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We deal with the localization and computation of the zeros of the
Airy functions Ai(z), Bi(z) and their derivatives 4i'(z), Bi'(z). To this
end a new algorithm is presented employing the notion of the
topological degree of a continuous mapping for the localization
portion. For the rootfinding part we describe an algorithm based
on a modified bisection method which requires only the signs of
function values. It is proved here how many terms of the Airy series
are enough to give their correct sign. The algorithms locate and
compute rapidly and accurately with certainty any zero. They have
been implemented and tested. Performance information is reported.
Lower and upper bounds of a zero are also proposed.

1. Introduction

The Airy functions Ai(z) and Bi(z) are the two linearly independent
solutions to the differential equation {1, 12):
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They were first considered by G. B. ARy (1838) in his studies of
the intensity of light in the neighbourhood of a caustic. They often
appear as the solutions to boundary value problems in electroma-
gnetic theory and quantum mechanics [4].

Ai(z) is encountered when forming the group invariant solutions
to the heat equation [5], as well as the similarity solutions to the
linearized Korteweg-de Vries equation [13].

Ai(z) tends to zero for large positive z, while Bi{z) increases
unboundedly. The Airy functions are expressible in terms of Bessel
functions as follows (1, 12]:
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where z > 0 and
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In many cases the derivatives of the Airy functions Af'(z) and
Bi'(z) also appear:
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Bi'{—z) = % (230 + J23(0)) .

Ai(z), Ai'(z) have zeros on the negative real axis only. Bi(z), Bi'(z)
have real zeros on the negative real axis and complex zeros in the
sector {1}

fu<largzl < tu. 5

The zeros of these functions are very useful for their study. On the
other in general hand there are not analytical expressions for these
2€105.

In the present paper we implement the concept of the topological
degree [2] and especially the Kronecker-Picard theory [6, 7, 3] to
find the exact number of real roots of Airy functions within a given
region. Then this theory is used to give a new process for isolating
one of these zeros. Subsequently, this root can be numerically
computed to any accuracy (subject to relative machine precision)
utilizing a proper method. Finally, we provide some numerical
applications and give our conclusions.

2. The topological degree for the localization
of zeros of Airy functions

Suppose that a real function f(z) is defined and twice continuously
differentiable in a bounded interval [a, b] such that f{a) f(b) + 0.
The topological degree of f at 0 relative to [a, b] can be used to
calculate the total number A7 of simple solutions of f(z) = 0 within
(a, b). According to Picard’s extension and Kronecker’s integral
representation of the topological degree, 4" is given by:
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where & is a suitable positive constant. PICARD 6, 7} has ex-
plicitly shown that (6} is independent of the value of ¢ (for a
detailed derivation of Equation (6) see, for example, [11]).

The above mentioned method is applied in the sequel for the
localization of the simple real zeros of the Airy function Ai(z). In
this case Relation (6) can be written as follows:

Are fG(z) dz
14

+ 1 [arctan (CAi’(b)) — arctan <§Ai’(a)ﬂ , (7)
n Ai(b) Ai(a)

where
AR AP'(2) — AI()
T AR + A

We describe now the respective algorithm which results in the
exact number of roots of the Airy function Ai(z) existing within a
predetermined interval (g, b), isolates one “arbitrary” zero bisecting
this interval and gives a lower bound a* and an upper one b* for
this root. d denotes the predetermined accuracy for the integration
in Relation (7).

G(z) )

Algorithm 1. Localization of a real zero of the Airy function
Ai(2).

Step 1. Input {a; b; &; 8}.
Step 2. Define G(z) from Relation (8).

1 £Al'(ay)
Step 3. Define H(ay, a,) = — arctan
n

Ai(ay)

1 Gﬁmv
— —arctan | ———— ).
n Ai(a,)

b

Step 4. Compute [ = — E J G(z) dz within the accuracy & and
n

set Inty = 1 + H(b, a).
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Step 5. Set A7 = Int,. where
Step 6. If Inty = 1 or 0 go to Step 15. Z3mE 12 S3m—112
Step 7. Setm = (a + b)/2 and check whether Ai(m) = 0;ifs0, ‘m = 33,553 7 Fon + 473) + =3Pl T + 273)”

set a=m—y and b =m +y (where y is the relfsmve

machine precision) and go to Step 15; otherwise continue. 5 = 1

m M=|-=+]/~+—1
£ 6 4 36

Step 8. Compute I = ~ T JG(Z) dz within the accuracy 3 and and N is such that the following relation holds:

set Int, = I + H{m, a).

Step 9. Set Int, = Int, — Int;.

Step 10. If Int, = 1, set b = m and go to Step 15.

Step 11. If Int, = 1, set ¢ = m and go to Step 15.

Step 12. If Int; = 0, set a = m; go to Step 7.

Step 13. If Int, = 0, set b = m; go to Step 7.

Step 14. Int, < Int,, set b = m, Int, = Int; and go to Step7;
otherwise set a = m, Intg = Int, and go to Step 7.

Step 15. Set a* = a and b* = b.

Step 16. Output {a*; b*; A"}.

It

Remark 1: In order to localize zeros of other Airy functions,
Bi(z), Ai'(z), Bi'(z), Steps 2 and 3 of the above algorithm have to be
adapted.

Remark 2: The second derivatives Ai” and Bi” appearing in G(z)
can be obtained by use of Equation (1). The third derivatives Ai"
and Bi" involved when dealing with zeros of 4" and Bi’ can be
taken by differentiating (1).

3. Computing zeros of Airy functions

A solution of f(z) = 0, where f:[a,b] =« R — R is a continuous
function, is guaranteed to exist in the interval [g, b if f(a) f(b) £ 0.
This is known as Bolzano’s criterion and can be generalized to
higher dimensions [10). Based on this condition various rootfinding
methods, as for example bisection methods, are created. Here we
shall use a simpiified version of the bisection method described in
[8, 9]. It is reported there that, in order to compute a root of f(z),
the following iterative formula can be used:

241 = 2z; + 580 f(z0) sgn f(z) B/2'T, i=01,.., )

with z, = @, h = b — a. The iterations (9) converge to a root
r € (a, b) if for some z, i = 1,2, ..., there holds:

sgn f(zo)sgn f(z) = —1.

The number of iterations h required to obtain an approximate root
r* such that jr — r*| < ¢ for some e € (0, 1), is given by:

h = [log, (he™ )1,

where the notation [ -] refers to the smallest integer not less than
the real number quoted.

Instead of the iterative formula (9) we can also use the following
one:

Ziy = z; — 5gn f(zo) sgn f (z) B2,

withzy =band h = b — a.

The schemes described above have all the advantages of the
bisection method. Also, as it is evident from (9) and (10), the only
computable information required by them is on the algebraic sign
of the function f.

To determine the number of terms necessary for the derivation
of the algebraic sign of the series expressions of the Airy functions
we state the following theorems.

i=0,1,..., (10)

Theorem 1: The sign of the Airy function Ai(—z), z > 0, is the
same as the sign of the summation

M+N

Liz)= 3 (—=1)"cn,

m=0
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Proof: Let J (2} be the Bessel function
Jv(z) = Z (_‘ 1)m am(n9 Z) 3
m=0

where
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Then, from Relations (2) we have that

z 0

Ai(—2) = 4[ Y (=1 (@nl1/3,2) + an(—=1/3, Z))]-
m=0

The sequences a,,(1/3, z) and a,,(— 1,3, z) fulfil the Leibnitz Theorem

conditions for

[ 5 22
m>——+1/—+—1.
6 4 36
Consequently, the Airy function Ai(—z) satisfies the conditions of
the Leibnitz theorem. So, the series

R() = §M (— 1) (@),

where
(@) = an(1/3,2) + a,(—1/3,2),

is an alternating series for which the three conditions of the
Alternating Series Estimation Theorem hold, thus ensuring that its
(M + N + 1)th term is larger than the absolute value of the
remainder of R(z). Furthermore, the signs of the (M + N + 1)th
term and of the remainder of R(z) arc the same. Now, by Assumption
(12), the sign of the Airy function Ai(—z) is the same as the cor-
responding sign of L(z). Thus the theorem is proved.

Working in the same way we are able to prove the following
theorems.

Theorem 2: The sign of the Airy function Bi(—z), z > 0, is the
same as the sign of the summation

M+N
L(Z) = z (_ l)m Con » (13)
m=0
where
sz Z3m+1
Cy = S ,
32m* U M(m + 2/3) 32" +5%m! ['(m + 4/3)
5 2
M = [_ — + zZ + i s
6 4 36
and N is such that the following relation holds:
M+N
femrwel < Z (=1)"c,- (14)
m=0

Theorem 3: The sign of the derivative Ai'(—2), z > 0, is the same
as the sign of the summation
MAN

Liz) = ZO (=W"c,, (15)
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where
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and N is such that the following relation holds:

ler+nsal <

M+N

Y (=Dre,
=0

m=

Theorem 4: The sign of the derivative Bi'(—z), z > 0, is the same
as the sign of the summation

L(z) =

where

M+N

X (=D, (17
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2 22 1]
-2+ 1/=+=1,

3 4 9

and N is such that the following relation holds:

lesnstl <

M+N

go (=1 cf - (18)

Next we give the description of an appropriate algorithm for the
computation of a real zero of the Airy function Ai(z). a, and b, are
the left and right bounds, respectively, and e is the predetermined
accuracy.

Algorithm 2: Computation of a real zero of the Airy function

Ai(z).

Step
Step

Step

Step 5.

Step 6.

Step 1.

Step 8.

Step 9.

Step 10
Step 11

Step 12

Step 13

Step 14

1. Input {a,; b,; e}.

2. Set h, = b, — a,
Step 3.

4

Set h = [log; (h,e ).

. Set zy = a,.

5 1
SetM =} ——+ |/—+—1|.
6 4 36

§ zgm+1/2
SetS = —1ym
2z ) [32"'*”%! T'(m + 43)

ng—l/z

+ .
33 13m M(m + 2/3)}

M+ 1

Zgnﬁ- 1/2
(-] =
32" B! [m + 4/3)

Setm =

[

SetT
Im—-1j2

+ i }

32183, Tim + 2/3)

If|T| = |S), thenset S = S + 7, replacembym + 1 and
return to Step 8; otherwise set s, = sgn (S + T) and go
to the next step.

Seti= —1.

If i £h, replace i by i + 1 and go to the next step;
otherwise, go to Step 18.

z? 1

+—1.
36-|

M z_3m+1/2
SetS = —1m -
,,,Zz‘g (=1 [32"‘“/3m! I'm + 4/3)

5
SetM=|—-=+
6 4

z
+ .
32m=3m! Plm + 2/3):'

Im—1/2
i

Setm=M+ 1.

. (16)

Step 15.

Step 16.

Step 17.
Step 18.
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Z3m*12
SetT = (—1)"‘[ -
32 W3t Fm + 4/3)
N z?m-llz
3218 M(m + 2/3))
If|T| z |S), thenset S = S + T, replace m by m + 1 and

return to Step 15; otherwise set s; = sgn (S + T) and go
to the next step.

Set 2,4 = z; + $o8;h,/27"* and return to Step 11
OQutput {z;}.

Remark 3: In order to obtain zeros of the other Airy functions,
Steps 6, 8, 13, and 15 of the above algorithm have to be changed
accordingly.

Table I: Several runs of Algorithm 1

a b A of Ai A7 of Bi A of AP 4" of Bi'

- 5 0. 2 3 3 2

- 10. -5 4 4 4 4

- 15 —10. 6 6 6 6

- 20 —15. 7 6 6 7

- 25 —-20. 7 8 8 7

- 30 —-25. 9 8 8 9

- 35 -30. 9 9 9 9

~ 40. ~35 9 10 10 9

— 45 —40. il 10 10 11

- 50. —45. 11 1 11 1

- 55 —~50. 11 12 12 11

— 60. —~355. 12 12 12 12

— 65. ~60. 13 12 12 13

~ 70 —65. 13 14 14 13

- 75 —-70. 14 13 13 14

- 80, -175. 14 14 14 14

— 85. —80. 14 15 i5 14

- 90, -85, 15 14 14 15

— 95, —90. 15 16 6 135

—100. —95 16 ts 15 16

Table I1: Several runs of Algorithm 2

i r, of Ai r; of Bi 7y of A7 7, of Bi'
1 — 23381074101 - 11737132222 ~ 10187929723 — 22944396830
2 — 4.0879494438 — 3.2710933025 — 3.2481975825 — 40731550894
3 — 5.5205598278 — 4.8307378414 — 4.8200992115 — 55123957299
4 ~ 6.7867080898 — 61698521281 — 61633073559 — 6.7812944462
5 — 7.9441335869 — 7.3767620791 — 7.3721772553 — 7.9401786894
6 — 9.0226508531 — 8.4919488463 — 8.4884867342 — 9.0195833590
7 —100401743414  — 95381943791 — 9.5354490526 —10.0376963351
8  —11.0085243036  —10.5299135065  —10.5276603971 - 11.0064626679
9 —11.9360155631 114769535511  —11.4750566337  —11.9342616452

10 ~12.8287767527 —12.3864171384 —12.3847883720 -~ 12.8272583093

i1 —13.6914890350  —13.2636395228  —13.2622189618 —13,6901558270

12 —145278299516  —14.1127568089  —14.1115019706  —14.5266457636

13 —15.3407551358 149370574120  —14.9359371969 —15,3396930824

14 —16.1326851568 —15.7392103510 — 157382013738 —16.1317247825

15 —16.9056339973 ~16.5214195505  —16.5205038256 —16.9047594120

16 —17.6613001056 —17.2855316244 —17.2846950504 —17.6604987433

17 —18.4011325991 —18.0331132871 —18.0323446226 — 184003943673

18 —19.1263804741 ~18.7655082843 —18.7647984378 —19.1256971566

19 —19.8381298916 —19.4838801329 —19.4832216567 —19.8374947186

20 —20.5373329075 —20.1892447853 —20.1886315096 —20,5367402416

21 —21.2248299435 —20.8824959%41 —20.8819227556 —21.2242750450

22 —21.9013675955 —21.5644252846  —21.5638877233 —21.9008464453

23 225676129174  —22.2357378817 222352322855  —22.5671220806

24 232241650010  —22.8970655541  —22.8965887390  —23.2237015213

25 —23.8715644554 —23.5489770795 ~—23.5485262961 —23.8711257718

26 —24.5103012365  —24.1919868505  —24.1915597096  —24.5098851171

27 —25.1408211660 248265620120  —24.8261564260 —25.1404256555

28 —25.7635314009 ~25.4531284270 — 254527425619 —25,7631547770

29 —26.3788050520 —26.0720756983 —26.0717079353 —26,3784457913

30 269869851115  —26.6837614250  —26.6834103284  —26.9866418599

31 —27.5883878098 —27.2885148300  —27.2881791216 —27.5880593593

32 - 28.1833055025 —27.8866398716 —27.8863184089 —28.1829907714

33 —28.7720091651 ~28.4784179256 —28.4781096832 —287717071810

34 —29.3547505587 —29.0641101077 —26.0638141628 —29.3544604447

35 —29.9317641190 —29.6439592958 ~29.6436748147 —29.9314850821

36 —~30.5032686113 —30.2181918969 —30.2179181246 —30.5029999320

37 —31.0694685851  —30.7870193978  —30.7867556481  —31.0692096088

38 —31.6305556579  —31.350639731!  —-31.3503853792  —31.6303057877

39 —32.1867096528 —31.9092384835 —31.9089929585 —32.1864683427

40 — 327380996089 —32.4629899667 — 324627527463 —32.71378663585
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4, Applications and concluding remarks

We have tested our algorithms on A4i, Bi, Ai’ and Bi’ using several
random intervals (a, b). Our experience is that our methods behave
predictably and accurately. The utilized input values of £ and é of
Algorithm 1 and ¢ of Algorithm 2 were 1072, 1073, and 107'%,
respectively. Some of the obtained results are exhibited in Tables I
and II. In the first table we give the total number of roots 4™ of
the above mentioned Airy functions existing within several intervals.
In the second table we display, giving ten decimal digits, the “first”
40 roots r; of these functions which were computed by Algorithm 2.

As mentioned above, Algorithm 1 localizes only one of the roots
inside (a, b). If someone needs to isolate the rest of the zeros, one
has to repeat the whole procedure for the remaining intervals (a, a*)
and (b*, b). Furthermore, if the total number of roots in the interval
(a, b) is odd, then the user is able to apply the bisection method in
order to compute one of them within an accuracy ¢ and, of course,
to localize this zero in a small interval with length 2¢ (for details,
see [11]).
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ATANASSOVA, L.

On the R-Order of a Generalization of Single-Step
Weierstrass Type Methods

MSC (1991): 65H05, 30C15, 65B0S, 65G10

This note deals with the R-order of convergence of the Weierstrass
type single-step methods for the simultaneous determination of all
simple polynomial roots.

1. Introduction

Consider a polynomial of degree n > 3,

n
) =x"+a,_x" '+ . +a, =[] (x—xp,
i=1

(1.1)

with only simple real or complex roots x;, x5, ..., X,.

The polynomial equation f{x} = 0 leads to the following fixed
point equation,

Jx)
X=X = ———,

[T &x-x)

J=1,j%i

i=12,..,n. (1.2)

Suppose that x%, x%, ..., x% are distinct, reasonably close ap-
proximations to the simple roots xy. x,, ..., X, of (1.1) at the k-th
iterative step. Then the equation (1.2) gives raise to the following
iterative method introduced by WEIERSTRASS [8] for the simultaneous
determination of all simple roots of (1.1):

f&xH
ﬁ (x} — x4

j=1.%i

x:.‘+1=x£.‘— s i= 1,2,...,}1; k=0,1,....

(1.3

The Weierstrass method (1.3) was subject of investigations by
several authors and a survey on its properties can be found in [9].
It has been shown in [5] that the method (1.3) is the Newton method
applied to the Viéte system of n equations in x,, ..., x,, obtained
by equating to a; the coefficients of x' for i = 0,...,n — 1 in the

n

expansion of [] (x — x;} as a polynomial in x (see also [9]). The
j=1

iteration (1.3) has local quadratic convergence if it starts close

enough to the roots xy, ..., x, of (1.1).

The convergence order can be increased by calculating the new
approximations x¥*1,1 < i £ n,in (1.3) using the already calculated
approximations x{*1, ... x¥*1 (the so-called Gauss-Seidel ap-
proach). Namely, the Gauss-Seidel procedure applied to the method
(1.3) leads to the iteration

k
Xi
R L] ,
fF =Y T od =<
i=1 j=it1
i=12..,n; k=01,..., (1.4)

for the simultaneous determination of all simple roots of a poly-
nomial f.

The Gauss-Seidel method (1.4) was analyzed by ALEFELD and
HERZBERGER in the case of real roots of a given polynomial £ [1].
Let it =xF —x,i=1,2,...,n, k=0,1, ... Then, the following
estimation can be verified [1]:

i—1 "
R+ §C|hi»‘|(2 B+ 3 1h§1>. (1.5)
j=1 j=i+1

Using (1.5), ALEFELD and HERZBERGER proved that the R-order of
convergence of procedure (1.4) is at least | + ¢, where o, is the
unique positive solution of the equation ¢" — ¢ — 1 = 0.

For simultaneously determining all roots of a given polynomial
(1.1) the following total-step method (TSM),

. w
XY =k . ) —, 1gign,
(f — xk — akh

J'=H*i ! !
Ak = — fe<d) ~, k=g, [ 09

IT G —xk— a1k

s=1,s%{

i=12..,n; p=1,2,...,R; k=0,1,.., J

was proposed by ANDREEV and KJURKCHIEV in [6]. For a fixed
integer R > 0 the method (1.6) is a modification of the Weierstrass
method (1.3) with raised order of convergence.

Let x, i = 1, ...,n, be the initial approximations for the roots
such that all simple roots x;,i = 1, ..., n, are contained in the discs
centered at x with radii p,ie. x? — x} < pfori =1, ..., n Then,
the following assertion for the order of convergence of (1.6) was
given in [3] (see also [6]).





