a �nite process, whether s= 0 or 1.

Theorem 2.2 (Polak–Sargent–Sebastian [34]). Assume that (i) the objective function f : Rn → R
is Lipschitz continuously di�erentiable on bounded sets; (ii) the sequences {x k}∞k=0 and {’k}∞k=0
are constructed by Algorithm 2; (iii) there exist two continuous functions N1 : Rn → R and
N2 : Rn → R such that
(1) for all x satisfying 3f(x) 6= 0; N1(x)¿ 0; N2(x)¿ 0 and N1(x) = 0 if and only if 3f(x) = 0
and
(2) for all k ∈N; the x k and ’k satisfy the inequalities 〈3f(x k); ’(x k)〉6 − N1(x k); and ‖ ’k ‖
6N2(x k).
Under these assumptions; (a) if x k is such that 3f(x k) 6= 0; then �k is computed by Algorithm 2
using a �nite number of function evaluations and (b) any accumulation point x∗ of the sequence
{x k}∞k=0 satis�es 3f(x∗) = 0.

A relative strategy consists in accepting a positive stepsize �k if it satis�es the Wolfe conditions:

f(x k + �k’k)− f(x k)6�1�k〈3f(x k); ’k〉; (2.4)

〈3f(x k + �k’k); ’k〉¿�2〈3f(x k); ’k〉; (2.5)

where 0¡�1¡�2¡ 1. Also, in this case the �rst inequality ensures that the function is reduced
su�ciently, and the second prevents the steps from being too small. It can be shown that if ’k

is a descent direction, if f is continuously di�erentiable and if f is bounded below along the ray
{x k + �’k | �¿ 0}, then there always exists a stepsize satisfying (2.4)–(2.5) [29,46,47].
The following theorem, due to Wolfe [13,29,46,47], states that if f is bounded below, then the

sequence {x k}∞k=0 generated by any algorithm that follows a descent direction ’k whose angle �k
with −3f(x k) is such that

cos �k =
〈−3f(x k); ’k〉

‖ 3f(x k) ‖‖ ’k ‖¿�¿ 0; (2.6)

and satisfy the Wolfe’s conditions, will obey limk→∞3f(x k) = 0.

Theorem 2.3 (Dennis and Schnabel [13], Nocedal [29], and Wolfe [46,47]). Suppose that the ob-
jective function f : Rn → R is continuously di�erentiable on Rn and assume that 3f is Lipschitz
continuous on Rn. Then; given any x0 ∈Rn; either f is unbounded below; or there exists a sequence
{x k}∞k=0 obeying the Wolfe’s conditions (2:4) and (2:5) and either
(i) 〈3f(x k); (x k+1 − x k)〉¡ 0; or
(ii) 3f(x k) = 0; and x k+1 − x k = 0; for each k ¿ 0. Furthermore; for any such sequence; either

372 M.N. Vrahatis et al. / Journal of Computational and Applied Mathematics 114 (2000) 367–386

(a) 3f(x) 6= 0 for some k¿0; or
(b) limk→∞ f(x k) =−∞; or
(c) limk→∞ 〈3f(x k); (x k+1 − x k)〉= ‖ x k+1 − x k ‖ =0.

For a relative convergence result where the sequence {x k}∞k=0 converges q-superlinearly to a min-
imizer x∗ see [13, p. 123]
In practice, condition (2.5) generally is not needed because the use of a backtracking strategy

avoids very small steps. Also, it can be proved (see [13]) that if (2.5) is replaced by

f(x k + �k’k)− f(x k)¿�2�k〈3f(x k); ’k〉; �2 ∈ (�1; 1); (2.7)

then Theorem 2.3 still holds (cf. relation (c) of Step 4 of Algorithm 2).

3. Derivation of the proposed minimization algorithms

The value of the stepsize � in (1.2) has been related to the value of the Lipschitz constant K (cf.
relation (2.1)), [3]. In this case, the well-known Cauchy’s method or the steepest descent algorithm
[11] states that the sequence {x k}∞k=0, de�ned by

x k+1 = x k − 1
2K
3f(x k); k = 0; 1; 2; : : : ; (3.1)

converges to the point x∗ which minimizes f (see [3] for a proof).
Note that when the objective function is “steep”, i.e., K is large, then, according to iterative

scheme (3.1), we have to take a small value for the stepsize in order to guarantee convergence. On
the other hand, when f is “at”, i.e., K is small, we have to take a large stepsize to accelerate the
convergence. However, in general optimization problems neither the morphology of the objective
function surface nor the value of K are known a priori. Thus, in practice, a “small” stepsize has
to be chosen in order to avoid oscillations and to guarantee the steepest descent convergence. On
the other hand, choosing a “small” stepsize leads to slow convergence. Attempts to �nd a proper
stepsize usually result in a trade-o� between the convergence rate and the stability of the optimization
algorithm.
In this section we propose unconstrained minimization algorithms with adaptive stepsize derived

from the classical method of steepest descent.

3.1. Stepsize adaptation using local estimation of the Lipschitz constant

In this subsection two steepest descent algorithms with adaptive stepsize are described. These
algorithms follow the steepest descent direction, −3f(x k), and they use a local estimation of the
Lipschitz constant �k in order to estimate the stepsize 0:5=K at the kth iteration.
The local estimation of the Lipschitz constant �k can be easily obtained without any additional

function and gradient evaluations by relation (2.1) for a pair of consecutive updates x k ; x k−1:

�k =
‖ 3f(x k)−3f(x k−1) ‖

‖ x k − x k−1 ‖ : (3.2)

M.N. Vrahatis et al. / Journal of Computational and Applied Mathematics 114 (2000) 367–386 373

In this way, the stepsize 0:5=�k would be sensitive to the local shape of the objective function. In
other words, when �k 6= 0 relation (3.2) provides us with the following iterative scheme, named
steepest descent with adaptive stepsize (SDAS):

x k+1 = x k − 1
2�k

3f(x k); k = 0; 1; : : : ; (3.3)

where �k is given by relation (3.2). Clearly, the iterative scheme (3.3) is related to the iterative
scheme (3.1) and it converges when 060:5=�k6K−1. This can be easily justi�ed following, for
instance, the proof in [3].
In practice, the above-mentioned requirements are not easily checked. Thus, in order to ensure

global convergence (i.e., convergence to a solution from any initial point, if a solution exists), it
is necessary to have some criterion of acceptance of any approximation x k+1 of a minimizer x∗,
generated by the iterative scheme (3.3). To this end, relations (2.4) and (2.5) or (2.4) and (2.7) as
well as the corresponding relations (b) and (c) of Algorithm 2 can be used to obtain an appropriate
stepsize. In these cases the value of 0:5=�k can assist in the initialization of the input parameters
of the corresponding algorithms. For instance, in Algorithm 2 by choosing constant values of � and
�, say 0¡�¡ 1

2 and
1
2¡�¡ 1, (see [13] for a discussion of the usefulness of these values) the

parameter m∗ can be initialized by setting 0:5=�k = ��m
∗
and taken

m∗ =−
⌈
log(2�k�)
log(�)

⌉
; (3.4)

where d·e de�nes the ceiling of the real number quoted.
The following high-level algorithm, named SDAS-2, is the composition of the SDAS method with

a stepsize tuning subprocedure consisting of any of the above pairs of relations. If Step 5 is ignored,
SDAS-2 reduces to the SDAS algorithm.

Algorithm 3. The Steepest Descent with Adaptive Stepsize — SDAS-2

1. Input {f; x0; �0;MIT; �}.
2. Set k =−1.
3. If k ¡MIT, replace k by k + 1 and go to the next step; otherwise, go to Step 8.
4. If k¿1 and �k= ‖ 3f(x k)−3f(x k−1) ‖ = ‖ x k−x k−1 ‖6= 0, set �=0:5=�k ; otherwise set �=�0.
5. Tune � by means of a stepsize tuning subprocedure.
6. Set x k+1 = x k − �3f(x k).
7. If ‖ 3f(x k) ‖6� go to Step 8; otherwise go to Step 3.
8. Output {x k ;f(x k);3f(x k)}.

Assume now that the stepsize tuning subprocedure of Step 5 of Algorithm 3 consists of the pair
of relations (2.4) and (2.5) that de�ne the Wolfe’s conditions. The following theorem states that if
f is bounded below, then the sequence {x k}∞k=0 generated by Algorithm 3 converges to a point x∗

for which 3f(x∗) = 0.

Theorem 3.1. Suppose that the objective function f :Rn → R is continuously di�erentiable and
bounded below on Rn and assume that 3f is Lipschitz continuous on Rn. Then; given any x0 ∈Rn;

374 M.N. Vrahatis et al. / Journal of Computational and Applied Mathematics 114 (2000) 367–386

for any sequence {x k}∞k=0; generated by Algorithm 3; satisfying the Wolfe’s conditions (2:4) and
(2:5) implies that limk→∞3f(x k) = 0.

Proof. Obviously, the sequence {x k}∞k=0 follows a descent direction and the restriction on the an-
gle �k is ful�lled since cos �k = 1¿ 0 (cf. relation (2.6)). Thus, by Theorem 2.3 it holds that
limk→∞3f(x k) = 0. Thus the theorem is proved.

A relative convergence result can be proved, using Theorem 2.2, for any sequence {x k}∞k=0 satis-
fying relations (b) and (c) of Step 4 of Algorithm 2. A detailed justi�cation is provided in [34].

3.2. Stepsize adaptation along each coordinate direction using estimates of the Lipschitz constant

In this subsection, unconstrained minimization algorithms with an adaptive stepsize for each co-
ordinate direction are analyzed as composite nonlinear Jacobi methods applied to the gradient of
the objective function f. The class of nonlinear Jacobi methods is widely used for the numerical
solution of a system of nonlinear equations:

F(x) =�n = (0; 0; : : : ; 0); (3.5)

where F = (f1; f2; : : : ; fn) : D⊂ Rn → Rn is a continuously di�erentiable mapping on an open
neighborhood D∗ ⊂D of a solution x∗ ∈D of (3.5). The main feature of the nonlinear Jacobi process
is that it is a parallel algorithm [23,31,32], i.e., it applies a parallel update of the variables.
In function minimization problems, it is well known that all the local minima x∗ of a continuously

di�erentiable function f satisfy the necessary conditions

3f(x∗) =�n: (3.6)

Eq. (3.6) represents a set of n nonlinear equations which must be solved to obtain x∗. Therefore,
one approach to the minimization of a function f is to seek the solutions of the set of Eq. (3.6) by
including a provision to ensure that the solution found does indeed correspond to a local minimizer.
This is equivalent to solving the following system of equations:

@1f(x1; x2; : : : ; xn) = 0;
@2f(x1; x2; : : : ; xn) = 0;

...
@nf(x1; x2; : : : ; xn) = 0;

(3.7)

by applying the class of nonlinear Jacobi methods, where @if denotes the ith coordinate of 3f.
So, starting from an arbitrary initial point x0 ∈D, one can subminimize, at the kth iteration, the

one-dimensional function:

f(xk1 ; : : : ; x
k
i−1; xi; x

k
i+1; : : : ; x

k
n); (3.8)

along the ith direction and a corresponding subminimizer x̂i is obtained. This is done in parallel for
all i = 1; : : : ; n. Obviously for this x̂i

@if(xk1 ; : : : ; x
k
i−1; x̂i; x

k
i+1; : : : ; x

k
n) = 0: (3.9)

This is a one-dimensional subminimization because all other components of the vector x, except the
ith, are kept constant.

M.N. Vrahatis et al. / Journal of Computational and Applied Mathematics 114 (2000) 367–386 375

Then each variable is updated according to the following equation:

xk+1i = xki + !
k(x̂i − xki); (3.10)

for some relaxation coe�cient !k ∈ (0; 1].
When exact one-dimensional subminimization is applied and !k = 1 for all k the following con-

vergence result is provided.

Theorem 3.2 (Brewster and Kannan [7]). Suppose that the objective function f : D⊂Rn → R is
twice continuously di�erentiable on a convex domain D and that f is a strictly convex function.
Assume that there exists ∈R such that S = {x∈D: f(x)6} is nonempty and compact and
that @2iif(y) 6= 0 for i=1; 2; : : : ; n and y∈S; unless y is the point at which f attains its minimum;
where @2ijf(y) denotes the hij element of the Hessian matrix of f at y; H = [hij]. Suppose further;
that from any point x0 = (x01 ; x

0
2 ; : : : ; x

0
n)∈ S a sequence {x k}∞k=0 is generated as follows:

x k+1j = x kj ; j 6= ik ;
and

x k+1ik is the solution of @ikf(x
k
1 ; x

k
2 ; : : : ; x

k
ik−1; xik ; x

k
ik+1; : : : ; x

k
n) = 0;

where ik is any one of the integers 1; 2; : : : ; n. Such a sequence {x k}∞k=0 is uniquely de�ned and
converges to x∗; the unique global minimizer of f; provided that in the above iterative process every
coordinate direction i is chosen an in�nite number of times.

Depending on the one-dimensional subminimization method [6,13,31,36], used for the submin-
imization of (3.8), we can obtain various composite nonlinear Jacobi algorithms. When inexact
one-dimensional subminimization is applied, the number of iterations of the subminimization method
is related to the requested accuracy in obtaining the subminimizer approximations. Thus, signi�cant
computational e�ort is needed in order to �nd very accurate approximations of the subminimizer
in each coordinate direction at each iteration. Furthermore, the total computational e�ort for the
subminimization method is increased when the dimension of the problem is very high. In addition,
it is not certain that the large computational e�ort speeds up the minimization process for non-
convex functions when far from a minimizer x∗. Thus, in practice, only a single iteration of the
one-dimensional method in each variable direction is usually suggested for the iterative solution of
nonlinear equations [31,43].
By applying the ideas of the previous subsection in each direction we come up with two algorithms

for unconstrained minimization. In this case, the updates are based on the components @if(x k) of
3f(x k) and on the following estimates for the Lipschitz constant along the ith direction, i=1; : : : ; n,
at the kth iteration:

�ki =
|@if(x k)− @if(x k−1)|

|xki − xk−1i | : (3.11)

Relation (3.11) can be considered as a local estimation of the Lipschitz constant K and its inverse
can be used in order to estimate the stepsize along the ith direction. This means that for a large
value of K a small stepsize is used and vice versa.

376 M.N. Vrahatis et al. / Journal of Computational and Applied Mathematics 114 (2000) 367–386

As a consequence, we propose the following iterative scheme

x k+1 = x k − diag{!1=�k1; !2=�k2; : : : ; !n=�kn}3f(x k); k = 0; 1; : : : (3.12)

for some relaxation coe�cients !ki ∈ (0; 1].
The iterative scheme (3.12) formulates a new method for unconstrained optimization named gra-

dient descent with adaptive multi-stepsize (GDAM).
In order to give a convergence result for the new method, the following concepts and theorems

are needed [4,31,43].
First, we present the notion of the A� property: Young discovered in 1971 [48] a class of matrices,

described as having the property A, that can be partitioned into block-tridiagonal form possibly
after a suitable permutation. In Young’s original presentation, the elements of a matrix A= [aij] are
partitioned into two groups. In general, any partitioning of an n-dimensional vector x=(x(1); : : : ; x(m))
into block components x(p) of dimensions np, p=1; : : : ; m (with

∑m
p=1 np=n) is uniquely determined

by a partitioning � = {�p}mp=1 of the set of the �rst n integers, where �p contains the integers
sp + 1; : : : ; sp + np, sp =

∑k−1
j=1 nj. The same partitioning � also induces a partitioning of any n × n

matrix A into block matrix components Aij of dimensions ni × nj. Note that the matrices Aii are
square.

De�nition 3.3 (Axelsson [4]). The matrix A has the property A� if A can be permuted by PAP>

into a form that can be partitioned into a block-tridiagonal form, that is,

PAP> =

D1 L>1 O
L1 D2 L>2
.
Lr−2 Dr−1 L>r−1

O Lr−1 Dr

;

where the matrices Di; i = 1; : : : ; r are nonsingular.

For an algorithm which transforms a symmetric matrix to tridiagonal form see [39, p. 335].

Theorem 3.4 (Ortega and Rheinboldt [31, p. 333]). Suppose that F=(f1; : : : ; fn) :D⊂ Rn → Rn is
continuously di�erentiable on an open neighborhood S0⊂D of a point x∗ ∈D for which F(x∗)=�n.
Consider the decomposition of the Jacobian matrix F ′(x) into its diagonal; strictly lower-triangular
and strictly upper-triangular parts

F ′(x) = D(x)− L(x)− U (x): (3.13)

Suppose further that D(x∗) is nonsingular and �(�(x∗))¡ 1; where �(A) denotes the spectral radius
of matrix A; and �(x) is de�ned by

�(x) = D(x)−1 [L(x) + U (x)] : (3.14)

Then there exists an open ball S=S(x∗; r) in S0; (where S(x∗; r) denotes the open ball centered
at x∗ with radius r); such that; for any x0 ∈S; there is a unique sequence; {x k}∞k=0⊂S which
satis�es the nonlinear Jacobi prescription; such that limk→∞ x k = x∗.

M.N. Vrahatis et al. / Journal of Computational and Applied Mathematics 114 (2000) 367–386 377

Theorem 3.5 (Axelsson [4, p. 238]). If A and D are symmetric and positive de�nite and A has
the property A�; then the eigenvalues of B = D−1[L + L>]; where A = D − L − L>; are real and
�(B)¡ 1.

In the following, we present a general convergence result which is applicable to any iterative
scheme (3.10) utilizing inexact one-dimensional subminimization.

Theorem 3.6. Let f :D⊂Rn → R be twice continuously di�erentiable on an open neighborhood
S0⊂D of a point x∗ ∈D for which 3f(x∗)=�n and the Hessian; H (x∗) is positive de�nite with
the property A�. Then there exists an open ball S=S(x∗; r) in S0 such that any sequence {x k}∞k=0
generated by the iterative scheme (3:10) converges to the point x∗ which minimizes f.

Proof. Clearly, the necessary and su�cient conditions for the point x∗ to be a local minimizer of the
function f are satis�ed by the hypothesis 3f(x∗)=�n and the assumption of positive de�nitiveness
of the Hessian at x∗, which means that f curves up from x∗ in all directions (see for example [31]).
Finding such a point is equivalent to obtaining the corresponding solution x∗ ∈D of system (3.7)
by applying a nonlinear Jacobi process using any one root�nding iterative method.
Now, consider the decomposition (3.13) of H . Since, H (x∗) is symmetric and positive de�nite,

D(x∗) is nonsingular [41, p. 80]. By virtue of Theorem 3.5 we obtain �(�(x∗))¡ 1. Thus, by
Theorem 3.4, there exists an open ball S=S(x∗; r) in S0, such that x∗ is a point of attraction of
the iterative scheme (3.10) for any x0 ∈S. Thus the theorem is proved.

By means of the above theorem the convergence proof of the proposed iterative scheme (3.12)
can be easily obtained.
Iteration (3.12) can be reformulated as follows:

x k+1 = x k − !k diag{1=�k1; : : : ; 1=�kn}3f(x k); k = 0; 1; : : : ; (3.15)

where !k is a relaxation coe�cient.
To ensure global convergence of the iterative scheme (3.15) we can either apply relations (2:4)

and (2:5), or (2:4) and (2:7), or the corresponding relations (b) and (c) of Algorithm 2 to properly
tune !k . In this way, we can avoid oscillations of the updates around the minimizer and/or speed
up the minimization process when we are far from the minimum.
Thus, by composing the GDAM algorithm with a tuning subprocedure for !k , consisting of any

of the above pair of relations, we obtain a new algorithm named GDAM-2.
A high-level description of GDAM-2 algorithm is given below. The previous algorithm, GDAM,

can be obtained by ignoring Step 5.

Algorithm 4. Gradient descent with adaptive multi-stepsize — GDAM-2

1. Input {f; x0;!0; (�01; �02; : : : ; �0n);MIT; �}.
2. Set k =−1.
3. If k ¡MIT, replace k by k + 1, set != !0, and go to the next step; otherwise, go to Step 8.
4. If k¿1 and �ki = |@if(x k)−@if(x k−1)|=|xki −xk−1i | 6= 0, for all i=1; : : : ; n, set �ki =1=�ki ; otherwise
set �ki = �

0
i .

378 M.N. Vrahatis et al. / Journal of Computational and Applied Mathematics 114 (2000) 367–386

5. Tune ! by means of a tuning subprocedure.
6. Set x k+1 = x k − ! diag{�k1 ; �k2 ; : : : ; �kn}3f(x k).
7. If ‖ 3f(x k) ‖6� go to Step 8; otherwise go to Step 3.
8. Output {x k ;f(x k);3f(x k)}.
Assume now that the tuning subprocedure of Step 5 of Algorithm 4 consists of the pair of relations

(2.4) and (2.5). The following theorem states that if f is bounded below, then the sequence {x k}∞k=0
generated by Algorithm 4 converges to a point x∗ for which 3f(x∗) = 0.

Theorem 3.7. Suppose that the objective function f :Rn → R is continuously di�erentiable and
bounded below on Rn and assume that 3f is Lipschitz continuous on Rn. Then; given any point
x0 ∈Rn; for any sequence {x k}∞k=0; generated by Algorithm 4; satisfying the Wolfe’s conditions (2:4)
and (2:5) implies that limk→∞3f(x k) = 0.

Proof. The sequence {x k}∞k=0 follows the direction
’k(x k) =−diag{1=�k1; : : : ; 1=�kn}3f(x k);

which is a descent direction since

〈3f(x k); ’k(x k)〉¡ 0:

Moreover, the restriction on the angle �k is ful�lled since, as it can be easily justi�ed utilizing
relation (2.6), cos �k ¿ 0. Thus, by Theorem 2.3 limk→∞3f(x k) = 0 holds. Thus the theorem is
proved.

A relative convergence result can be proved, using Theorem 2.2, for any sequence {x k}∞k=0 satis-
fying relations (b) and (c) of Step 4 of Algorithm 2.

4. Numerical applications

The proposed minimization algorithms have been tested on various problems of di�erent dimen-
sions and their performance has been compared with several well known and widely used uncon-
strained minimization methods. The numerical applications studied here include classical test cases
as well as real-life applications such as arti�cial neural network training.

4.1. Classical test cases

In this subsection we compare the proposed methods with several widely used conjugate gradient
and variable metric methods. In Tables 1–3, we present comparative numerical results for the meth-
ods: (i) Algorithm 2 (ALS) using ’ = −3f; (ii) the Fletcher–Reeves (FR) method [14,15]; (iii)
the Polak–Ribiere (PR) method [15,33,34]; (iv) the Davidon–Fletcher–Powell (DFP) method [34];
(v) the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method [9,34]; (vi) the Steepest Descent with
Adaptive Stepsize (SDAS and SDAS-2) and (vii) the gradient descent with adaptive multi-stepsize
(GDAM and GDAM-2). In all cases, the line search subprocedure of Algorithm 2 has been used.
The initial relaxation coe�cient of Algorithm 4 has been taken !0 = 1. In Tables 1–3, the reported

M.N. Vrahatis et al. / Journal of Computational and Applied Mathematics 114 (2000) 367–386 379

Table 1
Results for the variably dimensioned function

Dimension n= 4 n= 8 n= 12

Method IT FE IT FE IT FE

ALS 20 170 14 199 23 435
FR 11 98 9 134 15 291
PR 16 130 20 277 21 382
DFP 9 96 9 149 13 330
BFGS 9 96 9 149 13 330
SDAS 34 175 44 405 44 546
SDAS-2 28 148 39 365 41 552
GDAM 17 90 21 198 24 325
GDAM-2 12 77 7 91 18 269

Table 2
Results for the trignometric function

Dimension n= 25 n= 50 n= 100

Method IT FE IT FE IT FE

ALS 49 1338 46 2437 20 2219
FR 33 923 27 1484 33 3541
PR 17 493 25 1415 24 2623
DFP 30 828 21 1200 45 4713
BFGS 35 964 34 1829 43 4500
SDAS 33 884 52 2703 63 6464
SDAS-2 33 887 36 1891 53 5471
GDAM 20 546 48 2499 27 1972
GDAM-2 10 290 18 974 18 2007

Table 3
Results for the penalty I function

Dimension n= 4 n= 8 n= 30

Method IT FE IT FE IT FE

ALS D D D
FR 13 81 12 133 12 439
PR 12 69 14 146 18 624
DFP 6 50 9 100 14 1875
BFGS 6 50 8 96 14 1882
SDAS 20 105 26 243 51 1612
SDAS-2 24 137 29 273 38 1223
GDAM 15 80 18 171 27 868
GDAM-2 6 40 9 97 19 635

parameters indicate: n the dimension of the problem, D divergence from the minimizer, IT the
total number of iterations required to obtain the local minimizer x∗ = (x∗1 ; x

∗
2 ; : : : ; x

∗
n) and FE the

380 M.N. Vrahatis et al. / Journal of Computational and Applied Mathematics 114 (2000) 367–386

total number of function and gradient evaluations. The termination criteria have been

|f(x)k+1 − f(x)k |610−8 and ‖ 3f(x k) ‖610−4:
We have tested the above methods for various problems. The results exhibited here are for the

following examples:

Example 4.1 (Variably dimensioned function; More et al. [28]). In this case f is given by

f(x) =
m∑
i=1

f2i (x); (4.1)

where m= n+ 2 and n is the number of variables. Also,

fi(x) = xi − 1; (4.2)

fn+1(x) =
n∑
j=1

j(xj − 1); (4.3)

fn+2(x) =

 n∑
j=1

j(xj − 1)

2

: (4.4)

This function has a minimizer x∗ = (1; 1; : : : ; 1) with f(x∗) = 0. The initial point has been taken
x0 = (�j), where �j = 1− (j=n). The results for this example are summarized in Table 1.

Example 4.2 (Trigonometric function; More et al. [28]). In this case f is given by

f(x) =
n∑
i=1

f2i (x); (4.5)

where n is the number of variables and

fi(x) = n−
n∑
j=1

cos xj + i(1− cos xi)− sin xi: (4.6)

Here we have f(x∗)=0 and x0=(1=n; : : : ; 1=n). The results for this example are exhibited in Table 2.

Example 4.3 (Penalty function I; More et al. [28]). In this case f is given by

f(x) =
m∑
i=1

f2i (x); (4.7)

where m= n+ 1; n is the number of variables and

fi(x) = a1=2(xi − 1); 16i6n; a= 10−5; (4.8)

fn+1(x) =

 n∑
j=1

x2j

− 1

4
: (4.9)

M.N. Vrahatis et al. / Journal of Computational and Applied Mathematics 114 (2000) 367–386 381

The initial point has been taken x0 = (1; 2; : : : ; n). The results for this example are summarized in
Table 3.

4.2. Arti�cial neural network training

Arti�cial neural networks, such as the multilayer feedforward neural network (FNN), are massively
parallel, nonlinear systems modeled on the general features of biological networks [37]: collectively,
neurons with simple properties, interacting according to relatively simple rules and organized into
layers, provide an attractive, alternate algorithmic basis for problem solving in pattern recognition,
pattern classi�cation, learning and control.
The goal of neural network training is to iteratively update the network variables in order to

globally minimize a measure of the di�erence between the actual output vector of the network and
the desired output vector [22]. It is well known in the neural network �eld [22,37] that the rapid
computation of such a global minimum is rather a di�cult task since, in general, the number of
network variables is large and the corresponding nonconvex multimodal objective function possesses
multitudes of local minima and has broad at regions adjoined with narrow steep ones.
The selection of initial points is very important in FNN training [45]. Very small initial values lead

to very small corrections of the variables so that practically no change takes place for some variables
and more iterations are necessary to train the network [37]. In the worst case the learning stops in an
undesired local minimum. On the other hand, very large initial values speed up the learning process
but in many cases they can lead neurons to saturation and generate very small gradient values. In
such cases, learning is considerably slow [25]. A well-known initialization heuristic for FNNs is to
select the points with uniform probability from an interval (xmin; xmax), where usually xmin = −xmax.
A common choice is the interval (−1;+1). Thus, 1000 initial starting points have been randomly
selected from this interval to test the di�erent methods.
Due to the special characteristics of the training problem, globally convergent methods are required.

According to our experience the above-mentioned characteristics of the training problem can be better
handled by the SDAS-2 and GDAM-2 versions of the proposed algorithms.
Next, we give quantitative results on three neural network applications applying the following

methods: (i) the steepest descent with constant stepsize (SD) [37]; (ii) Algorithm 2 (ALS) using
’ = −3f; (iii) the steepest descent with constant stepsize and momentum (SDM) [37]; (iv) the
adaptive steepest descent with heuristics (ASD) [42]; (v) the Fletcher–Reeves (FR) method [15]; (vi)
the Polak–Ribiere (PR) method [15]; (vii) the Polak–Ribiere (PR) method constrained by the FR
method (PR–FR) [15]. In the implementation of FR, PR, PR–FR, SDAS-2 and GDAM-2 methods,
the Armijo line search of Algorithm 2 has been used. The results are exhibited in terms of the average
number of iterations (�IT) required to obtain a local minimum, the average number of gradient and
function evaluations (�FE) and the number of successful runs out of 1000 (Success).

Example 4.4 (The XOR problem; Jacobs [24]; Magoulas et al. [26] and Rumelhart [37]). The
classi�cation of the four XOR patterns into two classes is an interesting problem because it is sen-
sitive to initial points as well as to stepsize variations, and presents a multitude of local minima [5].
The patterns are classi�ed using an FNN with nine variables. This classi�cation problem corresponds

382 M.N. Vrahatis et al. / Journal of Computational and Applied Mathematics 114 (2000) 367–386

Table 4
Results for the XOR problem (n= 9)

Algorithm �IT �FE Success

SD 549 1098 810=1000
ALS 64 435 810=1000
SDM 803 1606 810=1000
ASD 157 314 810=1000
FR 84 282 130=1000
PR 21 169 380=1000
PR–FR 22 171 410=1000
SDAS-2 40 162 810=1000
GDAM-2 52 234 810=1000

to the minimization of the following objective function:

f(x) =
[
1 + exp

(
− x7
1 + exp(−x1 − x2 − x5) −

x8
1 + exp(−x3 − x4 − x6) − x9

)]−2

+
[
1 + exp

(
− x7
1 + exp(−x5) −

x8
1 + exp(−x6) − x9

)]−2

+

[
1−

{
1 + exp

(
− x7
1 + exp(−x1 − x5) −

x8
1 + exp(−x3 − x6) − x9

)}−1]2

+

[
1−

{
1 + exp

(
− x7
1 + exp(−x2 − x5) −

x8
1 + exp(−x4 − x6) − x9

)}−1]2
: (4.10)

The termination condition for all algorithms tested is to �nd a local minimizer with function value
f60:04. The results are summarized in Table 4.

In this case the number of successful runs is related to the local minima problem. Thus FR, PR
and PR–FR usually converge to an undesired local minimum, i.e. a minimizer with function value
f¿ 0:04 which means that some of the patterns are not correctly classi�ed. SDAS-2 and GDAM-2
exhibit better performance than FR, PR and PR–FR as regards the number of successful runs.
Concerning training speed, measured by the mean number of function and gradient evaluations needed
to successfully classify the patterns, SDAS-2 clearly outperforms all algorithms tested. GDAM-2
outperforms SD, ALS, SDM and FR. Note that PR and PR–FR require less function evaluations
than GDAM-2 but they reveal a smaller number of successful runs.

Example 4.5 (Texture classi�cation problem; Magoulas et al. [26]). A total of 12 Brodatz texture
images [8]: 3, 5, 9, 12, 15, 20, 51, 68, 77, 78, 79, 93 (see Fig. 1 in [26]) of size 512×512 is acquired
by a scanner at 150 dpi. From each texture image 10 subimages of size 128 × 128 are randomly
selected, and the co-occurrence method, introduced by Haralick [21] is applied. In the co-occurrence
method, the relative frequencies of gray-level pairs of pixels at certain relative displacements
are computed and stored in a matrix. As suggested by other researchers [30,40], the combina-
tion of the nearest-neighbor pairs at orientations 0◦, 45◦, 90◦ and 135◦ are used in the experiment.
A set of 10 sixteenth-dimensional training patterns are created from each image. The patterns are

M.N. Vrahatis et al. / Journal of Computational and Applied Mathematics 114 (2000) 367–386 383

Table 5
Results for the texture classi�cation problem (n= 244)

Algorithm �IT �FE Success

SD 15 839 31 678 960=1000
ALS 13 256 26 517 965=1000
SDM 12 422 24 844 940=1000
ASD 560 1120 1000=1000
FR 1624 12 674 250=1000
PR 140 810 990=1000
PR–FR 145 1005 996=1000
SDAS-2 383 973 1000=1000
GDAM-2 406 1228 1000=1000

presented in a �nite sequence C = (c1; c2; : : : ; cp) of input–output pairs cp = (up; tp) where up are
the real-valued input vectors in R16 and tp are binary output vectors in R12, for p = 1; : : : ; 120,
determining the corresponding training pattern. An FNN with 244 variables is trained to classify the
patterns to the 12 texture types.
In order to train the network we have to �nd variable values that minimize the following objective

function:

f(x) =
120∑
p=1

12∑
j=1

{1 + exp

(
8∑
i=1

wijyi;p + �j

)}−1

− tj;p

2

; (4.11)

where

yi;p =

{
1 + exp

(
16∑
k=1

vkiuk;p + bi

)}−1

; (4.12)

x = (w11; : : : ; wij; : : : ; w8 12; �1; : : : ; �j; : : : ; �12; v11; : : : ; vki; : : : ; v16 8; b1; : : : ; bi; : : : ; b8): (4.13)

The parameters wij, vki, �j and bi can be arbitrary real numbers. Eq. (4.12) provides an oversimpli�ed
description of a biological neuron and is widely used to construct arti�cial neural networks [22].
Detailed results regarding the training performance of the algorithms are presented in Table 5. The

termination condition is a classi�cation error CE¡ 3% [26]; that is, the network classi�es correctly
117 out of the 120 patterns.
The successfully trained FNNs are tested for their generalization capability, [22,37], using test

patterns from 20 subimages of the same size randomly selected from each image. To evaluate the
generalization performance of the FNN the max rule is used, i.e., a test pattern is considered to
be correctly classi�ed if the corresponding output neuron has the greatest value among the output
neurons. The average success rate of classi�cation for each algorithm is exhibited in Table 6.
The results of Table 5 suggest that PR exhibits the best performance of all methods tested regarding

the average number of gradient and error function evaluations. On the other hand, ASD, SDAS-2
and GDAM-2 are more robust in the sense that they exhibit larger number of successes providing
also good generalization capability (see Table 6).

384 M.N. Vrahatis et al. / Journal of Computational and Applied Mathematics 114 (2000) 367–386

Table 6
The average classi�cation rate for the texture classi�cation problem

Method SD ALS SDM ASD FR PR PR–FR SDAS-2 GDAM-2

Generalization 90:0% 90:0% 90:0% 93:5% 92:0% 92:6% 93:5% 94:0% 94:0%

Table 7
Results for the numeric font learning problem (n= 460)

Algorithm �IT �FE Success

SD 14 489 28 978 660=1000
ALS 12 225 24 454 990=1000
SDM 10 142 20 284 540=1000
ASD 1975 3950 910=1000
FR 620 3121 420=1000
PR 649 2124 960=1000
PR–FR 750 3473 1000=1000
SDAS-2 253 636 1000=1000
GDAM-2 159 739 1000=1000

Example 4.6 The numeric font learning problem; Magoulas et al. [26] and Sperduti and Starita
[38]. This experiment refers to the training of a multilayer FNN with 460 variables for recognizing
8× 8 pixel machine printed numerals from 0 to 9. The network has 64 input neurons and 10 output
neurons representing 0–9. Numerals are given in a �nite sequence C=(c1; c2; : : : ; cp) of input–output
pairs cp = (up; tp) where up are the binary input vectors in R64 determining the 8 × 8 binary pixel
and tp are binary output vectors in R10, for p= 1; : : : ; 10, determining the corresponding numerals.
In order to train the network we have to �nd variable values that minimize the following objective
function:

f(x) =
10∑
p=1

10∑
j=1

{1 + exp

(
6∑
i=1

wijyi;p + �j

)}−1

− tj;p

2

; (4.14)

where

yi;p =

{
1 + exp

(
64∑
k=1

vkiuk;p + bi

)}−1

; (4.15)

x = (w11; : : : ; wij; : : : ; w6 10; �1; : : : ; �j; : : : ; �10; v11; : : : ; vki; : : : ; v64 6; b1; : : : ; bi; : : : ; b6): (4.16)

The termination condition is to locate a minimizer with function value less than or equal to 0.001.
The results are summarized in Table 7.
Evidently, SDAS-2 exhibits the best performance. It has 100% success and the smallest average

of function evaluations. GDAM-2 achieves faster training than all other methods except SDAS-2.
In addition, networks trained with GDAM-2 present better generalization capability than networks
trained by other methods [27].

M.N. Vrahatis et al. / Journal of Computational and Applied Mathematics 114 (2000) 367–386 385

5. Concluding remarks

A new e�ective and e�cient class of gradient-based minimization algorithms has been proposed.
These algorithms allow the usage of a common adaptive stepsize for all coordinate directions or
an individual adaptive stepsize along each coordinate direction. In both cases, stepsize adaptation
is based on estimates of the local Lipschitz constant that are obtained without additional function
and gradient evaluations. The convergence of the proposed methods is guaranteed under suitable
assumptions. The new methods automatically adapt tuning parameters and ensure that the value of
the objective function su�ciently decreases with every iteration.
Our experience with the problems tested indicates that the proposed algorithms behave predictably

and reliably.

Acknowledgements

The authors wish to thank the anonymous referees for their constructive comments and valuable
suggestions which improved the paper.

References

[1] G.S. Androulakis, M.N. Vrahatis, OPTAC: a portable software package for analyzing and comparing optimization
methods by visualization, J. Comput. Appl. Math. 72 (1996) 41–62.

[2] G.S. Androulakis, M.N. Vrahatis, T.N. Grapsa, Studying the performance of optimization methods by visualization,
Systems Anal. Model. Simulation 25 (1996) 21–42.

[3] L. Armijo, Minimization of function having Lipschitz continuous �rst partial derivatives, Paci�c J. Math. 16 (1966)
1–3.

[4] O. Axelsson, Iterative Solution Methods, Cambridge University Press, New York, 1996.
[5] E.K. Blum, Approximation of Boolean functions by sigmoidal networks: part I: XOR and other two-variable functions,

Neural Comput. 1 (1989) 532–540.
[6] R.P. Brent, Algorithms for Minimization Without Derivatives, Prentice-Hall, Inc., Englewood Cli�s, New Jersey,

1973.
[7] M.E. Brewster, R. Kannan, Nonlinear successive over-relaxation, Numer. Math. 44 (1984) 309–315.
[8] P. Brodatz, Textures — A Photographic Album for Artists and Designers, Dover, New York, 1966.
[9] R.H. Byrd, J. Nocedal, A tool for the analysis of quasi-Newton methods with application to unconstrained

minimization, SIAM J. Numer. Anal. (1989) 727–739.
[10] H.B. Curry, The method of steepest descent for non-linear minimization problems, Quart. Appl. Math. 2 (1944)

258–261.
[11] A. Cauchy, M�ethode g�en�erale pour la r�esolution des syst�emes d’�equations simultan�ees, Comp. Rend. Acad. Sci. Paris

25 (1847) 536–538.
[12] E.K.P. Chong, S.H. Żak, An Introduction to Optimization, Wiley, New York, 1996.
[13] J.E. Dennis Jr., R.B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations,

Prentice-Hall, Inc., Englewood Cli�s, NJ, 1983.
[14] R. Fletcher, C. Reeves, Function minimization by conjugate gradients, Comput. J. 7 (1964) 149–154.
[15] J.C. Gilbert, J. Nocedal, Global convergence properties of conjugate gradient methods for optimization, SIAM J.

Optim. 2 (1992) 21–42.
[16] A.A. Goldstein, Cauchy’s method of minimization, Numer. Math. 4 (1962) 146–150.
[17] A.A. Goldstein, On steepest descent, SIAM J. Control 3 (1965) 147–151.
[18] A.A. Goldstein, J.F. Price, An e�ective algorithm for minimization, Numer. Math. 10 (1967) 184–189.

386 M.N. Vrahatis et al. / Journal of Computational and Applied Mathematics 114 (2000) 367–386

[19] T.N. Grapsa, M.N. Vrahatis, A dimension-reducing method for unconstrained optimization, J. Comput. Appl. Math.
66 (1996) 239–253.

[20] A.V. Fiacco, G.P. McCormick, Nonlinear Programming: Sequential Unconstrained Minimization Techniques, SIAM,
Philadelphia, 1990.

[21] R. Haralick, K. Shanmugan, I. Dinstein, Textural features for image classi�cation, IEEE Trans. System, Man
Cybernet. 3 (1973) 610–621.

[22] S. Haykin, Neural Networks: A Comprehensive Foundation, Macmillan College Publishing Company, New York,
1994.

[23] D. Heller, A survey of parallel algorithms in numerical linear algebra, SIAM Rev. 20 (1978) 740–777.
[24] R.A. Jacobs, Increased rates of convergence through learning rate adaptation, Neural Networks 1 (1988) 295–307.
[25] G.D. Magoulas, M.N. Vrahatis, G.S. Androulakis, A new method in neural network supervised training with

imprecision, Proceedings of the IEEE Third International Conference on Electronics, Circuits and Systems, 1996,
pp. 287–290.

[26] G.D. Magoulas, M.N. Vrahatis, G.S. Androulakis, E�ective backpropagation training with variable stepsize, Neural
Networks 10 (1997) 69–82.

[27] G.D. Magoulas, M.N. Vrahatis, G.S. Androulakis, Improving the convergence of the backpropagation algorithm using
learning rate adaptation methods, Neural Computation 11 (1999) 1769–1796.

[28] B.J. Mor�e, B.S. Garbow, K.E. Hillstrom, Testing unconstrained optimization, ACM Trans. Math. Software 7 (1981)
17–41.

[29] J. Nocedal, Theory of algorithms for unconstrained optimization, Acta Numerica 1 (1992) 199–242.
[30] P.P. Ohanian, R.C. Dubes, Performance evaluation for four classes of textural features, Pattern Recognition 25 (1992)

819–833.
[31] J.M. Ortega, W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New

York, 1970.
[32] J.M. Ortega, R.G. Voigt, Solution of partial di�erential equations on vector and parallel computers, SIAM Rev. 27

(1985) 149–270.
[33] E. Polak, Computational Methods in Optimization, Academic Press, New York, 1971.
[34] E. Polak, Optimization: Algorithms and Consistent Approximations, Springer, New York, 1997.
[35] M.J.D. Powell, Direct search algorithms for optimization calculations, Acta Numerica 7 (1998) 287–336.
[36] S.S. Rao, Optimization, Theory and Applications 2nd Edition, 7th reprint, Wiley Eastern Limited, New Delhi, 1992.
[37] D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning internal representations by error propagation, in: D.E.

Rumelhart, J.L. McClelland (Eds.), Parallel Distributed Processing: Explorations in the Microstructure of Cognition,
Vol. 1, MIT Press, 1986, pp. 318–362.

[38] A. Sperduti, A. Starita, Speed up learning and network optimization with extended back-propagation, Neural Networks
6 (1993) 365–383.

[39] G.W. Stewart, Introduction to Matrix Computations, Academic Press, New York, 1973.
[40] J. Strang, T. Taxt, Local frequency features for texture classi�cation, Pattern Recognition 27 (1994) 1397–1406.
[41] R. Varga, Matrix Iterative Analysis, Prentice-Hall, Inc., Englewood Cli�s, NJ, 1962.
[42] T.P. Vogl, J.K. Mangis, A.K. Rigler, W.T. Zink, D.L. Alkon, Accelerating the convergence of the back-propagation

method, Biol. Cybernet. 59 (1988) 257–263.
[43] R.G. Voigt, Rates of convergence for a class of iterative procedures, SIAM J. Numer. Anal. 8 (1971) 127–134.
[44] M.N. Vrahatis, G.S. Androulakis, G.E. Manoussakis, A new unconstrained optimization method for imprecise function

and gradient values, J. Math. Anal. Appl. 197 (1996) 586–607.
[45] L.F. Wessel, E. Barnard, Avoiding false local minima by proper initialization of connections, IEEE Trans. Neural

Networks 3 (1992) 899–905.
[46] P. Wolfe, Convergence conditions for ascent methods, SIAM Rev. 11 (1969) 226–235.
[47] P. Wolfe, Convergence conditions for ascent methods II: some corrections, SIAM Rev. 13 (1971) 185–188.
[48] D. Young, Iterative methods for solving partial di�erence equations of elliptic type, Trans. Amer. Math. Soc. 76

(1954) 92–111.
[49] G. Zoutendijk, Nonlinear programming, computational methods, in: J. Abadie (Ed.), Integer and Nonlinear

Programming, North-Holland, Amsterdam, 1970, pp. 37–86.

