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Abstract. Amathematical framework for the convergence analysis ofthewell-knownQuickprop
method is described. Furthermore, we propose a modi¢cation of this method that exhibits
improved convergence speed and stability, and, at the same time, alleviates the use of heuristic
learning parameters. Simulations are conducted to compare and evaluate the performance of
the new modi¢ed Quickprop algorithm with various popular training algorithms. The results
of the experiments indicate that the increased convergence rates achieved by the proposed
algorithm, affect by no means its generalization capability and stability.
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1. Introduction

The Quickprop (Qprop) method [6], is a very popular batch training algorithm for
Feedforward Neural Networks (FNNs). It is well known that far from the
neighborhood of a minimizer the morphology of the error surface, in certain cases,
causes the Qprop algorithm to create inappropriate learning rates and the algorithm
exhibits stability problems. Application-dependent heuristic learning parameters are
used to alleviate this problem.

In this paper we analyze the Qprop method as a multivariable generalization of the
secant method for nonlinear equations applied to the gradient of the batch error
function. Furthermore, we present a modi¢cation of this algorithm that exhibits
improved convergence speed and stability, and, at the same time, alleviates the
use of heuristic learning parameters. Moreover, we prove a theorem for the conver-
gence of the modi¢ed scheme. Using this convergence result the convergence of
a class of modi¢ed Qprop algorithms is secured and the same holds for the classical
method.
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2. Secant Methods

Let F � �f1; f2; . . . ; fn� : D � Rn! Rn be a Frëchet-differentiable function and x� a
solution of the nonlinear system of equations:

F �x� � Yn � �0; 0; . . . ; 0� �1�

within the interior of D.
The best known method for approximating x� numerically is Newton's method.

Given an initial guess x0, this method computes a sequence of points fxkg1k�0,
obtained by solving the following Newton's equation:

F 0�xk� xk�1 ÿ xk
ÿ � � ÿF �xk�: �2�

If x0 is suf¢ciently close to x�, F is continuously differentiable in a neighborhood of
x� and the Jacobian F 0�x�� is nonsingular, the iterates fxkg of Newton's method
converge quadratically to x�. Furthermore, under the same assumptions any
sequence fykg which converges to x� superlinearly is closely related to Newton's
method by the fact that the relative difference between yk�1 ÿ yk and the Newton
correction ÿF 0�yk�ÿ1F �yk� will tend to zero [3].

The quadratic convergence of Newton's method is attractive. However, the
method depends on a good initial approximation and it requires in general
n2 � n function evaluations per iteration besides the solution of an n� n linear
system.

Quasi-Newton methods were developed to save computational effort of individual
iterations while maintaining some convergence properties of Newton's method.
They maintain approximations of x� and the Jacobian at the solution F 0�x�� as
the iteration progresses. If xk and Bk are the current approximate solution and
Jacobian, then after the computation of xk�1, Bk is updated to form Bk�1. The con-
struction of Bk�1 determines the quasi-Newton method. Given an initial guess
x0, this method computes a sequence of points fxkg1k�0, obtained by solving the
following quasi^Newton or secant equation [5]:

Bk�1 xk�1 ÿ xk
ÿ � � F �xk�1� ÿ F �xk�: �3�

The advantages of quasi-Newton methods is that they require only n function
evaluations for each iteration. Hence, if a good preconditioner (initial approxi-
mation to F 0�x��) can be found, these methods have an advantage in terms of func-
tion evaluation cost over Newton's method. In most quasi-Newton methods
derivatives are not computed at every iteration and it is not necessary to solve com-
pletely a linear system like Equation (2). On the other hand, the local rate of con-
vergence turns to be superlinear instead of quadratic for most of these methods.

The most used approximation to the Jacobian has been proposed by Broyden
(Broyden, 1965). His method is locally superlinear convergent and therefore is a
very powerful alternative to Newton's method. Broyden's algorithm for solving
Equation (1) has the following general form (cf. [5]). Given an initial guess x0
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and a nonsingular matrix B0, this method computes a sequence of steps sk obtained
as follows:

for k � 0; 1; . . . until convergence do:
Solve Bksk � ÿF �xk� for sk,
Set xk�1 � xk � sk,
Set zk � F �xk�1� ÿ F �xk�,

Set Bk�1 � Bk � zk ÿ Bksk
ÿ �

s>k
s>k sk

.

Broyden's method is very popular in practice for two main reasons: ¢rst, it gen-
erally requires fewer function evaluations than a ¢nite difference Newton's method
and second, it can be implemented in ways that require only O�n2� arithmetic oper-
ations per iteration ([4], 1989, pp. 27^29).

3. The Quickprop Method

In this section, we show that the Qprop method belongs to the family of secant
methods but it is related to the minimization of the error function. It is well known
that in minimization problems all the local minima w� of a continuously
differentiable batch error function E satisfy the necessary conditions:

rE�w�� � Yn; �4�
where rE denotes the gradient of E. Equation (4) represents a set of n nonlinear
equations, which must be solved to obtain w�. Therefore, one approach to the
minimization of E is to seek the solutions of the set of Equation (4) by including
a provision to ensure that the solution found does, indeed, correspond to a local
minimizer. This is equivalent to solving the following system of equations:

@1E�w1;w2; . . . ;wn� � 0;

@2E�w1;w2; . . . ;wn� � 0;

..

.

@nE�w1;w2; . . . ;wn� � 0;

�5�

where @iE denotes the ith coordinate of rE.
The classical iterative scheme of the Qprop method for the ith weight is given by:

wk�1
i � wk

i ÿ
@iE�wk� ÿ @iE�wkÿ1�

wk
i ÿ wkÿ1

i

� �ÿ1
@iE�wk�:

Using matrix formulation the above scheme can by written as:

wk�1 � wk ÿ Bÿ1k rE�wk�;
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where the matrix Bk is the diagonal matrix with elements �bkii�, i � 1; 2; . . . ; n given
by:

bkii �
@iE�wk� ÿ @iE�wkÿ1�

wk
i ÿ wkÿ1

i
:

It is obvious that the matrix Bk satis¢es the following secant equation:

Bk wk ÿ wkÿ1ÿ � � rE�wk� ÿ rE�wkÿ1�; �6�
and thus the Qprop method belongs to the class of quasi^Newton methods.

Using the above framework a straightforward modi¢cation of the Quickprop
method is the following:

wk�1
i � wk

i ÿ Zi
@iE�wk� ÿ @iE�wkÿ1�

wk
i ÿ wkÿ1

i

� �ÿ1
@iE�wk�;

where Zi are arbitrary nonzero real numbers. This is so because the new Zib
k
ii satisfy

the corresponding secant equation.
Based on the above analysis it is obvious that the Qprop, as well as the above

modi¢cation, follows the convergence properties of the secant methods [5, 15, 16].
In general, the matrix Bk may contain non positive entries. This fact results in a

non positive de¢nite matrix, which in practice means that the methodmay take uphill
or zero steps in the corresponding directions. To alleviate this problem, a heuristic
parameter called `the maximum growth factor' has been introduced [16].

4. Globally Convergent Adaptive Learning Rate Algorithms

A training algorithm can be made globally convergent by determining the learning
rate in such a way that the error is exactly minimized along the current search
direction at each epoch, i.e., E�wk�1� < E�wk�. To this end, an iterative search, which
is often expensive in terms of error function evaluations, is required. It must be noted
that the above simple condition does not guarantee global convergence for general
functions, i.e. converges to a local minimizer from any initial condition (for a general
discussion on globally convergent methods see [5]).

The use of adaptive learning rate algorithms that enforce monotonic error
reduction using inappropriate values for the critical heuristic learning parameters
can considerably slow the rate of training, or even lead to divergence and to prema-
ture saturation [10, 18]. Moreover, it is not possible to develop globally convergent
training algorithms, i.e. algorithms with the property that starting from any initial
weight vector the sequence of the weights converges to a local minimizer of the error
function, by the use of heuristics. To deal with this problem it is preferable to tune the
adaptive learning rate so that the error function is suf¢ciently decreased at each
epoch, accompanied by a signi¢cant change in the value of w.
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To this end, for the iterative scheme

wk�1 � wk � Zkjk; �7�
where jk is the search direction, the following conditions due to Wolfe can be used:

E�wk�1� ÿ E�wk�W s1Zk rE�wk�;jk
 �
; �8�

rE�wk�1�;jk
 �
X s2 rE�wk�;jk
 �

; �9�

where 0 < s1 < s2 < 1 and h�; �i stands for the usual inner product in Rn. The ¢rst
inequality ensures that the function is reduced suf¢ciently, and the second prevents
the steps from being too small. It can be shown that if jk is a descent direction,
if E is continuously differentiable and if E is bounded below along the radius
fwk � Zjk j Z > 0g, then there always exist stepsize satisfying Equations (8)^(9) [14,
22, 23].

The following theorem, due to [5, 14, 22, 23], states that if E is bounded below,
then the sequence fwkg1k�0 generated by any algorithm that follows a descent direc-
tion jk whose angle yk with ÿrE�wk� is such that:

cos yk �
ÿrE�wk�;jk

 �
krE�wk�k kjkk X d > 0; �10�

and satis¢es the Wolfe conditions, then it holds that eitherrE�wk� � 0 for some k, or
lim
k!1
rE�wk� � 0 [4].

THEOREM 1. [5, 14, 22, 23]. Suppose that the error function E : Rn! R is con-
tinuously differentiable on Rn and assume that rE is Lipschitz continuous on Rn.
Then, given any w0 2 Rn, either E is unbounded below, or there exists a sequence
fwkg1k�0 obeying the Wolfe conditions (8)^(9) and either:

(i) hrE�wk�; �wk�1 ÿ wk�i < 0; or
(ii) rE�wk� � 0; and wk�1 ÿ wk � 0;

for each k > 0. Furthermore, for any such sequence, either:

(a) rE�w� � 0 for some kX 0, or
(b) lim

k!1
E�wk� � ÿ1, or

(c) lim
k!1
rE�wk�; �wk�1 ÿ wk�
 �

=kwk�1 ÿ wkk � 0.

For a relative convergence result where the sequence fwkg1k�0 converges q-super-
linearly to a minimizer w� see [5, p. 123].

In practice, the condition (9) is not needed because the use of a backtracking
strategy avoids very small steps [13]. A simple backtracking strategy to tune the
length of the minimization step, so that it satis¢es conditions (8)^(9) at each epoch,
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is to decrease the learning rate by a reduction factor 1=q, where q > 1 [13, 15]. Also it
can be proved (see [5]) that if (9) is replaced by:

E�wk � Zkjk� ÿ E�wk�X s2Zk rE�wk�;jk
 �
; �11�

where s2 2 �s1; 1�, then Theorem 1 still holds.

5. The Modi¢ed Qprop Algorithm

To avoid tuning the problem dependent heuristics of the Qprop method and to
guarantee the desirable property of positive de¢niteness of Bk we propose the
following modi¢cation:

wk�1
i � wk

i ÿ Z
@iE�wk� ÿ @iE�wkÿ1��� ��

wk
i ÿ wkÿ1

i

�� ��
( )ÿ1

@iE�wk�;

where the coef¢cient Z can be properly tuned. In this way, the length of the
minimization step is regulated to satisfy the Wolfe conditions, while the weights
are updated in a descent direction.

A high level description of this modi¢ed Qprop (MQprop) algorithm is given
below, where MIT indicates the maximum number of iterations and E the desired
accuracy:

ALGORITHM 1. Modi¢ed Quickprop Algorithm ^ MQprop

(1) Input fE;w0; Z0; �l01; l02; . . . ; l0n�;MIT ; Eg.
(2) Set k � ÿ1.
(3) If k <MIT, replace kby k� 1, set Z � Z0, and go to the next step; otherwise, go to

Step 8.
(4) If kX 1 and Lk

i � j@iE�wk� ÿ @iE�wkÿ1�j=jwk
i ÿ wkÿ1

i j 6� 0, for all i � 1; . . . ; n, set
lki � 1=Lk

i ; otherwise set lki � l0i .
(5) Tune Z by means of a tuning subprocedure.
(6) Set wk�1 � wk ÿ Z diagflk1; lk2; . . . ; lkngrE�wk�.
(7) If krE�wk�kW E go to Step 8; otherwise go to Step 3.
(8) Output fwk;E�wk�;rE�wk�g.

Assume now that the tuning subprocedure of Step 5 of Algorithm 1 consists of the
pair of relations (8)^(9). The following theorem states that if E is bounded below,
then the sequence fwkg1k�0 generated by Algorithm 1 converges to a point w� for
which rE�w�� � 0.

THEOREM 2. Suppose that the error function E : Rn! R is continuously
differentiable and bounded below on Rn and assume that rE is Lipschitz continuous
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on Rn. Then, given any point w0 2 Rn, for any sequence fwkg1k�0, generated by
Algorithm 1, satisfying the Wolfe conditions (8)^(9) implies that lim

k!1
rE�wk� � 0.

Proof. The sequence fwkg1k�0 follows the direction

jk�wk� � ÿdiagf1=Lk
1; : : : ; 1=L

k
ngrE�wk�;

which is a descent direction since

rE�wk�;jk�wk�
 �
< 0:

Moreover, the restriction on the angle yk is ful¢lled since, as it can be easily
justi¢ed utilizing Relation (10), cos yk > 0. Thus, by Theorem 1 holds that
lim
k!1
rE�wk� � 0. Thus the theorem is proved.

Remark 1. Note that for neural networks with sigmoid activation functions the
assumption on continuous differentiability of the error function is redundant.
Moreover, the batch error function is always bounded below on Rn.

6. Experimental Study

Next, we give quantitative results on three neural network applications applying the
following methods:

(i) the batch BackPropagation with constant learning rate (BP) [19];
(ii) the Steepest Descent with Line Search for the learning rate proposed by Polak

[16] (SDLS);
(iii) the batch BackPropagation with constant stepsize and Momentum (BPM) [19];
(iv) the Adaptive BackPropagation with heuristics (ABP) [21];
(v) the Fletcher^Reeves (FR) method [7];
(vi) the Polak^Ribiere (PR) method [7];
(vii) the Polak^Ribiere (PR) method constrained by the FR method (PR-FR) [7];
(viii) the MQprop method.

In the implementation of FR, PR, and PR-FR, the Armijo line search proposed by
Polak [16] has been used. In Step 5 of the MQprop method (see Algorithm 1), a
simple backtracking strategy has been used in the tuning subprocedure, i.e. Z is
reduced by a factor 1=q, where q � 2 [13]. For all cases, the results are exhibited
in terms of the average number of iterations (mIT ) required to obtain a local
minimum, the average number of gradient and function evaluations (mFE) and
the number of successful runs out of 1000 (Success).

The selection of initial points is very important in FNN training. Very small initial
values lead to very small corrections of the variables so that eventually some
variables remain practically unchanged and more iterations are necessary to train

GLOBALLY CONVERGENT MODIFICATION OF THE Q-PROP METHOD 165



the network [19]. In the worst case, the learning may stop in an undesired local
minimum. On the other hand, very large initial values can speed up the learning
process but in many cases they can lead neurons to saturation and generate very
small gradient values. In such cases, learning is considerably slow [11]. A well known
initialization heuristic for FNNs is to select the points with uniform probability from
an interval �wmin;wmax�, where usually wmin � ÿwmax. A common choice is the
interval �ÿ1;�1�. Thus, 1000 initial starting points have been randomly selected
from this interval to test the different methods.

EXAMPLE 1. The XOR problem [9, 19]. The classi¢cation of the four XOR patterns
in two classes is an interesting problem because it is sensitive to initial points as well
as to learning rate variations, and presents a multitude of local minima. The patterns
are classi¢ed using an 2-2-1 FNN with 9 variables.

The termination condition for all algorithms tested is to ¢nd a local minimizer with
batch error function value EW 0:04. The results are summarized in Table I.

In this case the number of successful runs is related to the local minima problem.
Thus FR, PR and PR-FR usually converge to an undesired local minimum, i.e.
a minimizer with function value E > 0:04 which means that some of the patterns
are not correctly classi¢ed. MQprop exhibits better performance than FR, PR
and PR-FR with regards to the number of successful runs. MQprop also
outperforms BP, SDLS, BPM and FR in training speed, measured by the mean
number of function and gradient evaluations needed to successfully classify the
patterns. Note that PR and PR-FR require less function evaluations than MQprop
but they reveal a smaller number of successful runs. It is worth noticing that the
classical Qprop without heuristics fails to converge in this experiment.

EXAMPLE 2. Texture classi¢cation problem [12]. A total of 12 Brodatz texture
images [1]: 3, 5, 9, 12, 15, 20, 51, 68, 77, 78, 79, 93 (see Figure 1 in [12] of size

Table I. Results for the XOR problem, �n � 9�.
Algorithm mIT mFE Success

BP 549 1098 810=1000
SDLS 64 435 810=1000
BPM 803 1606 810=1000
ABP 157 314 810=1000
FR 84 282 130=1000
PR 21 169 380=1000
PR-FR 22 171 410=1000
MQprop 52 234 810=1000
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512� 512 is acquired by a scanner at 150 dpi. From each texture image 10 subimages
of size 128� 128 are randomly selected, and the co-occurrence method, introduced
by Haralick [8] is applied. In the co-occurrence method, the relative frequencies
of gray^level pairs of pixels at certain relative displacements are computed and
stored in a matrix. The combination of the nearest neighbor pairs at orientations
0�, 45�, 90� and 135� are used in the experiment. A set of 10 sixteenth-dimensional
training patterns are created from each image. An 16-8-12 FNN with 244 variables
is trained to classify the patterns to the 12 texture types.

Detailed results regarding the training performance of the algorithms are pre-
sented in Table II. The termination condition is a classi¢cation error CE < 3%; that
is the network classi¢es correctly 117 out of the 120 patterns. Again, in this exper-
iment the heuristic free Qprop exhibits extremely poor convergence characteristics
and it is not included in Table II.

The successfully trained FNNs are tested for their generalization capability, using
test patterns from 20 subimages of the same size randomly selected from each image.
To evaluate the generalization performance of the FNN the max rule is used, i.e. a
test pattern is considered to be correctly classi¢ed if the corresponding output neuron
has the greatest value among the output neurons. The average percentage of success
for each algorithm is: BP � 90:0%; SDLS � 90:0%; BPM � 90:0%; ABP � 93:5%;
FR � 92:0%; PR � 92:6%; PRÿ FR � 93:5%; MQprop � 94:0%.

PR exhibits the best performance in terms of the average number of gradient and
error function evaluations required during the training phase. On the other hand
ABP, and MQprop are more robust in the sense that they exhibit larger number
of successes providing also good generalization capability.

EXAMPLE 3. Numeric font learning problem [12, 20]. This experiment refers to the
training of a multilayer FNN with 460 variables in order to recognize an 8� 8 pixel

Table II. Results for the texture classi¢cation problem, �n � 244�
Algorithm mIT mFE Success

BP 15839 31678 960=1000
SDLS 13256 26517 965=1000
BPM 12422 24844 940=1000
ABP 560 1120 1000=1000
FR 1624 12674 250=1000
PR 140 810 990=1000
PR-FR 145 1005 996=1000
MQprop 406 1228 1000=1000
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machine printed numerals from 0 to 9. The network has 64 input neurons and 10
output neurons representing 0 through 9. Numerals are given in a ¢nite sequence
C � �c1; c2; . . . ; cp� of input^output pairs cp � �up; tp� where up are the binary input
vectors in R64 determining the 8� 8 binary pixel and tp are binary output vectors
in R10, for p � 1; . . . ; 10, determining the corresponding numerals. The termination
condition is to locate a minimizer with function value less than or equal to 0.001.
The results are summarized in Table III. It is clear that MQprop achieves faster
training than all other methods tested. Note that the classical Qprop scheme without
heuristic parameters did not converge.

7. Conclusions

In this Letter the convergence of the Qprop method has been considered. A modi¢-
cation of the classical Qprop algorithm has been presented and a strategy for
alleviating the use of highly problem-dependent heuristic learning parameters that
are necessary in order to secure the stability of the classical algorithm have been
proposed. A new theorem that guarantees the convergence of the proposed modi¢ed
Qprop has been proved. This modi¢ed Qprop scheme exhibits rapid convergence and
provides stable learning and therefore, a greater possibility of good performance.
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