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Abstract

We study the complex zeros of Bessel functions of real order of the first and second kind and

their first derivatives. The notion of the topological degree is employed for the calculation of the

i exact number of these zeros within an open and bounded region of the complex plane, as well as for

localization of these zeros. First, we prove that the value of the topological degree provides the total

number of complex roots within this region. Subsequently, these roots are computed by a generalized

bisection method. The method presented here computes complex zeros of Bessel functions, requiring

| only the algebraic signs of the real and imaginary part of these functions. It has been implemented
and tested, and performance results are presented.
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1. Introduction

Many scientists are interested in finding the zeros of Bessel functions of first and second kind:

J(z) = 2 i =y 2 (1.1)
=2 = emte mIT (v +m + 1) '
; and
j J,(z) cos VT — J-u(2) , v nonintegral ,
vr
NE = o ; (12)
i D osnm = Jalz) g
n—v sin nw

Most of the results obtained refer to upper and/or lower bounds of the real zeros, or regions of
existence or non—existence in the complex plane, for the complex zeros.
In previous communications of ours [20,22,23] the localization and computation of the real

zeros of Bessel and Bessel related functions have been treated.
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In the present paper we tackle the complex roots. We use the notion of the topological degree,
to compute the total number of complex zeros of a Bessel function within a given region. The
numerical calculation of these roots is subsequently performed utilising a generalized bisection
method and the characteristic polyhedron criterion. The methods implemented here require
only the algebraic signs of the functions involved.

2. The topological degree for the computation of the total number of zeros

Consider the equation Fy(z) = O, (O, = (0,...,0) denotes the origin of R"), where F, =
(fiy.o. s fa)T:Dp € R® —» R™ is a function defined and twice continuously differentiable in a
bounded domain D, of R™ with boundary b(D,), whose zeros are simple and not located on
b(D,). Then the topological degree of F, at O, relative to D, is defined by the following sum
[2,9]:

deg[Fn,Dn, 0,] = Z sgn J (X), (2.1)
XeF! (On)

where, J stands for the Jacobian determinant and sgn denotes the sign function.
The topological degree can be represented by the Kronecker integral as follows [8]:

_D(n/2) Skt Axdzy - - dThmrdTiyy - - - dTp
deg[Fn, Da, On) = — 17 ,,/( D/) / AT (2:2)

where the Ay are the following determinants:

9F, 0F, 9F,  9F,

= (=1)"*-1) PRl el O .
Ak ( ) ax; axk_l 6:tk+1 31‘,.,

F,

(2.3)

In the literature there are several numerical methods for the computation of the topological
degree [1,5,6,10-13).

Since deg[Fn, D, Oy is equal to the number of simple solutions of Fy,(z) = O, which give
positive Jacobian, minus the number of simple solutions which give negative Jacobian, the total
number N7 of the roots of F,, can be obtained by the value of deg[F.,, D, 0,], if the Jacobian
possesses the same sign at these roots.

The problem of finding complex zeros of a Bessel function B,(z), where B, stands for J,, J!,
¥, or Y/, in a given domain D,, amounts to finding points 2* = 2} +i 2§ € D, which satisfy the
following system of equations:

R{B.(z*)}
F{B.(2*)}

0 (2.4)

where R{B,(z*)} and ${B,(z*)} indicate the real and imaginary part of B,(2*) respectively.
Obviously, the problem of finding such points is equivalent to solving the following system:

Fo(X) = (f1(X), (X)) = Oy, (2.5)
where X = (z;,z;)7 and

fl(X) = ?R{B‘,(zl + l.‘rz)} = 0,
F2(X) = B{Bofay +i72)} =0 (26)

The following theorem characterizes the total number of complex zeros of Bessel functions
in an open bounded region D,.
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Theorem 2.1 The total number N of complez zeros of the Bessel function B, (z), where B,(z)
is J,(2), J.(2), Y,(2z) or Y!(z), in an open bounded region Dy is equal to the value of the
topological degree of Fy at Oy relative to D, where:
. . T
Fa(X) = (L(X), £2(X))" = (R{B.(w1 +1i22)},S{Bu (21 + iz))}) - (2.7)
Proof. Since B, is an analytic function in the complex plane, the Cauchy-Riemann equations
are satisfied. In particular, if Fa(z1 +i22) = fi + ¢ f2, then the following hold:
of _9f . Ofi_ _0h
. —

8_12-— 6.‘[1'

8—z1 - 612
So, the Jacobian of F; is:

on oh| | o O
0z, Oz, Oz, Oz [af1]2+[6f1]2

on oh|7|_an ok

69:1 6172 _5.‘;; '51:_1

As it is known [24, p.479], the zeros of J,(2) and Y,(z) are all simple. Now, if z is a multiple
zero of J!(z) or Y/(z), then the Bessel equation

22y"(2) + 2y'(2) + (2* — v*)y(2) = 0

!(z) and
Y/(z) have no multiple complex zeros. Thus, the Jacobian determinant of F; is positive at the
zeros of B,. Consequently, the total number A" of solutions of F2(X) = O can be obtained by
the value of deg[F;, Dz, Oy). Thus the theorem is proved. O

implies that zo must satisfy the relation z§ — v* = 0. Therefore, for real values of v, Jj,

We could use any one of the degree computation methods (see for example [1,5,6,10-13]) to
determine the total number of complex zeros. Here we use Kearfott’s method [5-7] which is
briefly described in the sequel.

Suppose that S*~! = (21,%3,...,2,) is an (n — 1)-simplex in R" [5,6,11] and assume F, =

(fi, far-+->fa)T : S*' = R™ is continuous. Then the range simplez associated with S™™! and
F,, denoted by R(S™1, F,), is an n x n matrix with elements ax, 1 < k,! < n given by:
1 if fl(:L‘k) >0
= ? . =0 2.9
ax {—1, i fi(er) < 0. (29)

R(S™"1, F,) is called usable if one of the following conditions holds:

(a) the elements ay of R(S™"', Fy), are:

1, i k>1,
“"’={—1, i I=k+1. (2.10)

(b) R(S™"?,F,) can be put into this form by a permutation of its rows.
When R(S™"!, F,) is usable, then the PaI(R(S"“,F,.)) is defined to be 1, if the number
of the permutations of the rows required to put R(S™', F,) into the form (a) is even. If
this number is odd then Par(R(S"‘l,Fn)) is defined to be —1. For all other cases, we set
Pa.r(R(S"'l,Fn)) — 0. Then the value of the topological degree of F, at O, relative to an

n—dimensional polyhedron P" can be obtained, under suitable assumptions referring to the
boundary of P" [5,6], by the following relation:
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deg[Fn, P, 0,] = 3 Par (R(S™, F)). (2.11)
: i=1

Obviously, this degree computational method requires only the algebraic signs of the function <'
F, to be known. E

3. The CP-criterion and a generalized bisection

; | We now give a topological degree based criterion for the existence of a zero of a continuous
mapping F, = (f1, f2,---, fa)T: P* C R* — R" within a predetermined domain. This criterion,
! called the CP-criterion, is based on the construction of an n-dimensional polyhedron within a
scaled translation of the unit cube, which we call “a characteristic polyhedron”. The theoretical
development of the concepts employed here can be found in [15,21]. Furthermore, a generalized
bisection method will be briefly described for the computation of the solutions of F,(z) = O,.

To define a characteristic n-polyhedron we construct the 2" x n matrices M, whose rows
are formed by all possible combinations of —1, 1. For example for n = 1,2 we have:

_[-1 -1 ‘
M,_[ 1], My= |71 (3.1)
1 1

Suppose now that P* = (Y;,T;,...,Ys:) is an oriented n-dimensional polyhedron with 2"
vertices, Y € R" (i.e. an orientation has been assigned to its vertices). Then we call the ‘
matriz of signs associated with F, and P", denoted by S(F,; P"), the 2" x n matrix whose E :
entries in the kth row are the corresponding coordinates of the vector: .

sgn Fu(Y4) = (sgn fi(Xe),sgn fo(X), - s8n fa( X)) (32)

In the case n = 2, we consider the polyhedron P? = (T, Y;, T3, Y,). Then the matrix of signs
associated with F, and P? will have the form:

sgn f1(Y1) sgn fo(Y1) i
Ta) sgnfo(Ta) |
SF;P,z:Sgnfl(z gn jallz) | '
(B P = | sgn f(Ta)  sga fo(To) (33)
sgn fl(Tq) sgn fz(rq)
3 P is called a characteristic n—polyhedron relative to F,, if S(Fy,; P") agrees with the matrix _
E M., up to a permutation of the rows. Then, under suitable assumptions on the boundary of E
P [5.6],
deg[Fy, P",0,) = 1 # 0, (3.4)

which implies, by Kronecker’s theorem (9, p.161], the existence of a zero inside P" [21]. For a
detailed description of how to construct a characteristic n-polyhedron to locate a desired zero,
see [15,16].

The CP-criterion is a generalization of Bolzano’s existence criterion [17].

Next, we turn to the description of a generalized bisection method for computing zeros of .
any continuous function and at any desired accuracy. This method is used in combination with E
the CP-criterion, and it is called characteristic bisection.
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Table 1

Function a; b a3 by NT

Jas  —20 20 —30 30
0.5 20 -30 3.0
-2.0 2.0 0.5 3.0

6
2
3
J_as —4.0 4.0 —-40 40 8
4
4

0.5 40 -40 4.0
—40 40 05 4.0
J_ss —40 40 —40 40 10
05 40 —40 40 4
—40 40 05 40 5
Yoz  —55 55 —45 45 12
05 55 —45 45 6
—-55 55 05 45 6
Yer  —90 90 -50 50 14
05 90 -50 50 6
-90 90 05 50 7

Bisection methods for finding solutions of systems of equations depend on a criterion which
guarantees that a solution lies within a given region. Then this region is subdivided in such a way
that the criterion can again be applied to the new subregion [4-6,14-16]. The method used here
has all the advantages of the one-dimensional bisection, it always converges within the initially
specified domain and has been successfully applied to various difficult problems [3,18,19]. The
only information required is the algebraic signs of the components of the considered function.

In the literature, several bisection methods are available [4-6,14] that require the computa-
tion of the topological degree to secure its nonzero value. However, the present characteristic
bisection method avoids this computation by ensuring that the topological degree retains a
nonzero value at every iteration. To this end, we bisect a characteristic n-polyhedron P" in
such a way that the new refined one is also characteristic. For this purpose the midpoint of a
proper 1-simplex (edge) of P is used to replace that vertex of P™ for which the signs of the
function components are identical.

The number of bisections of the proper l1-simplexes of the initial characteristic polyhedron
P required to obtain a new refined characteristic polyhedron P} such that the length of its
longest edge A(P}) satisfies A(P}) <, for some € € (0,1), is given by:

¢ = [log,(A(PME™)] (3.5)

(see [21] for a proof) where [-] denotes the smallest integer not less than the real argument.
The CP—criterion combined with knowledge of the total number of zeros can be used to
isolate each of the zeros by considering suitable subregions. Once this has been accomplished,
generalized bisection can be employed to compute them.
The signs of the real and imaginary parts of Bessel functions can be determined by adding a
few dominant terms of the respective series, so that the magnitude of the first neglected term
is too small to affect the sign of the summation.




232

Table 2
Function R{z}} {22}

Joas 0.00000000000000 —2.51821469985976
—1.86866736701277 —2.04810004956751
1.86866736701277 —2.04810004956751
—1.86866736701277 2.04810004956751
1.86866736701277 2.04810004956751
0.00000000000000 2.51821469985976

J_as —0.90624416289284 —3.09287420339388
0.90624416289284 —3.09287420339388
—2.80266861329756 —2.31961612178580
2.80266861329756 —2.31961612178580
—2.80266861329756 2.31961612178580
2.80266861329756 2.31961612178580
—0.90624416289284 3.09287420339388
0.90624416289284 3.09287420339388

Joss 0.00000000000000 -—3.84131610077643
—1.80928426210063 —3.55080092521796
1.80928426210063 —3.55080092521796
—3.74122352456633 —2.54691956902185
3.74122352456633 —2.54691956902185
—3.74122352456633 2.54691956902185
3.74122352456633 2.54691956902185
—1.80928426210063 3.55080092521796
1.80928426210063 3.55080092521796
0.00000000000000 3.84131610077643

Y2 0.62649520528882 —4.27391799602890
—-1.16553459156468 —4.19771702352715
2.44269288905019 —3.82723553123862
—3.00555785660360 —3.57433283616921
4.40075330264958 —2.68766359398660
—5.07431004353783 —2.12169468594545
—5.07431004353783 2.12169468594545
4.40075330264958 2.68766359398660
—3.00555785660360 3.57433283616921
2.44269288905019 3.82723553123862
—1.16553459156468 4.19771702352715
0.62649520528882 4.27391799602890

Yo7 —0.71454322875555 —4.59849659381814
1.07287087406319 —4.55152621181362
—-2.52500911890794 —4.16156082248494
2.89617438090860 —4.00812035260413
~4.45195609774797 —3.10318047432551
4.87301234219963 —2.78095055769101
—7.13134306218891 —0.67166558082952
—7.13134306218891 0.67166558082952
4.87301234219963 2.78095055769101
—4.45195609774797 3.10318047432551
2.89617438090859 4.00812035260413
—2.52500911890794 4.16156082248493
1.07287087406319 4.55152621181362
—0.71454322875555 4.59849659381814

VRAHATIS ET AL.
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4. Applications and concluding remarks

We have tried our method with several random regions of the complex plane,.and our expe-
rience is that it behaves predictably and accurately. '

Let us, for instance, locate and compute some complex zeros z, = (R{2.},S{2,}) of (1.1)
for various v. We have considered J_45(2) and the polyhedron:

P? = [—4,4] x [-4,4].

Using Kearfott’s method, we have found that the value of the topological degree relative to
P? is equal to eight. Thus, by Theorem 2.1, this value is the total number of complex zeros of
the above function in P?. On the other hand, according to Hurwitz Theorem (24, p.483] this
function has a total of eight complex zeros in the whole complex plane. Therefore, we have
managed to localize all of these zeros in a specific bounded region around the origin. Also, we
have considered several other randomly chosen polyhedra and we have obtained similar results.
For example, by taking the polyhedron:

P? =[0.5,3] x [0.5,3],

we have found that there exists one single complex zero within it. Employing the CP-criterion
and the generalized method of bisection described previously, we have computed this zero,
which is:

s = (ER{Z:,;_S},S‘{Z’:,.,,}) = (2.80266861320756, 2.31961612178580),

within an accuracy of 10718,

Using the same process we have been able to isolate and compute all the complex zeros of
the above function, and they are exhibited in Table 2. Since Kearfott’s method depends on a
heuristic parameter, we have had to ensure that the estimated number of zeros is correct. For
this reason we have used several values of the parameter and, besides, we have tested the results
by subdividing the initial polyhedron into smaller regions and calculating the topological degree
of the subregions so obtained.

Analogous results have been extracted for J_ss (z). We have found that it has ten complex
zeros, two of which are purely imaginary, and this accords with Hurwitz theorem. All of them
lie also within the polyhedron: '

P? = [-4,4] x [-4,4].

They have been isolated and computed and are presented in Table 2.

Further results regarding other Bessel functions and starting regions are exhibited in Tables
1&2 )

in the first table we give the total number N7 of roots of various Bessel functions exist-
ing within several regions. In the second table we display, giving fifteen significant digits, the
corresponding complex roots zj = (R{z}}, I{z:}) of these functions.

It is worth noticing that the nonzero value of the topological degree relative to a polyhedron
P? ensures, by virtue of Kronecker’s existence theorem [9, p.161], the existence of at least
one zero within P2. In such a case, employing the CP—criterion and the generalized bisection
method, we are able to isolate and compute these zeros one by one.
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