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We study sequences of periodic orbits and the associated phase space dynamics in a 4-D sym-
plectic map of interest to the problem of beam stability in circular particle accelerators. The
increasing period of these orbits is taken from a sequence of rational approximants to an incom-
mensurate pair of irrational rotation numbers of an invariant torus. We find stable (elliptic–
elliptic) periodic orbits of very high period and show that smooth rotational tori exist in their
neighborhood, on which the motion is regular and bounded at large distances away from the
origin. Perturbing these tori in parameter and/or initial condition space, we find either chains
of smaller rotational tori or certain twisted tube-like tori of remarkable morphology. These
tube-tori and tori chains have small scale chaotic motions in their surrounding vicinity and are
formed about invariant curves of the 4-D map, which are either single loops or are composed
of several disconnected loops, respectively. These smaller chaotic regions as well as the non-
smoothness properties of large rotational tori under small perturbations, leading to eventual
escape of orbits to infinity, are studied here by the computation of correlation dimension and
Lyapunov exponents.

1. Introduction

One of the most challenging problems facing nonlin-
ear science today is the extension of our knowledge
of low-dimensional dynamics to problems which in-
volve several degrees of freedom. This is particu-
larly true in the case of conservative (e.g. Hamilto-
nian) systems, in which new and more complicated
phenomena are expected in higher dimensions.

As is well known, Hamiltonian systems of n ≥ 2
degrees of freedom have been studied extensively
in the context of celestial mechanics, especially with
regard to problems of galactic dynamics [Hénon
& Heiles, 1964; Contopoulos et al., 1982; Con-
topoulos & Magnenat, 1985; MacKay & Meiss,
1986]. In such systems, one of the most fruitful
approaches is to examine the intersections of or-
bits with a 2N(= 2n − 2)-dimensional Poincaré
“surface” of section, on which the flow is reduced

to a 2N -dimensional (2N -D) symplectic mapping
[Lichtenberg & Lieberman, 1983].

Another very important application concerns
the stability of particle beams in high energy
hadron colliders, where symplectic mappings nat-
urally arise due to the periodically repeated (and
of very brief duration) effects of beam–beam col-
lisions, or beam passage through magnetic focus-
ing elements [Corrigan et al., 1982; Turchetti &
Scandale, 1991; Bountis & Tompaidis, 1991].

The main open problems in such mappings —
particularly in the N(≥ 2)-dimensional case — con-
cern the long term stability of orbits, which can
slowly diffuse away from the origin through thin
chaotic layers, leading e.g. to stars escaping from
a galaxy or particle loss in the storage rings of an
accelerator.

An important hindrance to this weak insta-
bility phenomenon is provided by the presence of
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invariant tori, or smooth N -dimensional surfaces on
which the motion remains bounded for all time. In
between these tori, however, there are small scale
chaotic regions through which orbits can eventually
“leak” to large distances, while the tori furthest
away from the origin lose their smoothness under
small perturbations yielding orbits which rapidly
escape to infinity.

It is the purpose of this paper to study the
structure and breakdown properties of such invari-
ant tori in the case of a symplectic mapping of direct
relevance of the beam stability problem in circular
accelerators like the LHC (Large Hadron Collider)
machine at CERN. As far as the physics of this
application is concerned, our main conclusion — in
agreement with many other studies [Corrigan et al.,
1982; Turchetti & Scandale, 1991] — is that there
are large regions (with respect to the beam’s aper-
ture) around the circular path of the beam, in which
the motion is extremely stable, in the sense that no
significant diffusion of orbits away from this path is
observed.

More generally, in the case of symplectic maps,
many fascinating results have been obtained regard-
ing the bifurcation properties of periodic orbits and
the structure of invariant curves especially in the
case of 2-D area-preserving maps satisfying the so-
called twist condition [MacKay & Meiss, 1986]. In
view of their many possible applications, it is natu-
ral to ask how these dynamical phenomena are ex-
tended to the 2N(> 4)-D higher-dimensional case
[Turchetti & Scandale, 1991; Bountis & Tompaidis,
1991; Vrahatis et al., 1996].

In this paper, we continue the work started in
a recent publication [Vrahatis et al., 1996] and ad-
dress the question of the structure and breakdown
of invariant tori of 4-D symplectic maps which need
not satisfy globally the twist condition. In particu-
lar, we concentrate on the example

T :


x′1
x′2
x′3
x′4

=


cos ω1 − sin ω1 0 0

sin ω1 cos ω1 0 0

0 0 cos ω2 − sin ω2

0 0 sin ω2 cos ω2



×


x1

x2 + x2
1 − x2

3

x3

x4 − 2x1x3

 , (1)

which describes the (instantaneous) effect experi-
enced by a hadronic particle as it passes through a

magnetic focusing element of the FODO cell type
[Turchetti & Scandale, 1991; Bountis & Tompaidis,
1991]. x1 and x3 are the particle’s deflections from
the ideal (circular) orbit, in the horizontal and ver-
tical directions respectively, and x2, x4 are the asso-
ciated “momenta”, while ω1, ω2 are related to the
accelerator’s betatron frequencies (or “tunes”) qx,
qy by

ω1 = 2πqx , ω2 = 2πqy , (2)

and constitute the main parameters that can be var-
ied by an experimentalist.

As (1) is essentially equivalent to a periodi-
cally driven 2-degree of freedom (or the Poincaré
map of a 3-degree of freedom) Hamiltonian system,
its 4-D phase space motion is expected to occur
typically on 2-D invariant surfaces, characterized
by two incommensurate rotation numbers (σ1, σ2),
which approach (qx, qy) as xi → 0, i = 1, . . . , 4.
If these surfaces surround the origin in the form of
2-D tori, in 3-D projections, we call them rotational
[see Fig. 1(a)] and ask how far from (0, 0, 0, 0) they
can still be found to exist. This question is of great
importance to applications since, even though these
2-D tori do not “foliate” the 4-D phase space, they
“surround” a region of the origin, where the dy-
namics is remarkably stable, in the sense that or-
bits starting within this region are seen to remain
bounded even after 108 iterations of (1)!

As one perturbs such rotational tori, however,
either in parameter or initial condition space, the
following can occur:

(i) Either a “chain” of rotational tori of smaller
size appears, in the form of vertical slices
and of the same shape as the large torus [see
Fig. 1(b)],

(ii) or the orbit forms a twisted, tube-like torus,
wrapped “horizontally” around the large torus
[see Fig. 1(c)],

(iii) or, if the original torus is close to some chaotic
(or escape) region, points begin to drift and
scatter about in an irregular fashion show-
ing visible nonsmoothness properties and torus
breakdown [see Fig. 1(d)].

Cases (i) and (ii) above have also been ob-
served by other researchers in 3-degree of free-
dom Hamiltonian systems [Contopoulos et al., 1982;
Contopoulos & Magnenat, 1985].

In Sec. 2, we begin with a brief outline of our
approach to the study of invariant tori via the com-
putation of sequences of periodic orbits as we have
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Fig. 1. Projection of different orbits into x1–x2–x3 space, with 50 000 points plotted for (b)–(d): (a) Period 13 327 EE orbit;
(b) initial conditions as in (a), with qx disturbed by −0.001; (c) initial conditions of the period 16 127a orbit, with x1 disturbed
by 0.025; (d) orbit with the initial condition as in (c), but x1 disturbed now by 0.005.

done in a recent publication [Vrahatis et al., 1996].
We then describe our interesting observation that
the tori of cases (i) and (ii) above are formed about
invariant curves, which either are a number of dis-
connected loops in a direction “vertical” to the x1,
x2 plane [in case (i)], or are connected in a sin-
gle one-dimensional loop in 4-D space [in case (ii)].
We also discuss in that section the role of rota-
tion numbers and the possible validity of a gener-
alized Greene’s criterion [Greene, 1979; MacKay,
1983] for higher-dimensional symplectic maps
[Tompaidis, 1995].

Then, in Sec. 3, we present our results on the
analysis of torus breakdown by showing how esti-
mates of the correlation dimension, D2, can reflect
the chaotic properties of orbits in the vicinity of

large invariant tori, like the one shown in Fig. 1(d):
A value of D2 larger than 2, positive Lyapunov ex-
ponents, and non-stationary behavior of orbits are
obtained successively after k × 104, k = 1, 2, . . .
iterations of the map. These results are warning
signs that one is close to unbounded motion and es-
cape away from the torus, as occurs indeed in many
cases, after a sufficiently high number of iterations.

We also present, in Sec. 3, similar evidence
of (small-scale) chaotic behavior in the vicinity of
tube-tori and chains of tori and argue, using cross-
sections of the 4-D space, that these two cases rep-
resent extensions of the island chains found near
higher order resonances of 2-D area preserving
maps. Finally, in Sec. 4, we summarize our find-
ings and offer some concluding remarks.
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2. Approximating Invariant Tori by
Periodic Orbits

Consider an N -dimensional mapping of the form:

X ′ = T (X) , X = (x1, x2, . . . , xN ) , (3)

like (1) for N = 4. If N = 2k and X, X ′ are related
by a generating function

F = F (x1, x3, . . . , x2k−1, x
′
1, x

′
3, . . . , x

′
2k−1) , (4)

according to the expressions [Kook & Meiss, 1989]

x′2i =
∂F

∂x′2i−1

, x2i = − ∂F

∂x2i−1
, i = 1, 2, . . . , k ,

(5)

then (3) is called symplectic and its dynamics cor-
responds to that of a (k + 1/2)-degree-of-freedom
Hamiltonian system: Its quasiperiodic orbits lie on
k-dimensional tori embedded in a 2k-dimensional
phase space and, for k > 1, chaotic orbits can, in
principle, leak through these tori, hence global sta-
bility in their neighborhood cannot be guaranteed.

It is easy to show that our accelerator map (1)
is symplectic with the generating function

F = − cos ω1

2 sin ω1
(x′21 + x2

1)− cos ω2

2 sin ω2
(x′23 + x2

3)

+
x1x

′
1

sin ω1
+
x3x

′
3

sin ω2
+
x3

1

3
− x1x

2
3 . (6)

Our aim here is to understand the structure of the
2-D tori of (1) in the (x1, x2, x3, x4) space and to
study the properties of the motion in the neighbor-
hood of these tori.

To do this, we shall construct sequences of pe-
riodic orbits of (1) whose period rn is taken from a
sequence of rational rotation numbers

(σ
(n)
1 , σ

(n)
2 ) =

(
pn
rn
,
qn
rn

)
, n = 0, 1, 2, . . . , (7)

which converge, as n→∞, to a pair of incommen-
surate irrationals. In the problem studied here, we
have chosen the example:

(σ
(n)
1 , σ

(n)
2 )

n→∞
→ (σ1, σ2)

=

(√
5− 1

2
,
√

2− 1

)

= (0.61803 . . . , 0.41421 . . .) . (8)

The choice of σ1, σ2 in (8) is arbitrary. However, as
it includes the “golden mean” σ1, it may be useful

for comparison purposes with the 2-D case [Greene,
1979; MacKay, 1983; MacKay & Meiss, 1986;
Tompaidis, 1995].

Selecting now linear frequencies qx, qy for our
map, close to the values in (8),

qx = 0.61903 , qy = 0.4152 , (9)

we shall attempt to approximate the (σ1, σ2)-
invariant torus by periodic orbits characterized by
the rotation numbers of the Jacobi–Perron sequence
[Bernstein, 1971; Schweiger, 1973]: These are recur-
sively obtained from the relation:

sn+1 = kn+1sn + ln+1sn−1 + sn−2 , n = 0, 1, . . . ,
(10)

(sn = pn, qn, rn), with the integers kn, ln deter-
mined by the map:

(s
(n+1)
1 , s

(n+1)
2 ) =

({
1

s
(n)
2

}
,

{
s

(n)
1

s
(n)
2

})
,

(kn+1, ln+1) =

([
1

s
(n)
2

]
,

[
s

(n)
1

s
(n)
2

])
,

(11)

where [x] and {x} refer to the integer and fractional
part of x respectively, and

(s0
1, s

0
2) = (σ1, σ2) ,

(p0, q0, r0) = (0, 0, 1) ,

(p−1, q−1, r−1) = (1, 0, 0) ,

(p−2, q−2, r−2) = (0, 1, 0) .

(12)

In Table 1 we exhibit Jacobi–Perron approximants
to the irrationals (8), up to n = 16, cf. (7). Note
that the convergence is rather slow, as one might
expect of quadratic irrationals, like σ1, σ2.

In order to compute these rn-periodic orbits,
we make use of a recently developed method, which
has already been successfully applied to locate long
periodic orbits of this map [Vrahatis et al., 1996].
This method exploits topological degree theory to
provide a criterion for the existence of a periodic
orbit of an iterate of the map within a given region
(the CP (characteristic polyhedron)-criterion). It
is especially useful for the computation of high pe-
riod orbits and quite efficient, since the only com-
putable information required is the algebraic sign of
the components of the mapping. Thus, it is not sig-
nificantly affected by the unavoidable inaccuracies
of the calculations in the neighborhood of unstable
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Table 1. Rational approximants of the Jacobi–Perron algorithm of the quadratic
irrationals σ1 = (51/2−1)/2 = 0.61803 . . . and σ2 = 21/2−1 = 0.41421 . . . and the
period p of the corresponding periodic orbit.

n pn qn pn/rn − σ1 qn/rn − σ2 p = rn

4 1 1 −0.11803399 0.85786438 × 10−1 2

5 3 2 0.13196601 0.85786438 × 10−1 4

6 3 2 −0.18033989 × 10−1 −0.14213562 × 10−1 5

7 91 61 −0.31691239 × 10−2 −0.20514002 × 10−2 148

8 94 63 0.38706388 × 10−3 0.26012184 × 10−3 152

9 755 506 0.31162960 × 10−3 0.20085204 × 10−3 1221

10 846 567 −0.64668078 × 10−4 −0.42634689 × 10−4 1369

11 940 630 −0.19524582 × 10−4 −0.12378941 × 10−4 1521

12 8181 5483 0.63527172 × 10−5 0.41606759 × 10−5 13 237

13 9027 6050 −0.30396282 × 10−6 −0.22538829 × 10−6 14 606

14 9967 6680 −0.21167340 × 10−5 −0.13716371 × 10−5 16 127

15 37 142 24 893 0.18932888 × 10−6 0.12549818 × 10−6 60 097

16 83 311 55 836 0.13587919 × 10−6 0.87478537 × 10−7 134 800

periodic orbits and can be briefly described as fol-
lows: Suppose we want to find periodic orbits of a
nonlinear mapping T : D ⊂ RN → RN of period p,
i.e. fixed points X? = (x?1, x

?
2, . . . , x

?
N ) ∈ D of T p,

satisfying the following system of equations:

ΦN (X?) = ON = (0, 0, . . . , 0) , (13)

with ΦN = (f1, f2, . . . , fN ) = T p− IN , where IN is
the N -D identity mapping. An N -complete matrix
MN is defined as a 2N ×N matrix whose rows are
formed by all possible combinations of −1, 1. The
N -polyhedron ΠN = 〈Υ1, Υ2, . . . , Υ2N 〉 with ver-
tices Υi in RN is called a characteristic polyhedron
(CP) relative to ΦN if the matrix of signs associated
with ΦN and ΠN , S(ΦN ; ΠN ), is identical with the
N -complete matrix MN [Vrahatis, 1988]. In other
words, at the 2N vertices of ΠN the signs of ΦN (Υi),
i = 1, 2, . . . , 2N yield every combination of ±1.

If ΠN is a CP then, under suitable assumptions
on the boundary of ΠN , the value of the topologi-
cal degree of ΦN at ON relative to ΠN is nonzero,
which implies the existence of a periodic orbit in-
side ΠN . For a detailed description of how to con-
struct a CP and locate a desired periodic orbit see
[Vrahatis, 1988; Vrahatis et al., 1993; Vrahatis &
Bountis, 1994; Vrahatis, 1995; Drossos et al., 1996].

A generalized bisection method can then be em-
ployed in combination with the CP-criterion, to bi-
sect a CP, in such a way that the new refined N -
polyhedron is also a CP. To do this, one computes

the midpoint of an edge of ΠN and uses it to replace
that vertex of ΠN , for which the signs with respect
to ΦN are identical with the ones of the midpoint.
Finally, the number ν of bisections of the edges of a
ΠN required to obtain a new refined CP, ΠN

? , whose
longest edge length, ∆(ΠN

? ), satisfies ∆(ΠN
? ) ≤ ε,

for some ε ∈ (0, 1), can be shown to be given by
ν = [log2(∆(ΠN )ε−1)] + 1 (see [Vrahatis, 1988]).

Applying the CP-criterion to our map (1), we
construct a sequence of periodic orbits of period
p = rn, taken from the last column of Table 1, and
determine their stability by computing the eigen-
values λi of the determinant of the return Jacobian
matrix from the equation

det(DT p − λE4) = 0 , (14)

where E4 is the 4 × 4 identity matrix. We distin-
guish five cases depending on the values of the λi’s
[Todesco, 1994; Vrahatis et al., 1996]:

(i) All λi ∈ C, |λi| = 1: Elliptic–Elliptic (EE);
(ii) two λi’s ∈ C with |λi| = 1, and two

λi’s ∈ R:

(a) Elliptic–Hyperbolic (EH) if the magnitude
of the projection of the real eigenvectors is
largest in the x3, x4 plane;

(b) Hyperbolic–Elliptic (HE) if the magnitude
of the projection of the real eigenvectors is
largest in the x1, x2 plane;
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(iii) all λi ∈ R, |λ1,3| < 1, |λ2,4| > 1: Hyperbolic–
Hyperbolic (HH);

(iv) all λi ∈ C, |λ1,2| < 1, |λ3,4| > 1: Complex
Unstable (CU).

Since we are interested in approximating a
smooth torus, according to Greene’s criterion for
2-D maps [Greene, 1979; MacKay & Meiss, 1986],
we need to be concerned only with EE orbits, cat-
egory (i). Indeed, using our methods, we were able
to compute a sequence of rn-periodic EE orbits,
(with periods as in Table 1), whose eigenvalues, for
n ≥ 11, were found to be very close to Re(λi) = 1.

First of all, let us start by clarifying that al-
though the period rn of our orbits is taken from the
Jacobi–Perron sequence, (10)–(12), there is no rea-
son why the rotation numbers of our orbits should
have the same pn, qn as dictated by this sequence.
Indeed, by independent calculations, using Laskar’s
method of frequency analysis [Laskar et al., 1992;
Laskar, 1993; Papaphilippou, 1996] it can be ver-
ified that the actual rotation numbers of our or-
bits are not the corresponding ones of Table 1 (see
Table 2). Furthermore, it does not appear easy to
compute periodic orbits of our 4-D map for any
given rotation number pair, by the CP, or any other
method.

Thus, it is not possible to follow a specific
sequence of converging periodic orbits (like the
Jacobi–Perron of Table 1) and locate the (σ1, σ2)
torus we originally set out to find. Still, the high pe-
riod orbits we do find have rotation numbers close to
(σ1, σ2) and eigenvalues whose real part approaches
1, as the period increases. This suggests that there
are invariant tori in their neighborhood, which are
smooth and can guarantee the stability of orbits ly-
ing on them, for all time. The initial conditions and

eigenvalues of the return Jacobian for a number of
EE periodic orbits of increasing period are listed
here in Table 3.

Let us now examine more closely some of these
EE orbits: As we see in Fig. 2, there are examples
of rotational type [periods 1521, 13 237, 16 127a,b
in Fig. 2(a)] and of the tube and invariant curve
type [periods 14 606 and 1221 in Figs. 2(a) and
2(b) respectively]. In Figs. 3(a) and 3(b) we plot
their points (and the points of some more orbits)
lying in a “cross-section” about the x1, x2 plane,
for |x3| ≤ 0.04 and x4 arbitrary.

Observe, in Fig. 3, that there are some evident
similarities with the case of 2-D maps: Rotational
tori play a role similar to that of invariant curves
surrounding the origin in the 2-D case, while tube-
tori, like those of Fig. 1(c) and Fig. 2(a), correspond
to island chains [see Fig. 3(a)]. In 4-D, however, one
also finds (upon perturbation of large tori) chains of
smaller rotational tori, as shown e.g. in Fig. 1(b).
Such chains of tori are commonly observed upon
perturbation of a large rotational torus. Moreover,
as we describe in the next section, it is possible to
observe small scale chaotic behavior in the vicin-
ity of these tube-tori and tori chains, similar to the
thin chaotic regions surrounding the island chains
of area-preserving maps [see Fig. 3(b)].

Finally, what about these periodic orbits like
the one of period 1221, whose points lie on a curve
in 4-D space? What is the dynamics in the neigh-
borhood of that curve? To answer this question we
perturb slightly the initial conditions of the 1221
orbit of Fig. 2(b) and obtain a tube-torus about it,
similar to the one shown in Fig. 4(a).

Conversely, we can start with a tube-orbit like
the one shown in Fig. 2(a) and ask what is the

Table 2. Rotation numbers of the considered periodic orbits.

From Table 1 From Frequency Analysis

Period pn/rn qn/rn Rot. Num. 1 Rot. Num. 2

148 0.6148648 0.4121621 0.6081081 0.4121621

152 0.6184210 0.4144736 0.5986842 0.4210526

1221 0.6183456 0.4144144 0.8615888 0.4307944

1369 0.6179693 0.4141709 0.5902118 0.4243973

1521 0.6180144 0.4142011 0.6002629 0.4247205

13 237 0.6180403 0.4142177 0.6262748 0.4031880

14 606 0.6180336 0.4142133 0.6107763 0.4160618

16 127a 0.6180318 0.4142121 0.6228064 0.4065852

16 127b 0.6180318 0.4142121 0.6078625 0.4215291
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Table 3. Initial conditions X0 of EE periodic orbits and their corresponding eigen-
values λi, i = 1, . . . , 4 of the return Jacobian.

p X0 Re(λi) Im(λi)

148 −0.350618075038668 0.747592162322379 −0.664158082713847

−0.044755653513320 0.747592162322379 0.664158082713847

−0.293566057531218 0.946563288783641 −0.322518124028874

0.630466527671912 0.946563288783641 0.322518124028874

152 −0.130463565655997 0.336026480609178 −0.941852538526940

0.299819322230460 0.336026480609178 0.941852538526940

0.349001756567030 0.993961422946604 −0.109730076524334

0.581486596549853 0.993961422946604 0.109730076524334

1221 −0.205038258262312 0.999999999998525 −0.000001809133065

0.255949570906002 0.999999999998525 0.000001809133065

−0.653912472912163 −0.891356893634381 −0.453302204021261

0.436600752242947 −0.891356893634381 0.453302204021261

1369 −0.332673393161558 −0.465407497378064 −0.885096526588194

0.102350030928628 −0.465407497378064 0.885096526588194

−0.500963713749919 −0.600414236221095 −0.799689155213452

0.650306028375437 −0.600414236221095 0.799689155213452

1521 −0.182766867426596 0.990541256588061 −0.137215229757129

0.066896173589127 0.990541256588061 0.137215229757129

−0.590556627456845 0.999999987202442 −0.000159108927349

0.032513902428680 0.999999987202442 0.000159108927349

13 237 0.613394867338782 0.999999997219058 −0.000073999461113

−0.144995505996665 0.999999997219058 0.000073999461113

−0.260453091758909 0.999999999871764 −0.000016001571496

−0.162371436378303 0.999999999871764 0.000016001571496

14 606 0.281764312323398 0.999999999795389 −0.000020477598185

0.092251013539143 0.999999999795389 0.000020477598185

0.526461773405660 0.999999999974517 −0.000007145840906

0.152466695071175 0.999999999974517 0.000007145840906

16 127a 0.180461376558454 0.999999459769476 −0.000941177914352

0.354314078603677 0.999999459769476 0.000941177914352

−0.154528284709671 0.999999882925977 −0.000528227739496

−0.282077719425159 0.999999882925977 0.000528227739496

16 127b 0.046541280000730 0.999999999898236 −0.000012481547203

0.041535332083140 0.999999999898236 0.000012481547203

−0.028757985532270 0.999999999784125 −0.000023965312399

−0.466442803661036 0.999999999784125 0.000023965312399



2714 M. N. Vrahatis et al.

Fig. 2. Projection of different periodic EE orbits into x1–x2–x3 space: (a) Period 1521, period 13 327, period 14 606, period
16 127a, and the period 16 127b orbit; and (b) the period 1221 orbit, whose points are lying on a curve.

Fig. 3. (a) Different periodic EE orbits whose “cross-section” is plotted in the x1–x2 plane, with |x3| ≤ 0.04 (x4 arbitrary);
(b) same “cross-section” as in (a) for the two perturbations of the period 13237 orbit shown in Fig. 1(b) and described in
Fig. 8.
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Fig. 3. (Continued )

Fig. 4. Projection into x1–x2–x3 space: (a) The period 14 606 EE orbit, together with three orbits starting near the center
of the tube. Two of these orbits form a single-loop invariant curve, each, while the third one (marked with �) is periodic with
period 113; (b) a perturbation [∆qx = −0.001; see Fig. 1(b)] of the period 13 237 orbit yielding a chain of eight small tori, in
the “interior” of which one finds a set of disconnected multi-loop curves.



2716 M. N. Vrahatis et al.

dynamics in its “interior”: What we find are in-
variant thinner tubes, whose motion becomes more
and more aligned with the axis of the tube, until
they become invariant curves, or periodic orbits as
shown in Fig. 4(a). The main feature of these in-
variant curves is that they form a single loop in 4-D
space, albeit twisted around in a complicated way.

Finally, the corresponding dynamics of the
chains of smaller rotational tori is similar. As we
vary the initial conditions, proceeding towards their
“interior”, we find that they are also formed about
a set of disconnected loops (or invariant curves),
whose main direction is vertical to the x1, x2 plane,
see Fig. 4(b).

3. Chaotic Behavior and Breakdown
of Invariant Tori

Clearly the 4-D map studied in this paper, at the
parameter values qx, qy we have chosen, has large
regions of stable bounded motion around the origin.
Chaotic behavior is expected to be confined within
very small scale regions near unstable periodic or-
bits. Of course, the domain where it is likely to
be most evident is far away from the origin, where
the nonlinear terms are more significant and rapid
escape of orbits to infinity becomes possible.

But where are these “limits” of bounded motion
and how is escape of orbits related to the breakdown
of invariant tori near these limits? Furthermore,
how can we determine where the small scale chaotic
regions lie and what tools can we use to study their
properties?

To answer these questions, we shall first inves-
tigate the dynamics in the neighborhood of one of
our EE periodic orbits, whose points are furthest
away from the origin. Let us concentrate, in partic-
ular, on the period 13 237 orbit shown in Fig. 1(a)
and consider different perturbations of its points
under small variations of the initial conditions and
parameters of the system. Here, we describe what
happens under variations of the qx parameter only,
as all other types of perturbations yield similar
results.

Fixing the initial conditions on those of the pe-
riod 13 237 orbit at the qx, qy values cf. (9), we
change only the horizontal tune by a small amount:

q′x = qx + ∆qx = 0.61903 + ∆qx . (15)

For ∆qx ∼< 0.005 we obtain a quasiperiodic orbit
in the form of a smooth rotational torus which

Fig. 5. (a) Projection into x1–x2–x3 space of the period

13 237 EE orbit of Fig. 1(a) with the frequency qx perturbed
by ∆qx = 0.007 (see (18); 50 000 points are plotted); (b) the
same initial conditions as in (a), but with ∆qx = 0.009585
(80 000 points are plotted). This orbit diverges after 82 197
iterations (this value depends on the machine).

strongly resembles the ∆qx = 0 case, Fig. 1(a).
However, already at ∆qx ∼> 0.007, we observe in
Fig. 5(a) clear evidence of “irregular” behavior, as
if the motion no longer lies on a smooth 2-D torus
but tends to fill out a domain of dimension larger
than 2. In fact, if we increase q′x further — with
∆qx = 0.009585 in (15) — not only do we find sim-
ilar nonsmoothness features, but the orbit also es-
capes to infinity after nearly 8× 104 iterations! [see
Fig. 5(b)].

To study the dynamics of these orbits more
closely, we decided to calculate the correlation di-
mension [Grassberger & Procaccia, 1983a, 1983b]
of a time series obtained by keeping the successive
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iterates of an initial vector X(0),

S = {X(0), X(1), X(2), . . . , X(M)} , M � 103 ,

(16)

under the mapping (1):

X(n+1) = T (X(n)) ,

X(n) = (x
(n)
1 , x

(n)
2 , x

(n)
3 , x

(n)
4 ) , n = 0, 1, . . . , M ,

(17)

cf. (3). Since the correlation dimension D2 is a close
estimate of the Hausdorff (fractal) dimension D0 of
the “surface” on which the orbit lies, we should ex-
pect D2 ' 2 for a 2-D torus and D2 > 2 for an

orbit that occupies a higher-dimensional region of
the 4-D phase space.

Furthermore, if our series S, in (16), is part of a
stationary process, its topological properties should
not change as M increases beyond a number, say
M0 = 5000 for our 4-D map, which is needed for its
topological invariants (dimensions, Lyapunov expo-
nents, etc.) to converge to their corresponding val-
ues. However, if the motion starts to diffuse slowly
away from 2-D, one would expect these quantities
to change as M increases beyond M0.

This is indeed what we observe in Figs. 5 and
6. As we describe in detail in the Appendix, the
D2 value corresponding to the orbit of Fig. 1(a)
with a perturbation of ∆qx = 0.001 is estimated

Fig. 6. Correlation dimension estimates: Slope plots [see Appendix, (A3)] are shown, calculated by using the first 10 000
(solid), 20 000 (dashed), and 30 000 (short dashes) points in each of the following cases: (a) with ∆qx = 0.007 [see Fig. 5(a)];
(b) with ∆qx = 0.009585 [see Fig. 5(b)].

Table 4. Correlation dimension of perturbations of periodic orbits.

Period Correl. dim. D2 Picture

1221 0.96 ± 0.09 invariant curve

1521 2.11 ± 0.18 rotational torus

13 237 (pert. in. cond.) 2.07 ± 0.05 rotational torus

14 606 2.36 ± 0.06 tube-torus

16 127a 2.06 ± 0.05 rotational torus

16 127b 2.12 ± 0.06 rotational torus

13 237 (pert. qx) 2.11 ± 0.06 chain of 8 tori
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Fig. 7. Estimates of the four Lyapunov exponents Λi, using
the algorithm described in the Appendix (cf. (A6), evolution
time-step is 1, plotted is every 100th average). The initial
conditions of the period 13 237 EE orbit are used with qx
perturbed by ∆qx = 0.009585 [see Figs. 5(b) and 6(b)]. Note
how the slow outward diffusion of the orbits yield a maximum
Lyapunov exponent which tends to grow on the average after
50 000 iterations.

by the large “plateau” in the plots of (A3) to be
nearly 2 and remains approximately the same for
M = Mk = k × 104, k = 1, 2, 3 iterations of the
map (see also Table 4). However, for ∆qx = 0.007,
0.009585 in Figs. 6(a) and 6(b), respectively, the
“plateaus” occur at D2 > 2 and exhibit nonstation-
ary features: They are associated with plots, shown
in Figs. 5(a) and 5(b) respectively, which differ as
M increases from M1 to M2 and M3 and clearly
show a higher than 2-D structure.

Moreover, the Lyapunov exponents Λi, i =
1, 2, 3, 4 (see Appendix) which all go to zero on
a 2-D invariant torus behave differently in the case
of a nonsmooth, “irregular” orbit, as seen in Fig. 7:
In particular the largest one of them is clearly pos-
itive and grows in value, as M increases, reflecting
perhaps the diffusive character of the motion in a
region of increasing dimension.

Let us now examine the dynamics in the vicin-
ity of tube-tori and chains of rotational tori: First
of all, concerning tube-like orbits like the one shown
in Figs. 2(a) and 4(a) with period 14 606, we have
observed that in their close neighborhood the value
of the correlation dimension is found to be signif-
icantly higher than 2 (see Table 4). Furthermore,

Fig. 8. The chain of eight small tori of Fig. 1b, when per-
turbed further by moving the initial conditions slightly out-
wards, yields an orbit which tends to “fill out” the region
between them [see also Fig. 3(b)]; (a) the chaotic proper-
ties of this orbit are indicated by its correlation dimension
(for 20 000 points (dotted) and 60 000 (solid)), which is seen
to have a plateau near D2 ' 2.4 at small radii; and (b) the
largest Lyapunov exponent Λmax, which approaches the value
1.9×10−3 after N = 108 iterations (two exponents are almost
zero).
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when we searched that region using Laskar’s fre-
quency analysis [Laskar et al., 1992; Laskar, 1993;
Papaphilippou, 1996] we verified that, for several
initial conditions yielding tube-tori, rotation num-
bers could not be identified, thus providing fur-
ther evidence of small scale chaotic behavior in that
region.

Finally, turning to chains of small rotational
tori [obtained by perturbing long periodic orbits,
lying on large rotational tori, see Fig. 1(b)], we
have observed the following: Upon perturbing
further their initial conditions or parameters, it
often happens that the resulting orbit “wanders”
about, “filling” the region between the small tori, in
an apparently irregular fashion, see Fig. 3(b). That
this motion is chaotic is demonstrated by its corre-
lation dimension beingD2 ' 2.4 and its largest Lya-
punov exponent converging to Λmax = max{Λi} '
1.9×10−3 after 108 iterations, as shown in Figs. 8(a)
and 8(b), respectively. The details of our computa-
tions of D2 and Λi’s are given in the Appendix.

4. Conclusions

Ever since the discovery of the famous Greene’s cri-
terion for the study of the break-up of the golden
mean torus in 2-D area-preserving twist maps
[Greene, 1979] and MacKay’s construction of the
corresponding renormalization operator [MacKay,
1983], there have been several attempts to ex-
tend these results to higher-dimensional symplectic
maps.

Some studies demonstrated, in special cases
(like the “spiral mean” invariant torus), that, even
though an approximate renormalization scheme can
be constructed, no universal fixed point is found to
exist [Kim & Ostlund, 1985; MacKay et al., 1994].
Others showed that it is possible to study the break-
down of invariant tori of a 4-D “semi–standard”
map by examining the convergence properties of
Fourier series representations of these tori [Bollt
& Meiss, 1993]. Finally, sequences of periodic or-
bits and their connection with resonance zones in
phase space have been investigated in the case of
reversible symplectic maps, satisfying the twist con-
dition [Kook & Meiss, 1989].

In this paper, we have continued our study of
the structure and breakdown of invariant tori of a
4-D symplectic mapping that arises in a realistic ap-
plication [Vrahatis et al., 1996] and does not fall in
the class of twist maps. Our original goal was to ex-
amine the structure of tori by approximating them

with sequences of periodic orbits whose (rational)
rotation numbers converge to the pair of irrational
rotation numbers of an invariant torus.

Although we did obtain, using our periodic or-
bits, approximations of invariant tori about the ori-
gin, many of which had a similar morphology, we
did not succeed in converging to the particular one
we had set out to find, mainly because we could
not locate periodic orbits with prescribed rotation
numbers converging to the desired irrationals.

In the process, however, we did discover a num-
ber of interesting results, which constitute the main
points of the present paper:

(1) Among the many rotational tori surrounding
the origin which we constructed, some are lo-
cated at large enough distances that small per-
turbations of them lead to orbits which eventu-
ally escape to infinity. Thus, given that orbits
starting closer to the origin than the large ones
are all seen to remain bounded (for at least 108

iterations), we can say that the large tori are
useful, in the sense that they “outline” a region
within which the motion is predominantly sta-
ble for all practical applications.

(2) We classified the invariant tori we found in dif-
ferent classes according to their morphology:
Besides the rotational kind mentioned above,
we also located tube-tori (in the form of twisted
2-D “tubes” in 4-D space) and tori-chains com-
posed of small rotational tori. Cross-sections
of these tori (in the slices of 4-D space) reveal
a clear resemblance with island chains of 2-D
area-preserving maps.

(3) We observed that, upon perturbation, large ro-
tational tori can “break-up” into tube-tori or
tori-chains, about which there is clear evidence
of small scale chaotic behavior. Furthermore,
tube-tori and tori-chains are formed around
invariant curves consisting of either a single
(1-D) loop, or a set of disjoint loops, respec-
tively. Thus, one observes evident features of
self-similarity under scaling, between large and
small rotational tori, and single-loop and multi-
loop orbits.

(4) We showed that it is possible to study these
phenomena quantitatively, by calculating the
correlation dimension, D2, and the Lyapunov
exponents, Λi, of the corresponding orbits: In
the case of perturbations of large, rotational
tori close to the escape region, we found that
the values of D2 > 2 and Λmax > 0 kept
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increasing as the number of iterations increased,
reflecting the diffusive character of the orbit.
On the other hand, in the smaller scale re-
gions of bounded, chaotic motion these quan-
tities converged to definite values D2 > 2 and
Λmax > 0.

Clearly, a lot more remains to be done in the
study of invariant tori of symplectic maps. For ex-
ample, we found, in agreement with recent rigorous
studies [Tompaidis, 1995], that the eigenvalues of
our long periodic orbits clearly demonstrate that
these orbits are very close to smooth invariant sur-
faces. Still, unless one is able to construct, for a
general symplectic map, periodic orbits with pre-
scribed rotation numbers, the validity of Greene’s
criterion in higher dimensions will remain an open
question, and the precise conditions of torus break-
down will continue to elude us.
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Appendix

In this Appendix we describe the details of our com-
putation of the correlation dimension and Lyapunov
exponents described in Sec. 3. As is well known, the
Correlation dimension D2 is defined as the scaling

exponent of the correlation integral C
(d)
2 (ε),

C
(d)
2 (ε) ∝ εD2 , ε→ 0 , (A1)

where the correlation integral is given by the double
sum

C
(d)
2 (ε) = lim

M→∞

2

(M −W )(M −W − 1)

×
M−W−1∑
i=1

M∑
j=i+W+1

Θ(ε− ‖X(i) −X(j)‖) ,

(A2)

according to Grassberger and Procaccia [1983a,
1983b]. The upperscript d denotes the dimension
of state space, and it equals 4 in our case. The pa-
rameter W was introduced by Theiler [1986, 1991]
in order to avoid biasing by temporally correlated
points. This is achieved by setting W to a value
larger than the auto-correlation time (defined as
the lag of the first substantial change in the auto-
correlation function, e.g. the first minimum). The
arguments of Theiler are suited to the case where
the temporal correlations decay reasonably fast (as
for instance on a chaotic attractor). Here, how-
ever, we deal also with periodic orbits which are
completely deterministic (predictable), and conse-
quently all the points on a trajectory are correlated.
Still, the parameter W is useful in our case, as it
serves to avoid estimates which are dominated by
the temporally close points, e.g. in the case of a
curve-like orbit. In most of our calculations we used
W = 60.

Usually, correlation dimensions are estimated
from the time series of a single coordinate, from
which the state-space dynamics is reconstructed
(e.g. by the time-delay method of Takens [1981]).
Here, however, since we have access to all the co-
ordinates, we do not have to reconstruct the state
space, and consequently no time-delay and no vari-
ation of the embedding dimension is needed, as it
is known that d = 4, in (A1) and (A2).

The sets we investigate are described by a se-
ries of vectors with as many elements as the points
of the orbit, M , cf. (16) (in the case of a period-
p orbit, M = p). We then make use of the fact
that the correlation integral shows the scaling be-
havior we are looking for already at intermediate
scales, i.e. at finite radii, provided they are reason-
ably small compared to the size of the analyzed set.
The scaling behavior of the correlation integral is
best judged by inspecting plots of

D2(ε) =
d log2C

(d)
2 (ε)

d log2 ε
, (A3)
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versus log2 ε, so-called slope plots, where a dimen-
sion should reveal itself, in principle, as a straight,
horizontal line, a so-called plateau, at small radii
ε. Clearly, at large radii, effects due to the fi-
nite size of the set dominate the behavior, and at
too small radii statistical fluctuations destroy any
global features since one does not have enough data
at small distances. Slope plots are notorious for
showing considerable fluctuations in the meaning-
ful range, yielding “plateaus” which are spoilt by
oscillations and skew trends [Badii & Politi, 1984;
Smith, 1988]. Thus, in order to extract an average
dimension from the slope plots in an adequate way,
we estimate correlation dimensions with the aid of
the Maximum Likelihood (M-L) method [Takens,
1984; Ellner, 1988]. This alternative algorithm uses
as input the range of radii where a power-law scaling
behavior of the correlation integral is conjectured,
for which it then yields an average dimension. The
M-L estimate is superior to a fit of the slope-plot
by a straight line, since the latter is just graphically
motivated, while the M-L estimate is an intrinsic
estimator.

Let us assume “convergence” of (A2) for a range
of distances γ1 ≤ ε ≤ γ2. Then the M-L formalism
gives

D2 = − m−K
n∑

ij=1

ln(rij/γ2)

, (A4)

where the number of distances rij = max[‖X(i) −
X(j)‖; γ1] is denoted by m, and K is the number
of rij ’s which are equal to γ1. Distances rij > γ2

are omitted. A prerequisite of the M-L formalism is
that the distances are independent, which certainly
would not be fulfilled if all the available distances
(m = (M −W )(M −W − 1)) were taken into ac-
count. Ellner [1988] shows that if m = M/2 the
estimate is best, since the distances then are most
likely to be independent (M is the length of the
original time series). The m distances we have used
are chosen at random out of those fulfilling the con-
straint |i − j| > W , so that no temporally corre-
lated vectors are taken into account (this allows us
to avoid the possible biasing mentioned above).

Using the same probabilistic approach as for
the M-L formalism, one can derive an intrinsic er-
ror formula for dimension estimates:

B =
D2 1.96√

m

√
1 + 2 ln rD2

0 rD2
0 − r2D2

0

1 + ln rD2
0 rD2

0 − rD2
0

, (A5)

with r0 = γ1/γ2. The factor 1.96 stems from a 5%
confidence interval used here [Ellner, 1988; Isliker,
1992]. The errors shown in Table 4 are calculated
by this formula.

Turning finally to our computations of the Lya-
punov exponents, we recall that they measure the
degree of divergence of close trajectories in state
space in the course of time. They are a direct tool
to infer the presence of chaos: The latter is defined
to be the case where at least one Lyapunov expo-
nent is larger than zero.

The Lyapunov exponents can be estimated in
our case by making use of the equations of the map-
ping. In the case of periodic orbits, they equal the
logarithm of the eigenvalues of the return–Jacobian
[see (14)], divided by the period of the orbit
[Eckmann & Ruelle, 1985]. However, if the period
is too high, the matrix product involved in calcu-
lating the return–Jacobian consists of many factors,
and numerical errors rapidly accumulate especially
in the calculation of the small eigenvalues.

An alternative way which has the additional
advantage that it can be applied to nonperiodic or-
bits is provided by an algorithm proposed by Wolf
et al. [1985], suitably modified for maps. In this
application, the evolution of a finite 4-sphere of ra-
dius 1 is monitored in tangent-space following a
trajectory in the region of interest. This sphere
evolves under the action of the linearized equa-
tions into an ellipsoid, whose principal axes have
lengths denoted by pi. The ith Lyapunov exponent
Λi is then determined by the formula [Wolf et al.,
1985]

Λi = lim
n→∞

1

n
log

pi(n)

pi(0)
, i = 1, 2, 3, 4 . (A6)

In the numerical implementation, this limit is re-
placed by an averaging procedure over many time-
steps. Furthermore, the set of principal axes has to
be reorthogonalized from time to time (for technical
details of the procedure see [Wolf et al., 1985]. We
found it sufficient to evolve the sphere over a time
1 (the iteration time-step), to estimate the quotient
in (A6), and to average these quotients over many
time-steps, as convergence is rather slow (mainly
due to the Lyapunov-exponents being small). This
procedure yields numerically reliable estimates of
the four Lyapunov exponents when the averaging is
performed over about 50 000 time-steps, see Fig. 7
and Fig. 8(b).


