
375

⁄ 0885-064X/02 $35.00
© 2002 Elsevier Science (USA)

All rights reserved.

journal of complexity 18, 375–391 (2002)
doi:10.1006/jcom.2001.0633, available online at http://www.idealibrary.com on

The New k-Windows Algorithm for Improving the
k-Means Clustering Algorithm

M. N. Vrahatis

Department of Mathematics, University of Patras (UOP), University of Patras Artificial
Intelligence Research Center (UPAIRC), GR-26500 Patras, Greece

E-mail: vrahatis@math.upatras.gr

B. Boutsinas

Department of Business Administration, UOP, UPAIRC, GR-26500 Patras, Greece
E-mail: vutsinas@bma.upatras.gr

P. Alevizos

Department of Mathematics, UOP, UPAIRC, GR-26500 Patras, Greece
E-mail: alevizos@math.upatras.gr

and

G. Pavlides

Department of Computer Engineering and Inf., UOP, UPAIRC, GR-26500 Patras, Greece
E-mail: pavlidis@cti.upatras.gr

Received June 30, 2000; revised March 1, 2001; accepted October 1, 2001

The process of partitioning a large set of patterns into disjoint and homogeneous
clusters is fundamental in knowledge acquisition. It is called Clustering in the litera-
ture and it is applied in various fields including data mining, statistical data analysis,
compression and vector quantization. The k-means is a very popular algorithm and
one of the best for implementing the clustering process. The k-means has a time
complexity that is dominated by the product of the number of patterns, the number
of clusters, and the number of iterations. Also, it often converges to a local minimum.
In this paper, we present an improvement of the k-means clustering algorithm,
aiming at a better time complexity and partitioning accuracy. Our approach reduces
the number of patterns that need to be examined for similarity, in each iteration,
using a windowing technique. The latter is based on well known spatial data struc-
tures, namely the range tree, that allows fast range searches. © 2002 Elsevier Science (USA)

Key Words: k-means clustering algorithm; unsupervised learning; data mining;
range search.

1. INTRODUCTION

Recently, the task of extracting knowledge from databases has become a
subject of great interest. This is mainly due to the explosive growth in the
use of databases and the huge volume of data stored in them. A lot of
techniques have been proposed in the literature for data mining processes
(e.g., [10, 18]).
Clustering is one of the most popular data mining tasks that consists in
partitioning a large set of patterns into disjoint and homogeneous clusters.
Usually, clustering algorithms output the means of discovered clusters.
Providing that these means are the representatives of the clusters [1], the
conjunction of attribute values describing each mean can be considered
as a clustering rule for describing data (taking, of course, into considera-
tion and a number of certain properties as density, variance, shape, and
separation [1]).
Clustering rules are one of the most common representation formalisms
for extracted knowledge. Clustering rules can be extracted using unsuper-
vised learning methods and can be used to partition a set of patterns into
disjoint and homogeneous clusters. Clustering algorithms can be classified
as either partitional clustering or hierarchical clustering algorithms and
they have been widely studied in various fields including machine learning,
neural networks, and statistics. Clustering algorithms can be applied in
various other fields such as statistical data analysis, compression and vector
quantization.
The k-means [14, 21], along with its variants (e.g., [3, 13, 24]), is a
popular algorithm that has been used in various practical applications.
However, k-means is computationally very expensive for the very large sets
of patterns met in real life applications. On the other hand, k-means often
converges to a local minimum.
In this paper, we present the k-windows algorithm which is a modifica-
tion of the k-means clustering algorithm. The k-windows algorithm aims at
a better time complexity and greater partitioning accuracy. Our approach
reduces the number of patterns that need to be examined for similarity, in
each iteration, using a windowing technique. The latter is based on well
known spatial data structures, namely the range tree, that allows fast range
searches.
The rest of the paper is organized as follows. The direct k-means algo-
rithm, along with the types of extensions, is described briefly in Section 2.
The proposed k-windows algorithm is described in Section 3, while its
computational complexity, is given in Section 4. In Section 5 empirical tests
are presented providing experimental evidence of the improvement
achieved. The paper ends with some concluding remarks and a short
discussion for further research.

376 VRAHATIS ET AL.

2. THE DIRECT k-MEANS ALGORITHM

The k-means is a very popular algorithm particularly suited for imple-
menting the clustering process because of its ability to effciently partition
huge amounts of patterns. The latter is true even in the presence of noise.
Although direct k-means is defined over numerical continuous data, it is
the basic framework for defining variants capable of working on both
numerical and categorical data.
The k-means consists of two main phases. During the first phase, a par-
tition of patterns, in k clusters is calculated, while during the second phase,
the quality of the partition is determined. k-means is implemented by an
iterative process that starts from a random initial partition. The latter is
repeatedly recalculated until its quality function reaches an optimum. In
particular, the whole process is built upon four basic steps:

(1) selection of the initial k means,

(2) assignment of each pattern to a cluster with nearest mean,

(3) recalculation of k means for clusters, and

(4) computation of the quality function.

The last three steps are performed iteratively until convergence. Most clus-
tering algorithms which are variants of k-means have been proved con-
vergent [26]. On the other hand, k-means-type algorithms often terminate
at a local minimum.
Formally, let i1, ..., in be the input patterns. Each of them is represented
by a d-tuple {(an1, av1), ..., (and, avd)} where anj, avj, 1 [j [d denote,
respectively, the name and the value of the jth numerical attribute, whose
domain is the set of reals R. Let the k first means be initialized to one of n
input patterns im1, ..., imk. These k means define the set C of clusters C=
{Cj | 1 [j [k}. The essence of the algorithm is to minimize the following
quality function:

E=C
k

j=1
C
il ¥ Cj

q(il, imj).

In direct k-means q is defined by the squared Euclidean distance, thus
q(x, y)=||x−y||2, where || · || determines the Euclidean norm. Therefore, the
direct k-means clustering algorithm is as follows:

THE k-WINDOWS CLUSTERING ALGORITHM 377

Algorithm Direct k-means.

input k
initialize k means im1, ..., imk
repeat

for each input pattern il, 1 [l [n
do

assign il to Cj with nearest mean imj,
such as ||il−imj ||2 [||il−imu ||2, 1 [j, u [k

for each cluster Cj ¥ C, 1 [j [k
do

recalculate the mean of patterns il ¥ Cj, imj=
1
|Cj|

; il ¥ Cj il
where |Cj | defines the cardinality of Cj

compute the quality function q
until no object has changed clusters (or q does not change)

The direct k-means algorithm is computationally very expensive for large
sets of patterns. It requires time proportional to the product of the number
of patterns, the number of clusters and the number of iterations. More
specifically, in the algorithm above, the first loop, for each iteration, has a
time complexity O(ndk), the second O(nd) and the quality function is cal-
culated in O(nd). Thus the whole algorithm has a time complexity O(ndkt),
where t is the number of iterations. In practice, it holds that d, k, t° n.
Note that the first loop has as a basic operation the calculation of the
squared Euclidean distance of two numbers and it is this which we consider
the basic unit of computational processing cost. The calculation of the
quality function has the same basic operation, while the second loop has as
a basic operation just the addition of two numbers.
There are a number of modifications in the direct k-means algorithm
improving either the computational complexity or the expressive adequacy.
The latter is achieved by extending the direct k-means to work on
categorical date (e.g., [13]) or on mixed data (e.g., [22]). Another related
extension concerns the quality function, where different (dis)similarity
measures have been proposed (e.g., [11, 12, 24]). Improvement of the
computational complexity is achieved either by sophisticated initialization
methods (e.g., [6, 13, 19]) or by reducing the number of (dis)similarity
calculations (e.g., [3, 15, 23]). The k-windows algorithm is based on the
latter approach.

3. THE k-WINDOWS ALGORITHM

The time complexity of the direct k-means algorithm is determined,
mainly, by the number of patterns, especially when it scales to a very large

378 VRAHATIS ET AL.

set of patterns. More specifically, the step of assignment of each pattern to
the cluster with the nearest mean is computationally the most expensive.
This is imposed not only by its time complexity in relative terms, but, also,
by its basic operation which is the calculation of the squared Euclidean
distance. The latter is computationally expensive in absolute terms.
The proposed k-windows algorithm deals with this problem by using a
windowing technique, which reduces significantly the number of patterns
that need to be examined at each iteration. Moreover, the basic operation
in the first loop, during the assignment of patterns to clusters, is now just
the arithmetic comparison between two numbers.
The key idea behind the proposed technique is to use a window in order
to determine a cluster. The window is defined as an orthogonal range in the
d-dimensional Euclidean space, where d is the number of numerical attri-
butes. Therefore each window is a d-range of an initially fixed area a. The
magnitude of a depends on the density of the data set. In empirical tests
presented in Section 5, we choose to define, across each different direction i,

ai=
(mean distance among patterns in i)

(number of windows)
×0.5.

Intuitively, we try to fill the mean space between two patterns with non
overlapping (thus we scale by 0.5) windows. Every pattern that lies within a
window is considered as belonging to the corresponding cluster. Iteratively,
each window is moved in the Euclidean space by centering itself on the
mean of the patterns included. This takes place until no further movement
results in an increase in the number of patterns that lie within it (see solid
line squares in Fig. 1). After this step, we can determine the means of

FIG. 1. Movements and enlargements of a window.

THE k-WINDOWS CLUSTERING ALGORITHM 379

clusters as the means of the corresponding windows. However, since only a
limited number of patterns is considered in each movement, the quality of a
partition may not be optimum. The quality of a partition is calculated in a
second phase. At first, we enlarge windows in order to contain as many
patterns from the corresponding cluster as possible (see dotted line squares
in Fig. 1). The quality of a partition is determined by the number of
patterns contained in any window, with respect to all patterns.
The proposed k-windows clustering algorithm is as follows:

Algorithm k-Windows.

input k, a, v
initialize k means im1, ..., imk along with their
k d-ranges wm1, ..., wmk each of area a
repeat

for each input pattern il, 1 [l [n
do

assign il to wj ,
so that il lies within wj

for each d-range wj
do

calculate its mean imj=
1
|wj|

; il ¥ wj il
and recalculate d-ranges

until no pattern has changed d-ranges
enlarge d-ranges up to no significant
change exists, in their initial mean
compute the ratio r=1

n;k
j=1 |il ¥ wj |

if r < v
do
reexecute the algorithm

At first, k means are selected (possibly in a random way). Initial
d-ranges (windows) have as centers these initial means and each one is of
area a. Then, the patterns that lie within each d-range are found. If a brute
search were used, the time complexity of this step would still be determined
by the number of patterns. Instead, an orthogonal range search [9, 20] is
used. An orthogonal range search is based on a preprocess phase where a
range tree is constructed (see next section). Patterns that lie within a
d-range can be found by traversing the range tree, in polylogarithmic time.
In the third step, the mean of patterns, that lie within each range, is cal-
culated. Each such mean defines a new d-range, that is considered a
movement of the previous d-range. The last two steps are executed repea-
tedly, until no d-range includes a significant increment of patterns after a
movement.

380 VRAHATIS ET AL.

In a second phase, the quality of the partition is calculated. At first, the
d-ranges are enlarged in order to include as many patterns as possible from
the cluster. This can be achieved by forcing d-ranges to preserve their mean
during enlargement. Then, the relative frequency of patterns assigned to a
d-range in the whole set of patterns, is calculated. If the relative frequency
is small with respect to the user defined threshold v, then, possibly, there
may be a missing cluster (or clusters) (see Fig. 2). In that case, the whole
process is repeated. We are, currently, investigating various approaches
that can be used to guide such repetitions. For instance, a new repetition
can be started with the same initial means but with d-ranges of a larger
area aŒ > a. Another approach is to start with different initial means
located at a maximum distance from the previous ones. However, in almost
all of the tests we have made,there was no need for reexecuting the algo-
rithm. In conclusion, the value of v is a user defined threshold which can be
used as a termination criterion of the algorithm. According to our experi-
ence, this value does not play a critical role, if the initial d-ranges have
successfully been chosen. We have used it for completeness purposes.
In contrast to direct k-means, the basic operation, during the assignment
of patterns, is arithmetic comparison between two numbers. Such com-
parisons guide the traversal of the range tree from its root to a leaf. In the
following section we present the orthogonal range search along with its
complexity.

FIG. 2. Missing cluster(s).

THE k-WINDOWS CLUSTERING ALGORITHM 381

4. ANALYSIS AND COMPUTATIONAL COMPLEXITY

To analyze the computational complexity of the proposed algorithm,
we use the Orthogonal Range Search notion of computational geometry.
This notion has been shown to be effective in many practical applica-
tions and a considerable amount of work has been devoted to this
problem [20]. Our approach is heavily based on this notion. Thus, for
completeness we briefly describe in this section the orthogonal range
search problem and the techniques and data structures that are used for
solving it.
The orthogonal range search problem can be stated as follows:

Input:
a) V={p1, ..., pn} is a set of n points in Rd the d-dimensional Euclidean
space with coordinate axes (Ox1, ..., Oxd),
b) a query d-range Q=[a1, b1]×[a2, b2]× ...×[ad, bd] is specified by two
points (a1, a2, ..., ad) and (b1, b2, ..., bd), with aj [bj.
Output:
report all points of V that lie within the d-range Q.

All efforts on range searching discuss how to preprocess a class of
objects, namely points, for efficiently answering range search queries with
specific range types. The most extensively studied type of query range is the
orthogonal range.
The well-known method of the Range Tree allows us to solve orthogonal
range queries in O(n logd−1 n) preprocessing time and space and
O(s+logd n) query time, if s points are retrieved. A d-dimensional range
tree consists of a balanced binary leaf-search tree T which stores in its
leaves the points of the given set V in increasing order with respect to their
first coordinate. Any internal node pt of T stores the point that appears in
the rightmost leaf of the left subtree of pt. To each internal node ps of
a (d−i)-dimensional range tree (-i ¥ {0, 1, ..., d−1}) is associated a
(d−i−1)-dimensional range tree Tps , which stores in its leaves all points in
the subtree rooted at ps in increasing order with respect to their i+1 coor-
dinate (see Fig. 3).
To perform a range search with the d-range Q we begin by searching
with both a1 and b1 (with a1 < b1) in the d-dimensional range tree T in
order to find the two leaves, let pa=(x

a
1 , ...x

a
d) and pb=(x

b
1, ..., x

b
d) in T,

such that pa is the nearest before a1(x
a
1 < a1) and pb is the nearest after

b1(b1 < x
b
1). For some time the search for a1 and b1 may follow the same

path, but at some node pt we will find that a1 lies below the leftchild of pt
and b1 lies below the rightchild of pt (see Fig. 4).

382 VRAHATIS ET AL.

FIG. 3. The range tree of the setV=p1, ..., pn where pi=(x
i
1; x

i
2) R

2 such thatx11 < x
2
1 < · · ·

< x111 and x
3
2 < x

11
2 < x

10
2 < · · · < x

8
2 < x

1
2 < x

9
2. In this figure only a part of the 1-dimensional

range trees Tpi is exhibited.

Consider the nodes pw ¥ T that are either rightchilds of a node on the
path pt, ..., pa or leftchilds of a node on the path pt, ..., pb. Because T is
balanced, there are at most O(log n) such nodes pw. Consequently, we
search with both a2 and b2 in each range tree Tpw . In this search, the union
of the answers, over O(log n)(d−1)-dimensional range trees Tpw , consists of
at most O(log2 n) nodes. In conclusion, at the end of the algorithm, we
search with both ad and bd in at most O(logd−1 n) 2-dimensional range trees
and we will find at most O(logd n) 1-dimensional range trees. It is obvious
that all points stored in the leaves of the last trees lie within Q.

FIG. 4. The open interval (pa; pb) in the list of leaves is partitioned in O(log n) subintervals.

THE k-WINDOWS CLUSTERING ALGORITHM 383

We note that, based on the Wilard–Lueeker modification [20] of the
range tree, known as layered range tree, the range searching can be per-
formed in O(n logd−1 n) preprocessing time and space and O(s+logd−1 n)
query time. In the literature there are different solutions to the orthogonal
range search problem. With the multidimensional binary tree method [20],
the answer is given in time O(s+dn1−(1/d)) using h(dn) storage and
h(dn log n) preprocessing time. In [8] Chazelle introduces a new approach
called filtering search which leads to a data structure in O(n(logd−1 n/
log log n)) space and O(n logd−1 n) time for answering in time O(s+logd−1 n).
For orthogonal range search in d \ 3 dimensions, Chazelle and Guibas [9]
gave a solution in O(s+log d) query time using a data structure which
requires O(n logd n) space and can be constructed in O(n logd+1 n) time.
Furthermore, for d \ 3 dimensions a simple solution is given in [2], in
O(n logd−1 n) preprocessing time and space and O(s+logd−2 n) query time.
Bentley and Maurer propose in [4] three data structures for range search-
ing in d dimensions. The first data structure has O(n2d−1) preprocessing
time and space, and O(s+d log n) query time. Also, they demonstrate that
this query time is optimal under comparison-based models. The perfor-
mance of the second data structure is O(n1+e) preprocessing time and space
(for any fixed e > 0), and O(s+log n) query time. The third data structure
is constructed in O(n log n) time and requires O(n) storage while the query
time is O(ne) (e > 0 can be chosen arbitrarily).
In Table I the computational complexity of all the above mentioned
approaches is summarized.
Thus, the assignment of patterns to a d-range needs O(s+logd−2 n) time,
where s is the number of patterns that lie within the d-range. Note that the

TABLE I

Methods for Orthogonal Range Search with the Corresponding Time and Space Complexity

Method Preprocessing time, space Query time

Range tree [20] O(n logd−1 n), O(n logd−1 n) O(s+logd n)
Wilard and Lueeker [20] O(n logd−1 n), O(n logd−1 n) O(s+logd−1 n)
Multidimensional binary tree [20] h(dn log n), h(dn) O(s+dn −(1/d))

Chazelle [8] O(n logd−1 n), O Rn log
d−1 n

log log n
S O(s+logd n)

Chazelle and Guibas [9] O(n logd+1 n), O(n logd n) O(s+logd−2 n)
Alevizos [2] O(n logd−1 n), O(n logd−1 n) O(s+logd−2 n)
Bentley and Maurer [4] O(n2d−1), O(n2d−1) O(s+d log n)

O(n1+e), O(n1+e) O(s+log n)
O(n log n), O(n) O(ne)

384 VRAHATIS ET AL.

area of d-ranges is small enough, so that s° n. Therefore, in each move-
ment (iteration), the first loop of k-windows, where the patterns are
assigned to d-ranges, has time complexity O(k(s+logd−2 n)). The second
loop, where the means of d-ranges are calculated, needs O(sdk) time with
arithmetic addition as the basic operation. Clearly, sk° n. Finally, the
quality function is, also, calculated in O(sdk) with arithmetic addition as
the basic operation. Thus, the whole proposed algorithm has time com-
plexity O(dkqr(logd−2 n/d+s)) where q is the number of movements
(iterations) and r is the number of repetitions caused by missing clusters.
Notice that the basic operation is the arithmetic comparison between two
numbers without any distance computation. Therefore, the k-windows
algorithm has a significantly superior performance than the direct k-means
algorithm.
It is worth mentioning that, although preprocess time and space com-
plexity does not affect the performance of the algorithm, the data structure
is constructed in O(n logf n) time and space, where d−1 [f [d+1
depending on the chosen algorithm (see Table I).

5. EMPIRICAL RESULTS

In order to evaluate the proposed k-windows algorithm, we have
implemented a system, in Borland C++Builder. Using this system, we
have applied k-windows in three synthetic sample databases. The sample
databases (DSet1, DSet2, DSet3) are depicted in Fig. 5 and they introduce

FIG. 5. The three synthetic sample databases DSet1, DSet2, and DSet3.

THE k-WINDOWS CLUSTERING ALGORITHM 385

clusters with both normal and irregular shape. They have already been
used as test data sets [25] to evaluate CLARANS, a clustering algorithm
with a distance-based neighborhood definition, and DBSCAN, a density-
based clustering algorithm. We have, also, applied k-means to these data
sets, therefore we were able to compare k-windows with the three most
popular clustering algorithms.
Empirical tests aim at examining the proportion between t and qr, so
as to provide experimental evidence of the improvement achieved in
the performance. Moreover, the improvement in partitioning accuracy is
addressed from an experimental perspective using the three synthetic
sample databases. Notice that, since the three clustering algorithms, that
k-windows is compared with, are of different types, they have no common
quantitative measure of the partition accuracy. Therefore, we evaluate their
partitioning accuracy by visual inspection.
In Fig. 6 clusters discovered by k-means, CLARANS, DBSCAN and
k-windows are shown for k=4, in the first synthetic sample database.
Clusters discovered by these algorithms in the other two synthetic sample
databases are shown in Figs. 7 and 8, respectively. Clusters discovered by
CLARANS, DBSCAN are taken from [25], where the evaluation meth-
odology is described. Clusters discovered by k-means and k-windows are
taken from our implementation of the algorithms. Note that, as far as the
k-means algorithm is concerned, we used a primitive initialization method,
that consists in preexecuting k-means in a sample of the data in order to

FIG. 6. Clusters discovered by (a)k-means, (b) CLARANS, (c) DBSCAN, and (d)
k-windows in DSet1.

386 VRAHATIS ET AL.

FIG. 7. Clusters discovered by (a)k-means, (b) CLARANS, (c) DBSCAN, and (d)
k-windows in DSet2.

FIG. 8. Clusters discovered by (a)k-means, (b) CLARANS, (c) DBSCAN, and (d)
k-windows in DSet3.

THE k-WINDOWS CLUSTERING ALGORITHM 387

TABLE II

Processing Time along with n, t, q (Moves+Enlargements), r for k-Means,
and k-Windows for k=4

Processing time n t q r

k-means in DSet1 0.14 1599 3
k-windows in DSet1 0.03 1599 109+90 1
k-means in DSet2 0.01 409 4
k-windows in DSet2 0.01 409 80+43 1
k-means in DSet3 0.16 1829 3
k-windows in DSet3 0.03 1829 105+83 1

refine the initial points. Note, also, that the processing time of this step
is not added to the processing time of the k-means algorithm shown in
Tables II, III. Moreover, if this primitive initialization method were not
used, partition accuracy of k-means algorithm would be worse. As far as
the k-windows algorithm is concerned, we use the range tree in order to
define the initial d-ranges.
In Table II the processing time along with n, t, q (moves+enlargements)
and r is depicted for k-means and k-windows in the above data sets.
Clusters discovered by k-means and k-windows algorithms in the data
sets for k=5 are shown in Figs. 9, 10, and 11, respectively.
In Table III the processing time along with n, t, q (moves+enlargements),
r is depicted for k-means and k-windows in the above data sets for k=5.
Finally, in Fig. 12 the speedup, with respect to k-means, is depicted as a
function of the size of the data set for k=4 and k=5. We can conclude
that the speedup is linear to the size of the data set.

TABLE III

Processing Time along with n, t, q (Moves+Enlargements), r for k-Means,
and k-Windows for k=5

Processing time n t q r

k-means in DSet1 0.15 1599 3
k-windows in DSet1 0.1 1599 109+90 1
k-means in DSet2 0.01 409 3
k-windows in DSet2 0.01 409 91+61 1
k-means in DSet3 0.17 1829 4
k-windows in DSet3 0.07 1829 126+94 1

388 VRAHATIS ET AL.

FIG. 9. Clusters discovered by (a) k-means and (b) k-windows in DSet1 for k=5.

FIG. 10. Clusters discovered by (a) k-means and (b) k-windows in DSet2 for k=5.

FIG. 11. Clusters discovered by (a) k-means and (b) k-windows in DSet3 for k=5.

FIG. 12. Speedup as a function of the size of the data set.

THE k-WINDOWS CLUSTERING ALGORITHM 389

6. CONCLUSIONS AND FUTURE WORK

The k-windows algorithm is an improvement of the well known k-means
clustering algorithm, aiming at a better time complexity and partitioning
accuracy. The time complexity of the k-means is O(ndkt) while in our
k-windows it is reduced to O(dkqr(logd−2 n/d+s)). This is accomplished
by reducing the number of patterns that need to be examined for similarity,
in each iteration, using a windowing technique, that is based on range
search. Moreover, our approach, in a meta-iteration phase, tries to further
increase the partitioning accuracy.
It seems that the proposed k-windows algorithm would not be directly
applicable in practical settings due to the superlinear space requirements
for the range tree. However, one could follow several approaches for
scaling up to very large data sets, as sampling (e.g., [6, 7]), or parallelizing
(e.g., [16, 17], or distributing [5].
We are, currently, working on improving the performance of the meta-
iteration phase using various approaches and on the design of more
effective techniques for choosing initial windows. Moreover, we are work-
ing on extending the k-windows algorithm to work on categorical data.
In addition, we are working on a parallel version of the proposed
k-windows algorithm, assigning a different processor for each window.
Note that, under such an assignment scheme, k-windows can efficiently be
parallelized, in contrast to k-means that would require a large communica-
tion overhead. This is because, a processor dedicated to a cluster, in
k-means, must be synchronized with all others before the assignment of a
pattern. There is no such need in k-windows where the decision of assign-
ing a pattern to a d-range is taken by each processor independently.
However, since the d-ranges are enlarged in a parallel setting, there may be
overlaps between them and thus merging problems have to be resolved.
We intend to address the above approaches in a future correspondence.

ACKNOWLEDGMENTS

We thank the anonymous referees for their constructive comments, suggestions, and
invaluable criticisms which helped us to improve the paper. Moreover, we thank one of the
referees for his strong suggestion to provide further results in future works. We also thank
Mr. D. Tasoulis for his invaluable help during the tests.

REFERENCES

1. M. Aldenderfer and R. Blashfield, ‘‘Cluster Analysis,’’ Sage, Thousand Oaks, CA, 1984.
2. P. Alevizos, An algorithm for orthogonal range search in d \ 3 dimensions, in ‘‘Proceed-
ings of 14th European Workshop on Computational Geometry, Barcelona,’’ 1998.

3. K. Alsabti, S. Ranka, and V. Singh, An efficient k-means clustering algorithm, in
‘‘Proceedings of the First Workshop on High Performance Data Mining,’’ 1995.

390 VRAHATIS ET AL.

4. J. L. Bentley and H. A. Maurer, Efficient worst-case data structures for range searching,
Acta Inform. 13 (1980), 1551–1568.

5. B. Boutsinas and T. Gnardellis, On distributing the clustering process, Pattern Recognition
Letters 23, No. 8 (2002), 999–1008.

6. P. S. Bradley and U. M. Fayyad, Refining initial points for k-means clustering, in
‘‘Proceedings of the IJCAI-93, San Mateo, CA,’’ pp. 1058–1063, 1983.

7. P. S. Bradley, U. M. Fayyad, and C. Reina, Scaling clustering algorithms to large data-
bases, in ‘‘Proceedings of the 4th Int. Conf. on Knowledge Discovery and Data Mining,’’
pp. 9–15, 1998.

8. B. Chazelle, Filtering search: A new approach to query-answering, SIAM J. Comput. 15,
No. 3 (1986), 703–724.

9. B. Chazelle and L. J. Guibas, Fractional cascading. II. Applications, Algorithmica 1
(1986), 163–191.

10. U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, ‘‘Advances in Knowledge Discovery
and Data Mining,’’ MIT Press, Cambridge, MA, 1996.

11. J. C. Gower, A general coefficient of similarity and some of its properties, BioMetrics 27
(1971), 857–874.

12. M. J. Greenacre, ‘‘Theory and Applications of Correspondence Analysis,’’ Academic
Press, San Diego, 1984.

13. Z. Huang, Extensions to the k-means algorithm for clustering large data sets with
categorical values, Data Mining Knowledge Discovery 2 (1998), 283–304.

14. A. K. Jain and R. C. Dubes, ‘‘Algorithms for Clustering Data,’’ Prentice–Hall,
Englewoods Cliffs, NJ, 1988.

15. D. Judd, P. McKinley, and A. Jain, Large-scale parallel data clustering, in ‘‘Proceedings
of Int. Conference on Pattern Recognition,’’ 1996.

16. X. Li and Z. Fang, Parallel clustering algorithms, Parallel Comput. 11 (1989), 275–290.
17. D. W. Piftzner, J. K. Salmon, and T. Sterling, Halo world: Tools for parallel cluster
finding in astrophysical N-body simulations, Data Mining Knowledge Discovery 2, No. 2
(1998), 419–438.

18. G. Piatetsky-Shapiro and W. Frawley, ‘‘Knowledge Discovery in Databases,’’ AAAI
Press, Menlo Park, CA, 1991.

19. C. Pizzuti, D. Talia, and G. Vonella, A divisive initialization method for clustering algo-
rithms, in ‘‘Proc. PKDD’99—Third Europ. Conf. on Principles and Practice of Data
Mining and Knowledge Discovery,’’ Lecture Notes in Artificial Intelligence, Vol. 1704,
pp. 484–491, Springer-Verlag, Prague, 1999.

20. F. Preparata and M. Shamos, ‘‘Computational Geometry,’’ Springer-Verlag, New York/
Berlin, 1985.

21. J. B. MacQueen, Some methods for classification and analysis of multivariate observa-
tions, in ‘‘Proceedings of the 5th Berkeley Symposium on Mathematics Statistics and
Probability,’’ pp. 281–297, 1967.

22. N. Ralambondrainy, A conceptual version of the k-means algorithm, Pattern Recognition
Lett. 16 (1995), 1147–1157.

23. V. Ramasubramanian and K. Paliwa, Fast k-dimensional tree algorithms for nearest
neighbor search with application to vector quantization encoding, IEEE Trans. Signal
Process. 40, No. 3 (1992).

24. E. H. Ruspini, A new approach to clustering, Inform. and Control 15 (1969), 22–32.
25. J. Sander, M. Ester, H. Kriegel, and X. Xu, Density-based clustering in spatial databases: The
algorithmGDBSCAN and its applications,DataMining Knowledge Discovery 2 (1998), 169–194.

26. S. Z. Selim and M. A. Ismail, k-means-type algorithms: A generalized convergence
theorem and characterization of local optimality, IEEE Trans. Pattern Anal. Mach.
Intelligence 6, No. 1 (1984), 81–87.

Printed in Belgium

THE k-WINDOWS CLUSTERING ALGORITHM 391

	1. INTRODUCTION
	2. THE DIRECT k-MEANS ALGORITHM
	3. THE k-WINDOWS ALGORITHM
	FIG. 1
	FIG. 2

	4. ANALYSIS AND COMPUTATIONAL COMPLEXITY
	FIG. 3
	FIG. 4
	TABLE I

	5. EMPIRICAL RESULTS
	FIG. 5
	FIG. 6
	FIG. 7
	FIG. 8
	TABLE II
	TABLE III
	FIG. 9
	FIG. 10
	FIG. 11
	FIG. 12

	6. CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGMENTS
	REFERENCES

