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Abstract

The techniques used for the numerical computation of families of periodic orbits of dy-
namical systems are based on predictor-corrector schemes. These schemes usually depend
on solving systems of approximate equations involving the solutions of the equations of
motion and variation. In this contribution we apply some well-known unconstrained op-
timization methods in obtaining the solutions of these approximate equations and we
compare their efficiency on a specific problem of Celestial Mechanics.

1 Introduction

Let us consider a dynamical system expressed by the equations x = f(x,t), where
X = (T1, T2, -, Zn), £ = (f1, f2,--+, fa) : R — R" and ¢ is the independent
variable. Any solution x of this system is periodic of period T if it satisfies the
condition x(x¢,t = 0) = x(xq,t = T'), where xq is the initial point of the orbit
at t=0.

In many dynamical systers periodic solutions form families, i.e. groups of such
solutions whose coordinates in phase space vary continuously while their properties
change smoothly. If a periodic solution which belongs to a specified family is known,
then we are able to compute the whole family by calculating successive orbits of
it. This can be done as follows: we predict an approximation of a nearby periodic
orbit, which is also member of this family, and then, by correcting this prediction
we are able to calculate the successive orbit.
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The most classical predictor-corrector schemes used for this purpose are the so-
called linear predictor-corrector algorithms. These algorithms are based on the
solution of linear systems of equations whose variables represent the proper modi-
fications that must be applied to the parameters of a given orbit in order to obtain
a new member of the family. Recently, it has been shown that unconstrained op-
timization techniques can be used in obtaining these modifications [6,10]. In this
contribution we apply and test the efficiency of several such techniques on a specific
problem of Celestial Mechanics.

2 Description of the problem

Let us consider the Radzievskii’s model [5] for the description of the motion of a
small particle under the influence of the gravitation and the radiation pressure due
to the light emission from the members of a binary star. The system of equations
that expresses this motion is the following:,
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while 1 — u, p represent the masses of the two main bodies and ¢, g» are parameters
expressing the relations between the gravitation attraction and the radiation pres-
sure of each one of them (0 < p < 0.5, ¢; < 1,7 = 1, 2). This system, under suitable
conditions, has, among others, two equilibrium points, named Lg and L7, which lie
on the Oz;z3—plane and are symmetrical with respect to the Oz;zs—plane. For
certain combinations of the parameters of the problem these points are stable and
then two families of periodic orbits are emanating from each one of them, named
Li, L2 and L1, L2, respectively [7]. The orbits of these families are symmetrical
with respect to the Oz;z3—plane. In the sequel we deal with the family L}.

A first approximation of initial conditions of a small periodic orbit belonging to L§
in the vicinity of Lg can be obtained by the use of first or second order expansions
of Egs (1) around this point. Then this approximation must be corrected to a
desired accuracy to give the exact periodic solution. After this, other members of
the family have to be estimated and corrected successively. The classical linear
predictor-corrector that can be used for this purpose is as follows [3,8].

a) Given the initial conditions xg = (19,220 = 0, &30, 10 = 0, £20, £30 = 0) and
the period T of an already known orbit of the family, we can predict suitable
modifications §xq = (6219, 0, 630, 0, 820, 0) and 6T of these parameters in order
to predict another orbit of the family by considering a constant deviation d to
one of the &’s and, then, by calculating the others from the solution of the
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system
9= %&m + %:—59330 52 Stz + 3;252" =0,
g = 5””;6 10 + g‘“ Sxso + gg”; 5i 20+a;15:r_o (3)
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b) If the prediction is not satisfactory then we have to alter the so obtained initial
conditions and period to get a better approximation. Supposing that these
corrections are 6xg = (10,0, 6%30, 0, 020, 0) and 6T, we may consider one of
the §’s equal to zero and, then, find the rest of them by solving the equations:

Oz 0z, Oz ox
h1=x2+——-ax1205$10+8 05$30+a o 5ZL‘20+—625T'_0
0% 0% oz ot
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The above mentioned coordinates of the orbits and the partial derivatives corre-
spond to the known orbit and are evaluated at ¢ = T.

To use optimization techniques in order to calculate these delta’s, we assume that
the family is described by a function of the initial conditions and the period of
its orbits, f(x5,7) = 0. This means that all these orbits are zeros of f. Then,
the previously mentioned predictor-corrector steps can be interpreted as follows.
Suppose that one of these zeros, x5, is known. Then a new orbit can be predicted
by minimizing the function:

2
¢ =g+ 95 + 95+ 95 + ((6210)” + (6730)” + ($20)* — ), (5)

where g1, g2, gs are the functions appearing in Eqs (3), 6 denotes a proper small
deviation along the family and

973 013 O3 Oz3
g4 = B0 — 0z + (5—;(; — 1) 0x30 + =—— %, 5.’L‘20 + —5;(5’11 (6)

The purpose of this construction of ¢ is to ensure that g; = g = g5 = g4 = 0 are
fulfilied and to force the estimation of the new orbit to be at a distance € from
the known one. If the approximation is not “good enough” it can be corrected by
minimizing the following function:

% = h¥+ hj + B3, (7)

where the functions hi, ho, hs are those appearing in System (4).
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3 Applications and concluding remarks

For the optimization of the functions ¢ and 1 we can use any optimization method.
Of course, there is a large variety of optimization algorithms for computing the min-
ima of an objective function f: D C R* — R. These algorithms possess advantages
and disadvantages and it is not always evident which one is proper for a given class
of applications. Here, we shall apply four well known and widely used algorithms
and we shall compare their efficiency on the problem of Section 2.

Let us briefly describe the considered algorithms. There is a class of methods called
nonlinear conjugate gradient methods, as typified by the Fletcher—Reeves (FR) al-
gorithm and the closely related Polak-Ribiere (PR) algorithm [1,2,4]. Conjugate
gradient methods require storage of order n. On the other hand, they are very
sensitive to rounding off errors. The most known methods in this class are ex-
pressed by:

e =2F L Nk k=0,1,2,..., where \¥ minimizes f(z* + \p¥),
P =V + ¢ PP = -V,

o (V1D - Vi)V f(a*)
B V f(zF-1)TV f(zF-?) ]

where V f(z) is the gradient of f at z. For y = 0 we have the FR method while
for v = 1 we obtain the PR method.

Another efficient class of methods is known under the names quasi-Newton and
variable metric methods, as typified by the Davidon-Fletcher-Powell (DFP) al-
gorithm or the closely related Broyden~Fletcher-Goldfarb-Shanno (BFGS) algo-
rithm [1,4].The above mentioned methods are very stable and they converge su-
perlinearly. On the other hand, these methods require storage of order n?. The
most known methods in this class are expressed by:

;z;k+1 = :L'k — AkBka(.’Ek), k= 0,1,2,... ’
rE(r*)T  Big*(¢F) "By
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where By is an arbitrary symmetric and positive definite matrix, usually taken to be
the identity matrix and A* is the optimal length in the direction p* = —B,V f(zF).
Now, for v = 0 we obtain DFP method, while for v = 1 we get the BFGS method.

By = By + + (g T Beg"uF (uF)T,

In all cases, we have used an efficient line search procedure described in [4] which
is based on Armijo’s algorithm and it is applicable to any descent direction p* (see
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also [9]). This procedure uses two parameters ¢, 8 € (0, 1) and can be implemented
in two versions depending on the input value of the parameter s.

Next we present a high level description of this stepsize adaptation procedure, in
which the corresponding parameters indicate: z° initial point, MIT the maximum
number of iterations required and £ the predetermined desired accuracy.

Algorithm 3.1 Algorithm model with Armijo line search

1. Input {f;2%a, 8 € (0,1);s € {0,1}; m* € Z; MIT; ¢}.
2. Set k=0.
3. If ||V £(z¥)|| < ¢ go to Step 6. Else, compute a descent direction p*.
4. If s =0, set M* ={m € Z | m > m*}, and compute the stepsize
(a) M= g™ = arg max {8™ | f(z* + B7p") - F(a*) < BV (), 1)}
Else (s = 1) compute the stepsize \* = ™, where m; € Z is any integer such
that
(b) f(z* + BmepF) — f(2*) < B™a(Vf(z*),p*) and
(c) f(a*+Bmpk) — f(z¥) > ™ eV £ (), p¥).
5. Set zFt! = gk 4 \kpk,
If £ < MIT, replace k£ by £+ 1, and go to Step 3. Else go to Step 6.
6. Output {z*; f(z*); Vf(z*)}.
The selection s = 0 is not very good for the conjugate gradient methods because, on
average, it requires considerably more function evaluations than the selection s = 1.
To this end, we have used s = 1 for the FR and PR algorithms. The selection s =0
is normally used with variable metric methods algorithms, with m* = 0 to ensure
superlinear convergence. Thus we have used this value for the DFP and BFGS
algorithms.

Furthermore, since in our case the objective function f is bounded from below,
the following subprocedure is used to find an m; satisfying Relations (b) and
{(c) of Step 4 of the Algorithm 3.1. This subprocedure uses the last used step
length A*~1 = B™-1 as the starting point for the computation of the next step [4].

Stepsize Subprocedure

1. If £ =0, set m' = m*. Else set m' = my_;

2. If my, = m' satisfies Relations (b) and (c) of Step 4 of Algorithm 3.1, stop.

3. If my, = m’' satisfies (b) but not (c), replace m’ by m’ — 1, and go to Step 2.
If my, = m' satisfies (¢) but not (b), replace m' by m' + 1, and go to Step 2.

In practice, only a very small number of iterations of the above subprocedure are

required to compute the Armijo stepsize. When a very small stepsize occurs for

several iterations, causing slow convergence, the user can revert to setting s = 0

for one or two iterations.

The search strategy of Algorithm 3.1 converges to a minimizer of f for both s =0
and s = 1. This can be verified by a convergence theorem due to Polak et al. [4].
This theorem requires the search direction p* to be bounded from above, it imposes
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a restriction on the angle between V f(z¥) and p* and states that Algorithm 3.1 is
well defined in the sense that whenever V f(z*) # 0, the search for a stepsize A* is
a finite process, whether s =0 or s = 1.

The above methods have been applied to the problem of Section 2 for three values
of 8: 0.05, 0.1 and 0.15. For these values, all methods have managed to calculate
the family L. The behavior of each method is estimated from the total number of
integrations of Egs. (1) and the total number of function evaluations of the method
that are necessary to compute the whole family. In Table 1 we present comparative
numerical results for all the above mentioned methods.

Table 1

Numbers of integrations (NI) and numbers of function evaluations (NFE).

FR PR DFP BFGS

6 =0.05 NI= 296 302 278 281
NFE= 8009379 9271024 25774 26069

8 =0.10 NI= 266 276 274 278
NFE= 7271126 8516422 25684 25899

=0.15 NI= 288 290 271 284
NFE= 7886236 9091579 31065 26744

It can be seen that, while the methods are almost equivalent regarding the number
of integrations, DFP and BFGS clearly outperform the others in terms of the
number of function evaluations. This results to a remarkable superiority for the
latter methods in the total computational effort.
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