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Abstract

The Characteristic Bisection Method for finding the roots of non-linear algebraic and/or transcendental equations is applied to
LiNC/LiCN molecular system to locate periodic orbits and to construct the continuation/bifurcation diagram of the bend mode
family. The algorithm is based on the Characteristic Polyhedra which define a domain in phase space where the topological
degree is not zero. The results are compared with previous calculations obtained by the Newton Multiple Shooting algorithm.
The Characteristic Bisection Method not only reproduces the old results, but also, locates new symmetric and asymmetric
families of periodic orbits of high multiplicity. 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Periodic orbits play a major role in assigning the vibrational levels of highly excited polyatomic molecules [1–3].
One of the research contributions of our late colleagueChronis Polymilis to whom this article is dedicated, was on
this subject [4,5]. HCP [6] and acetylene [7,8] are two well studied molecules for which the assignment of their
complicated highly resolved vibrational spectra were elucidated by locating the proper families of periodic orbits.
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Based on the assumption which is supported by semiclassical theories [9,10], for the localization of quantum
eigenfunctions or superpositions of them along stable or the least unstable periodic orbits, families of periodic
orbits and their associated continuation/bifurcation diagrams constructed by varying a parameter of the system can
be used to unravel the complicate dynamics of the molecule [1]. HCP is a good example for predicting motions
entangled with the isomerization of the molecule by using saddle node bifurcations of periodic orbits [11,12].

In general, analytic expressions for evaluating periodic orbits are not available. Also, as it is well known, the
numerical techniques for computing families of periodic orbits (symmetric or asymmetric) is a time consuming
procedure. The main difficulty for the computation of a family of periodic orbits of a given period is the
determination of an individual member of this family. We have successfully applied Newton algorithms in
conjunction to Multiple Shooting techniques [13,14]. The latter allows a better sampling of phase space which
guarantees convergence to a nearby periodic orbit even for those of relatively long period. In general, an individual
member can be determined by starting from an equilibrium point of the system under consideration. In the case
of symmetric orbits another approach is to create a grid in the(E,R) plane whereE is the energy [15] andR
determines distances (independent coordinates). In this case an individual member can be determined using a
constant value ofE.

In this paper, we investigate a new technique to compute an individual member of any family in molecular
systems, even in cases where the orbit (whether stable or unstable) is asymmetric and/or of high multiplicity. The
approach is based on the Poincaré mapΦ on a surface of section. We say thatX = (x1, x2, . . . , xn)

� is afixed point
or aperiodic orbit of Φ if Φ(X)= X and aperiodic orbit of period p if:

X =Φp(X)≡Φ(
Φ(· · · (Φ(X)) · · ·))︸ ︷︷ ︸

p times

. (1)

It is evident that the problem of computing an individual member of a specific family of periodic orbits is
equivalent to the problem of evaluating the corresponding fixed point of the Poincaré map. Traditional iterative
schemes such as Newton’s method and related classes of algorithms [16,17] often fail to converge to a specific
periodic orbit since their convergence is almost independent of the initial guess. Thus, while there exist several
periodic orbits close to each other, which may all be desirable for applications, it is difficult for these methods to
converge to the specific periodic orbit. Moreover, these methods are affected by the imprecision of the mapping
evaluations. It may also happen that these methods fail due to the nonexistence of derivatives or poorly behaved
partial derivatives [16,17]. This can be easily verified by studying the basins of convergence of these methods
which exhibit a fractal-like structure [18].

It is obvious that there is a need in investigating new methods for locating periodic solutions of the molecular
equations of motion. To this end, we explore a new numerical method for computing periodic orbits (stable or
unstable) of any period and to any desired accuracy. This method exploits topological degree theory to provide a
criterion for the existence of a periodic orbit of an iterate of the mapping within a given region. In particular, the
method constructs a polyhedron using thepth iterate in such a way that the value of the topological degree of the
mapping relative to this polyhedron is±1, which means that there exists a periodic orbit within this polyhedron.
Then, it repeatedly subdivides its edges (and/or its diagonals) so that the new polyhedron also retains this property
(of the existence of a periodic orbit within it) without making any computation of the topological degree. These
subdivisions take place iteratively until a periodic point is computed to a predetermined accuracy. More details of
this method can be found in [19].

This method becomes especially promising for the computation of high period orbits (stable or unstable)
where other more traditional approaches (like Newton’s method, etc.) cannot easily distinguish among the closely
neighboring periodic orbits. Moreover, this method is particularly useful, since the only computable information
it requires is the algebraic signs of the components of the mapping. Thus, it is not affected by the imprecisions of
the mapping evaluations. Recently, this method has been applied successfully to various difficult problems; see, for
example, [20–26].
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In the present paper, we employ this method to compute individual members of families of periodic orbits of
the LiNC/LiCN molecule. An extensive study of this system was carried out in the past [27]. By constructing
continuation/bifurcation diagrams of families of periodic orbits the spectroscopy and dynamics for this species
were deduced and compared with accurate quantum mechanical calculations up to 13 000 cm−1 and using a 2D
potential function. The purpose of the present article is to apply and test the Characteristic Bisection Method
(CBM) in locating and computing periodic orbits for the LiNC molecule.

The paper is organized as follows. In the next section we briefly present the features of the LiNC/LiCN model.
In Section 3 we present a classical approach to create families of periodic orbits when an individual member of this
family is given. In Section 4, we present the proposed method for computing within a given box individual members
of families of periodic orbits of a given period. In Section 5, we apply the proposed method to the computation of
individual members of families of periodic orbits of LiNC model. The paper ends with some concluding remarks.

2. LiNC/LiCN model

We employ the same potential energy surface used in the study by Prosmiti et al. [27]. This is a Hartree–
Fock electronic potential computed by Essers et al. [28]. The same potential was used in all quantum mechanical
calculations for the two-dimensional vibrational problem with fixed the CN− bond. The Hamiltonian is expressed
in Jacobi coordinates,(R, θ), whereR is the distance of Li+ from the center of mass of CN−, andθ is the angle
betweenR and the bond length of CN−, r, which is fixed at 2.186a0.

The Hamiltonian has the form:

H = P 2
R

2µ1
+

(
1

µ1R2 + 1

µ2r2

)
P 2
θ

2
+ V (R, θ), (2)

whereµ−1
1 = m−1

Li + (mC + mN)
−1, µ−1

2 = m−1
C +m−1

N are the reduced masses, andmC, mN, andmLi are the
atomic masses.

The potential surface,V (R, θ), has two minima with linear geometries: the absolute minimum is for LiNC at
(R = 4.3487a0, θ = π ), and the relative minimum is for LiCN at (R = 4.7947a0, θ = 0) with energy 2281 cm−1

above the LiNC minimum. The barrier of isomerization between these two minima is at 3455.5 cm−1 and with the
geometry (R = 4.2197a0, θ = 0.91799). Also, there is a plateau in the LiNC well at 1207 cm−1 above the absolute
minimum, and with geometry (R = 3.65a0, θ = 1.92).

The Multiple Shooting Method for calculating periodic orbits was described in [1,14]. This is a general procedure
for locating symmetric or asymmetric periodic orbits.

3. Creating families of periodic orbits

Next we give an efficient method for finding periodic orbits using the classical approach of Newton technique
as well as for carrying out the continuation of the family with respect to the period and the stability analysis of
periodic orbits. This method is applicable when an individual member of the family is given.

If (R0, θ0,PR0,Pθ0) are the initial conditions of an orbit att0 = 0, then, the periodicity conditions that must be
satisfied are:

R(R0, θ0,PR0,Pθ0, T )=R0,

θ(R0, θ0,PR0,Pθ0, T )= θ0,
PR(R0, θ0,PR0,Pθ0, T )= PR0,

Pθ (R0, θ0,PR0,Pθ0, T )= Pθ0.

(3)
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Now since in this paper the symmetric periodic orbits which we have computed are with respect to theR-axis then
Eqs. (3) for the half period become:

θ(R0,Pθ0, T1)= π,
PR(R0,Pθ0, T1)= 0,

(4)

whereT1 = T/2. Consider the corrections�R0, �Pθ0 and�T1 of R0, Pθ0 andT1, respectively, which satisfy
relations (4). Thus:

θ(R0 +�R0,Pθ0 +�Pθ0, T1 +�T1)= π,
PR(R0 +�R0,Pθ0 +�Pθ0, T1 +�T1)= 0.

(5)

Next, using Taylor series we expand Eqs. (5) aroundR0,Pθ0, T1 and by neglecting all the nonlinear terms, we
finally obtain that:

∂θ

∂R0
�R0 + ∂θ

∂Pθ0
�Pθ0 + ∂θ

∂t
�T1 = π − θ(T1),

∂PR

∂R0
�R0 + ∂PR

∂Pθ0
�Pθ0 + ∂PR

∂t
�T1 = −PR(T1).

(6)

By integrating relations (6) and by keepingt constant, that is�T1 = 0, we have:

∂θ

∂R0

∂θ

∂Pθ0

∂PR

∂R0

∂PR

∂Pθ0




[
�R0

�Pθ0

]
=

[
π − θ(T1)

−PR(T1)

]
. (7)

It is evident that using the corrections�R0 and�Pθ0 we are able to obtain the new vector of initial conditions
(R0+�R0,Pθ0 +�Pθ0)�. Next, we integrate the equations of motion with the new initial conditions and we repeat
this procedure until the periodicity conditions (4) are satisfied with the desired accuracy.

When a periodic orbit(θ = π,PR = 0) has been computed, by changing�T1 with an arbitrary small constantε
we are able to obtain from Eqs. (6) that:


∂θ

∂R0

∂θ

∂Pθ0

∂PR

∂R0

∂PR

∂Pθ0




[
δR0

δPθ0

]
=


π − ε ∂θ

∂t

−ε ∂PR
∂t


 . (8)

From the above it is evident that if(R0,Pθ0)
� are the initial conditions vector of the previous periodic

solution with timeT1, then an approximation of the initial conditions vector for the next periodic solution, is
(R0 + δR0,Pθ0 + δPθ0)�. This corresponds toT = T1 + ε, and it can be obtained using the solution(δR0, δPθ0)

�
of system (8). When three consecutive periodic solutions have been computed we apply Lagrange interpolation [29]
to obtain a better approximation.

It is well know that the horizontal stability of a periodic orbit can be determined by the stability indicesah, bh,
ch anddh [30,31]. These indices can be computed by integrating the equations of motion, for the whole period,
and by making double extra integration. In particular an orbit is consideredhorizontally stable if:

|sh|< 1, wheresh =


ah + dh

2
when the orbit is asymmetric,

ah = dh when the orbit is symmetric.
(9)

In the case where|sh| = 1 the stability of the orbit is consideredcritical. For this particular case, we are able to
obtain pieces of information about the family that is bifurcated. In particular when:
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(i) ah = 1, bh 
= 0, ch = 0. We have three possible cases:
– The family is not bifurcated but the characteristic curve(R0,E) of the energy for the members of the

family has an extremum.
– The family is bifurcated to simple planar symmetric families of periodic solutions.
– The family is bifurcated to simple planar symmetric families of periodic solutions and simultaneously

the characteristic curve(R0,E) of the energy for the members of the family has an extremum.
(ii) ah = 1, bh = 0, ch 
= 0

The family is bifurcated to simple planar non-symmetric families of periodic solutions.
(iii) ah = −1, bh 
= 0, ch = 0

The family is bifurcated to simple planar symmetric families of periodic solutions of multiplicity 2. In the
representation of the basic family onto the(R0,E) plane, the critical orbits lie on the vertical sections of
the curve with theR-axis.

(iv) ah = −1, bh = 0, ch 
= 0
The family is bifurcated to simple planar symmetric families of periodic solutions of multiplicity 2. In the
representation of the basic family onto the(R0,E) plane, the critical orbits lie on the non-vertical sections
of the curve with theR-axis.

In the next section we apply the Characteristic Bisection Method to locate periodic orbits of a given multiplicity
and to construct the continuation/bifurcation diagram for LiNC. The results are then compared with that of [27].

4. The characteristic polyhedron criterion and the Characteristic Bisection Method

We briefly present theCharacteristic Bisection Method for the computation of individual members of families
of periodic orbits. This method implements topological degree theory to give a criterion for the existence of an
individual member of a family of periodic orbits within a given region of the phase space of the system. Then it
constructs a Characteristic Polyhedron containing this member and iteratively refine this polyhedron to calculate
the individual member within a predetermined accuracy. A detailed description of these procedures can be found
in [19].

In general, the problem of finding periodic orbits of multiplicityp of dynamical systems inRn+1 amounts
to fixing one of the variables, sayxn+1 = c, for a constantc, and locating pointsX∗ = (x∗

1, x
∗
2, . . . , x

∗
n) on an

n-dimensional surface of sectionΣt0 which satisfy the equation:

Φp(X∗)= X∗, (10)

whereΦp = Pt0 :Σt0 →Σt0 is the Poincaré map of the system. Obviously, this is equivalent to solving the system:

F(X)=Φp(X)− InX = 0, (11)

with F = (f1, f2, . . . , fn), whereIn is then × n identity matrix and0 = (0,0, . . . ,0) is the origin ofRn. For
example, consider a conservative dynamical system of the form:

Ż = G(Z, t), (12)

with Z = (z, ż) ∈ R
2 andG = (g1, g2) periodic int with frequencyω. In this case, we can approximate periodic

orbits of periodp of system (12) by taking as initial conditions of these orbits the points which the orbits intersect
the surface of section:

Σt0 =
{(
z(tk), ż(tk)

)
, with tk = t0 + k2π

ω
, k ∈ N

}
, (13)

at a finite number of pointsp. Thus, the dynamics can be studied in connection with a Poincaré mapΦp =
Pt0 :Σt0 →Σt0, constructed by following the solutions of (12) in continuous time.
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Suppose thatF is continuous on the closure of a bounded domainD such that there is not any pointX on its
boundary for whichF(X)= 0. Thentopological degree of F at 0 relative to D denoted by deg[F,D,0] and defined
by

deg[F,D,0] =
∑

X∈F−1(0)∩D
sgndetJF(X), (14)

where sgn is the well-known sign function with the values:

sgnψ =



−1, if ψ < 0,

0, if ψ = 0,

1, if ψ > 0,

and detJF denotes the determinant of the Jacobian matrixJF of F. Now if deg[F,D,0] is not equal to zero, then
there is at least one solution of system (11) withinD [16,32]. This criterion can be used, in combination with the
construction of a suitablen-polyhedron, which we call Characteristic Polyhedron (CP), for the calculation of a
solution contained in this region. Briefly, this can be done as follows. LetMn be the 2n×n matrix whose rows are
formed by all possible combinations of−1 and 1. Consider now an orientedn-polyhedronΠn, with verticesVk ,
k = 1, . . . ,2n. If the 2n × n matrix of signs associated with F and Πn, S(F;Πn), whose entries are the vectors:

sgnF(Vk)=
(
sgnf1(Vk),sgnf2(Vk), . . . ,sgnfn(Vk)

)
, (15)

is identical toMn, possibly after some permutations of these rows, thenΠn is called theCharacteristic Polyhedron
relative to F. Furthermore, ifF is continuous, then, under some suitable assumptions on the boundary ofΠn holds
that:

deg[F,Πn,0] = ±1 
= 0, (16)

which implies the existence of a periodic orbit insideΠn (see [33] for a proof). For more details on how to construct
a CP and locate a desired periodic orbit see in [19,34,35]. The Characteristic Polyhedron can be considered as a
translation of the Poincaré–Miranda hypercube [36–40].

Next, we describe a generalized bisection method that, in combination with the above mentioned criterion,
produces a sequence of Characteristic Polyhedra of decreasing size always containing the desired solution in order
to calculate it within a given accuracy (Characteristic Bisection). This version of bisection does not require the
computation of the topological degree at each step to secure its nonzero value, as others do [41–44]. It can also
be applied to problems with imprecise function values, since it depends only on their signs. The method simply
amounts to constructing another refined CP, by bisecting a known one, sayΠn. We compute the midpointM of
a one-simplex, e.g.,〈Vi ,Vj 〉, which is one edge ofΠn. Then we obtain another CP,Πn∗ , by comparing the sign
of F(M) with that ofF(Vi ) andF(Vj ) and substitutingM for that vertex for which the signs are identical [19,34,
35]. Then we continue with another edge. The number of iterationsζ required to obtain a refined Characteristic
PolyhedronΠn∗ whose longest edge length,�(Πn∗ ), satisfies�(Πn∗ ) � ε, for some accuracyε ∈ (0,1), is given
by [33]:

ζ = ⌈
log2(�(Π

n)ε−1)
⌉
, (17)

where the notation�·� refers to the smallest integer, which is not less than the real number quoted. Notice thatζ is
independent of the dimensionn and it has the same computational cost as the bisection in one-dimension which is
optimal and possesses asymptotically the best rate of convergence [45].

5. Results

To produce the surface of section of the problem, we take successive sections of an orbit with the straight line
θ = π , along the positive direction of the flow (Pθ > 0). In particular, we take the initial conditions(R,π,PR,Pθ )



M.N. Vrahatis et al. / Computer Physics Communications 138 (2001) 53–68 59

where the value ofPθ is computed using the equation of energy for a given value ofE. Each section can be depicted
as a point in the(R,PR) plane. The transition from one section to another can be considered as a transformation
in the(R,PR) plane. Notice that, this particular transformation is well defined only if the energyE has a specific
value. It is evident that a periodic orbit of periodp intersects theR-axis 2p times. Obviously, in the simple case
wherep = 1 the orbit will be represented in the(R,PR) plane by a single point and thereupon ap periodic orbit
is represented byp points.

To compute successively the intersection points with the surface of section, we can choose a value of the
energyE and by keeping this value fixed we can integrate numerically the equations of motion, using for
example the Bulirsch–Stoer algorithm with proper adaptive step-size control [29,46]. These points are exhibited
in Figs. 1(a)–1(f) for several initial conditions with arbitrarily chosen values of energyE1 = 0.005695,E2 =
0.007973,E3 = 0.008825,E4 = 0.009112,E5 = 0.011390,E6 = 0.013669 Hartree, respectively.

In Fig. 1 we can easily distinguish that there are several periodic orbits of various periods. For example, we can
observe in Fig. 1(c) that the points marked byP1, P2, P3, P4 andP5 determine a periodic orbit of period 5.

To compute the periodic point of the period-5 orbit using the proposed Characteristic Bisection Method, we use
a small box surrounding a point of the orbit, say, for example, the pointP1 and by proper successive refinements
of this box we calculate the desired point. For example, by taking the box[4.4,4.5]× [0.1,1.1] we have computed
the included periodic pointP1 = (4.46230979,0.67733379)�. In the case of the unstable periodic point we use
also a box around a region where a periodic point of the desired periodic orbit is expected to exist.

After one periodic point of the orbit has been computed, the method can be applied to obtain easily all the
other periodic points of the same period to the same accuracy. More specifically, the method checks whether each
mapping iteration gives a periodic point (of the same period) to the predetermined accuracy. If so, the method
continues with the next iteration, otherwise it applies the process of subdivisions to a smaller box which contains
the approximate periodic point. The vertices of this small box can be easily selected by permuting the components
of the approximate periodic point. Using this approach we have computed all the periodic points of this orbit with
coordinates:

P2 = (4.46230979,−0.67733379)�, P3 = (4.51646069,−1.47786345)�,

P4 = (4.55104449,0.00000000)�, P5 = (4.51646069,1.47786345)�.

Note that, from the sequence in which these points are created on the(R,PR) plane, we are able to infer the rotation
number of this orbit. In general, periodic orbits can be identified by theirwinding or rotation number σ , which is
defined as follows:

σ = n1

n2
, n1, n2 ∈ N, (18)

where n1, n2, are two positive integers which indicate that the orbit has producedn2 points, by rotating
counterclockwise around the originn1 times [19,47]. In particular for the above periodic orbit of period 5 the
value of the rotation number is:

σ = n1

n2
= 1

5
,

indicating that the orbit has producedn2 = 5 points by rotating counterclockwise around the originn1 = 1 times.
The values of rotation numbers for all the periodic orbits given here are exhibited in Tables 1 and 2. These values
have been computed utilizing a simple angle counting procedure which we have created for this purpose.

Magnifying boxA of Fig. 1(d), we observe, in Fig. 2, the existence of a periodic orbit of period 5 that is marked
by O5. This orbit is surrounded by a group of three islands indicating the existence of another periodic orbit of
period 15, marked byO15. This particular periodic orbit of period 15, required three rotations around the origin.
Thus, in this case the value of the rotation number of this orbit isσ = 3/15.

We have also examined the effect of small perturbations to the initial conditions of unstable periodic orbits. For
instance, by perturbing with a valueδR = 10−5 theR coordinate of the unstable periodic orbit of period 3 (listed
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Fig. 1. Surface of section points for (a)E1 = 0.005695, (b)E2 = 0.007973, (c)E3 = 0.008825 Hartree, respectively.
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Fig. 1. (Continued). Surface of section points for (d)E4 = 0.009112, (e)E5 = 0.011390, and (f)E6 = 0.013669 Hartree, respectively.
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Fig. 2. Magnification of box A of Fig. 1(d). Atomic units.

Fig. 3. Perturbations with a valueδR = 10−5 of theR coordinate of the unstable period-3 periodic orbitU3 with energyE = 0.008825 Hartree.
S1, S2 andS3 denote the corresponding period-3 stable periodic orbit.
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Table 1
Fixed points of periodic orbits of periodp on the Poincaré surface of section (R,PR ), within accuracyε = 10−8, using arbitrary values
of energyE and their rotation numberσ ; stability index sh and symmetry identification Sym. (“S” denotes symmetric while “A” denotes
asymmetric.) Atomic units are used

E p Fixed point σ sh Sym

0.005695 1 (4.28484649, 0.00000000) 1 0.57372 S

0.005695 1 (4.38896972, 0.00000000) 1 −0.00711 S

0.005695 1 (4.19475004, 0.00000000) 1 0.67680 S

0.007973 1 (4.46165957, 0.00000000) 1 0.02763 S

0.007973 1 (4.22049227, 0.00000000) 1 −0.68166 S

0.008825 1 (4.51069744, 0.00000000) 1 0.82954 S

0.009112 1 (4.17833963, 0.00000000) 1 −0.56050 S

0.009112 1 (4.49082546, 0.00000000) 1 0.33794 S

0.009112 1 (4.55303293, 0.00000000) 1 0.33793 S

0.011390 1 (4.22563562, 0.00000000) 1 −0.34420 S

0.011390 1 (4.47645058, 0.00000000) 1 −0.24644 S

0.011390 1 (4.68497334, 0.00000000) 1 −0.24644 S

0.013669 1 (4.26348970, 0.00000000) 1 0.03415 S

0.013669 1 (4.35124581, 0.00000000) 1 −0.99770 S

0.013669 2 (4.34008538, 0.52849407) 1/2 0.96772 A

0.013669 2 (4.34988026, 0.63067602) 1/2 1.01725 A

0.007973 3 (4.34316520, 3.97679118) 2/3 0.98244 A

0.008825 3 (4.58187805, 0.00000000) 1/3 −0.85018 S

0.008825 3 (4.40329072, 0.00000000) 1/3 6.66521 S

0.009112 3 (4.59912193, 0.00000000) 1/3 0.04945 S

0.011390 3 (4.21309824, 0.00000000) 2/3 0.68157 S

0.011390 3 (4.23422106, 0.00000000) 2/3 1.20225 S

in Tables 1 and 2 with energyE = 0.008825) and marked byU3 in Fig. 3 we observe that the iterations of the
perturbed orbit diffuse away from the pointU3 surrounding also the stable orbit of period 3.

In Tables 1 and 2 we exhibit several fixed points of periodic orbits of periodp on the Poincaré surface of section
for the LiNC model using several values of the energy, with an accuracy ofε = 10−8. Also, in this table we give
the corresponding rotation numbersσ . In addition, in this table we give the stability indexsh as they are defined in
Eq. (9) as well as the symmetry identification of the corresponding orbit.

We have calculated the continuation/bifurcation diagram of LiNC up to energies of 5000 cm−1 by using the
CBM. In Fig. 4 we show the projection of the continuation/bifurcation diagram in the(E,R) plane which can be
compared with that of Fig. 1 of the [27]. In the new diagram we also show eight new families of periodic orbits
located with the CBM. In Table 3 we give initial conditions for one periodic orbit of each new family and in
Fig. 5 we show their morphologies. In the continuation scheme we kept the angle coordinateθ equal toπ . The
stable principal family which corresponds to the stretch mode of the system is not shown but only theB principal
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Table 2
(Continuation of Table 1)

E p Fixed point σ sh Sym

0.008825 5 (4.55104449, 0.00000000) 1/5 −0.24616 S

0.008825 5 (4.45167525, 0.00000000) 1/5 2.74075 S

0.009112 5 (4.57595772, 0.00000000) 1/5 −0.41051 S

0.009112 5 (4.44349025, 0.00000000) 1/5 12.09241 S

0.009112 6 (4.54083980, 0.12064771) 1/6 0.79060 A

0.009112 6 (4.54019427, 0.00000000) 1/6 1.19786 S

0.009112 6 (4.51009863, 0.00000000) 1/6 0.79059 S

0.009112 6 (4.50856645,−0.09298509) 1/6 1.19787 A

0.007973 7 (4.34009828, 4.40878879) 5/7 0.26382 A

0.007973 7 (4.38098920, 4.34966352) 5/7 1.04861 A

0.008825 7 (4.59574144, 0.00000000) 3/7 −0.66944 S

0.009112 7 (4.56843550, 0.00000000) 1/7 −0.83431 S

0.009112 7 (4.45804429, 0.00000000) 1/7 10.09958 S

0.011390 7 (4.19802601, 0.00000000) 4/7 −0.87763 S

0.011390 7 (4.24856583, 0.00000000) 4/7 11.90610 S

0.009112 8 (4.18234538,−1.19641052) 3/8 0.72551 A

0.009112 8 (4.17264206, 0.00000000) 3/8 0.72570 S

0.009112 9 (4.56516170, 0.00000000) 1/9 −0.88784 S

0.009112 9 (4.46528109, 0.00000000) 1/9 9.59461 S

0.011390 10 (4.51232428, 0.00000000) 7/10 0.85615 S

0.011390 10 (4.49147743, 1.84209780) 7/10 1.12108 A

0.007973 11 (4.52112213, 0.00000000) 3/11 0.56407 S

0.007973 11 (4.34305487, 0.00000000) 3/11 1.45503 S

0.009112 13 (4.18891990, 0.00000000) 5/13 −0.88146 S

0.009112 13 (4.17193325, 0.00000000) 5/13 5.19234 S

0.009112 15 (4.57472227, 0.00000000) 3/15 −0.02211 S

0.009112 15 (4.57628775, 0.00000000) 3/15 1.12375 S

0.008825 28 (4.52039403,−2.55562870) 7/28 0.83668 A

0.008825 28 (4.52306399,−2.33238052) 7/28 1.15107 A

family which describes the bend mode of the molecule. Bifurcating families are labeled with numbers and the
two branches with the lettersA andB. In Figs. 6(a)–6(b) we exhibit asymmetric families of periodic orbits which
individual members have been computed by CBM. The morphologies of the corresponding individual members
are depicted in Figs. 6(c)–6(d).

The stability properties of theB family and its bifurcations found with the Newton method are reproduced.
Particularly, the early transition to instability at 733.2 cm−1, after which it turns stable again. Other instability
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Fig. 4. The continuation/bifurcation diagram of LiNC up to energies of 5000 cm−1 obtained by the CBM. The dots indicate the corresponding
individual members (listed in Table 1) of the families.

Table 3
Periodic orbits of the new families of Fig. 4. Energy in cm−1 and all other quantities in atomic units

E T/2 R Pθ ah bh ch

B12A-B12B 3998.71145 8564.22317 4.37452189 39.78983800 103.98479−20.05839 −539.01854

B3A-B3B 3529.30741 6733.27742 4.94950000 11.17590706 0.96912 −0.00001 7231.94073

B5A-B5B 2205.35916 8609.36622 4.74350000 15.78909127 0.74578 −0.00011 3878.54789

B8A-B8B 2200.77283 9195.65039 4.18450000 26.40552493 9.23215 −0.03423 −2460.96287

B7A 1930.73612 10846.32026 4.67230000 18.12009369 0.06735−0.00050 1985.77618

B13A 1673.86664 10930.62244 4.18280000 22.11094069 0.86852−0.00013 1898.19939

B14A 2445.61396 7795.76681 4.23250000 29.64408555 −0.61478 0.00433 −143.71027

B11A 4263.01575 8135.65105 4.79600000 30.68000219 10.41481−0.03763 −2855.87964

regions were located at 1034.6 and 1543.8 cm−1, but it permanently becomes unstable at the energy of
1958.6 cm−1.

The interesting bifurcations of theB family at 201.7, 870.7, 1176.4, and 1326.5 cm−1, which give rise to
the families B1, B2, B4, B7 and B10, respectively are reproduced. As it is shown in Fig. 4, the principalB
family at these bifurcation points shows characteristicgaps in its continuation diagram. A gap appears since
the principal family is smoothly split and it is connected with the two bifurcating families, branchesA andB.
Contopoulos [48] has studied this phenomenon on a 2D rotating galactic model type potential. He showed that
gaps in the continuation diagram appear in the cases ofn/1 (n even) resonance conditions between the two
characteristic frequencies of the Hamiltonian. In our case, we can see from the morphologies of the bifurcating
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Fig. 5. Representative periodic orbits of the New families in the(R, θ) plane.

periodic orbits that the resonances which are responsible for the gaps are the 6/1 (B1A,B1B), 8/1 (B2A,B2B),
and 10/1 (B4A,B4B).

A systematic study of the morphologies of theB type periodic orbits reveals that their shapes change significantly
at energies above the last gap. It is worth mentioning that this energy is above the plateau (about 1207 cm−1). Also,
all the bifurcating periodic orbits from theB principal family appear with the same period as the parent one, and
that means, that one pair of eigenvalues of the monodromy matrix is equal to one. The only exception is theB8A
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Fig. 6. Families of asymmetric periodic orbits and the morphologies of their individual members. (a) Family of asymmetric periodic orbits with
initial condition (x, ẋ)= (4.34008538,0.52849407) with energyE = 0.013669 (Table 1), (b) family of asymmetric periodic orbits with initial
condition(x, ẋ)= (4.34316520,3.97679118) with energyE = 0.007973 (Table 1), (c) the morphology of an individual member of the family
in Fig. 6(a) and (d) the morphology of an individual member of the family in Fig. 6(b).

family (Fig. 4) that has a double period (one pair of eigenvalues of the monodromy matrix of the parent family is
equal to−1). The new families are mainly periodic orbits of high multiplicity as it is shown in Fig. 5.

6. Conclusions

The floppy molecule LiNC/LiCN has an interesting and complicate bifurcation diagram with gaps for the
principal family associated with the bend vibrational mode of the system. Hence, we have employed this system to
test a new method for finding periodic orbits and producing the bifurcation diagram. The Characteristic Bisection
Method exploits topological degree theory to provide a criterion for the existence of a periodic orbit of an iterate
of the mapping within a given region. The method constructs a polyhedron in such a way that the value of the
topological degree of an iterate of the mapping relative to this polyhedron is±1, which means that there exists a
periodic orbit within this polyhedron. Then, by using a generalized bisection method we subdivide an edge or a
diagonal of the polyhedron to restrict the periodic orbit in a smaller region and iteratively to converge to the desired
accuracy.
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Apart from reproducing previous results obtained by the Multiple Shooting algorithm, we have also found
new families of periodic orbits of high multiplicity. The CBM seems to be robust enough to be applied to larger
molecular systems results on which will be presented in a future publication.
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