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We deal with the localization and computation of the zeros of the 
Airy functions Ai(z), Bi(z) and their derivatives Ai’(z), Bi’(z). To this 
end a new algorithm is presented employing the notion of the 
topological degree of a continuous mapping for the localization 
portion. For the rootfinding part we describe an algorithm based 
on a modified bisection method which requires only the signs of 
function values. It is proved here how many terms of the Airy series 
are enough to give their correct sign. The algorithms locate and 
compute rapidly and accurately with certainty any zero. They have 
been implemented and tested. Performance information is reported. 
Lower and upper bounds of a zero are also proposed. 

1. I n t r o d u c t i o n  

The Airy functions Ai(z) and Bi(z) are the two linearly independent 
solutions to the differential equation [1, 121: 

zy = 0 d2Y _ _  
dzZ 

They were first considered by G. B. AIRY (1838) in his studies of 
the intensity of light in the neighbourhood of a caustic. They often 
appear as the solutions to boundary value problems in electroma- 
gnetic theory and quantum mechanics [4]. 

A i ( z )  is encountered when forming the group invariant solutions 
to the heat equation [5], as well as the similarity solutions to the 
linearized Korteweg-de Vries equation [13]. 

A i ( z )  tends to zero for large positive z ,  while Bi(z) increases 
unboundedly . The Airy functions are expressible in terms of Bessel 
functions as follows [ I ,  121: 

where z > 0 and 
’ - 3  ” - L z 3  2 . (3) 

In many cases the derivatives of the Airy functions Ai‘(z) and 
Bi’(z) also appear: 

z I A?(?) = - - ( ] - 2 , 3 ( i )  - r2,3(o),  
3 

(41 

Ai(z), Air@) have zeros on the negative real axis only. Bi(z), Bi’(z) 
have real zeros on the negative real axis and complex zeros in the 
sector [l]: 

(5) 
The zeros of these functions are very useful for their study. On the 
other in general hand there are not analytical expressions for these 
zeros. 

In the present paper we implement the concept of the topological 
degree [2] and especially the Kronecker-Picard theory [6, 7, 31 to 
find the exact number of real roots of Airy functions within a given 
region. Then this theory is used to give a new process for isolating 
one of these zeros. Subsequently, this root can be numerically 
computed to any accuracy (subject to relative machine precision) 
utilizing a proper method. Finally, we provide some numerical 
applications and give our conclusions. 

3 u < larg 21 < $ u . 

2. T h e  topo log ica l  degree fo r  t he  local izat ion 
of zeros  of Airy func t ions  

Suppose that a real function f(z) is defined and twice continuously 
differentiable in a bounded interval [a, b] such that f ( a )  f ( h )  + 0. 
The topological degree of f at 0 relative to [a, b] can be used to 
calculate the total number N‘ of simple solutions of f ( z )  = 0 within 
(a, b). According to Picard’s extension and Kronecker’s integral 
representation of the topological degree, Nr is given by: 

+ I [ arctan (F) - arctan (%)I , 
71 

where 5 is a suitable positive constant. PICARD [6, 71 has ex- 
plicitly shown that (6) is independent of the value of ( (for a 
detailed derivation of Equation (6)  see, for example, [ll]). 

The above mentioned method is applied in the sequel for the 
localization of the simple real zeros of the Airy function Ai(z). In 
this case Relation (6) can be written as follows: 

+ x [arctan (z) - arctan (%)I, (7) 

where 
Ai(z) Ai“(2) - Ai’’(z) 

G(z) = 
Ai2(z) + <’Ai’’(z) 

We describe now the respective algorithm which results in the 
exact number of roots of the Airy function Ai(z)  existing within a 
predetermined interval (a, b), isolates one “arbitrary” zero bisecting 
this interval and gives a lower hound a* and an upper one b* for 
this root. d denotes the predetermined accuracy for the integration 
in Relation (7). 

Algori thm 1: Localization of a real zero of the Airy ,function 
Ai(z). 

Step 1 .  Input {a ;  b;  <; b}.  
Step 2. Define G(z) from Relation (8). 

1 
Step 3.  DefineH(al, a2)  = - arctan 

n 

Step 4. Compute I = - - G(z)dz within the accuracy 6 and 
x ’ J  

set Into = I + H(b ,  a). 
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Step 5 .  
Step 6 .  
Step 7. 

Step 8 .  

Step 9.  
Step 10. 
Step 1 1 .  
Step 12. 
Step 13. 
Step 14. 

Step 15. 
Step 16. 

Set N r  = Into. 
If Into = 1 or 0 go to Step 15. 
Set m = ( a  + b) /2  and check whether Ai(m)  = 0; if SO, 
set a = m - y and b = rn + y (where y is the relative 
machine precision) and go to Step 15; otherwise continue. 

Compute I = - - G(z) dz within the accuracy 6 and 

set Int, = I + H(m,a).  

Set Int, = Into - Int,. 
If Int, = 1 ,  set b = m and go to Step 15. 
If Int, = 1, set a = rn and go to Step 15. 
If Int, = 0, set a = rn; go to Step 7. 
If Int, = 0, set b = m; go to Step 7. 
Int, 5 Int,, set b = rn, Into = Int, and go to Step 7 ;  
otherwise set a = m, Into = Int, and go to Step 7. 
Set a* = a and b* = b. 
Output {a*;  b*; M'). 

t J  IT 

Remark 1: In order to localize zeros of other Airy functions, 
Bi(z), Ai'(z), Bi'(z), Steps 2 and 3 of the above algorithm have to be 
adapted. 

Remark 2: The second derivatives Ai" and Bi" appearing in G(z) 
can be obtained by use of Equation (1). The third derivatives Ai"' 
and Bi"' involved when dealing with zeros of Ai' and Bi' can be 
taken by differentiating (1). 

3. Comput ing  zeros  of Airy func t ions  

A solution of f ( z )  = 0, where f :  [a, b] c IR -+ R is a continuous 
function, is guaranteed to exist in the interval [a, b] if f ( a )  f(b) 5 0. 
This is known as Bolzano's criterion and can be generalized to 
higher dimensions [lo]. Based on this condition various rootfinding 
methods, as for example bisection methods, are created. Here we 
shall use a simplified version of the bisection method described in 
[8, 91. It is reported there that, in order to compute a root off  (z), 
the following iterative formula can be used: 

zi+l = zi + sgnf(zo)sgnf(zj) h/2 '+ ' ,  i = 0, 1, ... , (9) 

with zo = a, h = b - a. The iterations (9) converge to a root 
r E (a, b) if for some zi, i = 1,2, .. ., there holds: 

sgn f ( z o )  sgn f ( z J  = - 1 . 

The number of iterations h required to  obtain an approximate root 
r* such that Ir - r*] 5 E for some e E (0, l), is given by: 

h = [log, (hE- ')I, 
where the notation r.1 refers to the smallest integer not less than 
the real number quoted. 

Instead of the iterative formula (9) we can also use the following 
one: 

zi+ 

with zo = b and h = b - a. 
The schemes described above have all the advantages of the 

bisection method. Also, as it is evident from (9) and (lo), the only 
computable information required by them is on the algebraic sign 
of the function f .  

To determine the number of terms necessary for the derivation 
of the algebraic sign of the series expressions of the Airy functions 
we state the following theorems. 

= zi - sgn f(zo) sgn f(zi) h/2"' , i = 0, 1, .. . , (10) 

Theorem 1: The sign of the Airy function Ai(-z), z > 0, is the 
same as the sign of the summation 

M + N  

L(4 = 1 (- 1)" c,  , 
m = O  

where 

c ,  = +- 
23rn+ 1 / 2  z3m-1/2  

32mn+1/3rn! r ( m  + 4/3) 32m-'%! r ( m  + 2/3)' 

and N is such that the following relation holds: 

P r o o f  Let J,(z) be the Bessel function 
m 

JJZ) = 2 (- 1)" a&, 2) 1 

"-0 

where 
Z 2 n + v  

a&, z) = 22m+v I m .  r(v + rn + 1 ) .  

Then, from Relations (2) we have that 

1 (-1)"' (a,,,(1/3, z )  + a,(- 1/3,z)) 

The sequences a,(1/3, z) and a,( - 11 3, z )  fulfil the Leibnitz Theorem 
conditions for 

m > [ - + + l / F g l .  

Consequently, the Airy function Ai( - z )  satisfies the conditions of 
the Leibnitz theorem. So, the series 

m 

R(z)=  C ( - l )mcm(z ) ,  
m = M  

where 

Cm(z) = am(1/3, Z) + urn(- 1/3, z) ,  
is an alternating series for which the three conditions of the 
Alternating Series Estimation Theorem hold, thus ensuring that its 
( M  + N + 1) th term is larger than the absolute value of the 
remainder of R(z). Furthermore, the signs of the ( M  + N + 1) th 
term and ofthe remainder of R(z) arc the same. Now, by Assumption 
(12), the sign of the Airy function Ai( - z )  is the same as the cor- 

Working in the same way we are able to prove the following 
responding sign of L(z). Thus the theorem is proved. 

theorems. 

Theorem 2 :  The sign of the Airy function Bi(-z), z > 0, is the 
same as the sign of the summation 

M + N  

L(z)= C ( - l ) m C r n ,  (13) 
m = O  

where 

c, = 
23n+ 1 

32" t5/6m! T(rn + 4/3) ' 
-- 23" 

32mt 1/6 rn! T(m + 2/3) 

and N is such that the following relation holds: 
M + N  

(14) 

Theorem 3: The sign of the derivative Ai'(-z), z > 0, is 6he same 
as the sign of the summation 

M + N  

L(z) = c ( - - ~ ) " C m ,  (15) 
m = O  
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where 
z 3 m + 2  23"' c, = - 

32m+5'3m! T ( m  + 5/3) 32"+1i3m! r(m + l /3) '  

and N is such that the following relation holds: 

Theorem 4: The sign of the derivative W (  -z), z > 0, is the same 
as the sign of the summation 

and N is such that the following relation holds: 

Next we give the description of an appropriate algorithm for the 
computation of a real zero of the Airy function Ai(z). a, and 6, are 
the left and right bounds, respectively, and e is the predetermined 
accuracy. 

Algori  t h rn 2: Computation of a real zero of the Airy function 
Ai(z). 

Step 1 .  Input {av; b,; e}.  
Step 2. Set h, = 6, - a,. 
Step 3. Set h = [log, (hVe-')1. 
Step 4. Set zo = a,. 

step 5 .  Set M = 1- + 

4"' + ' I 2  

32m+ '%! r ( m  + 4/3) 

M 

Step 6. S e t s  = 1 (-1)"' 
m = O  

@ - 
m! r(m + 2/3) i- 32"-113 

Step I .  Set m = M + 1 .  
r ,3m+ 112 

Step 8. Set T = (-l)m 

4"- + 
3Zm-1/3rn! T ( m  + 2/3) 

Step 9. I f  IT [ 2 IS(, then set S = S + T ,  replace n r  by m + 1 and 
return to Step 8; otherwise set so = sgn (S + T )  and go 
to the next step. 

Step 10. Set i = -1 .  
Step 1 I .  I f  i 5 h, replace i by i + 1 and go to the next step; 

otherwise, go to Step 18. 

Step 

Step 

2. Set M = 1- + 

Step 14. Set m = M + 1 

r - 3 m + 1 , 2  
= I  ~ Step 15. Set T = (- 1)" L2"+ ' 13rn !  r ( m  + 4/3) 

Z:m-1'2 
+ 32m-113 1 m. T ( m  + 2/3) 

Step 16. I f  [TI 2 IS/, then set S = S + T ,  replace m by m + 1 and 
return to Step 15; otherwise set si = sgn (S + T )  and go 
to the next step. 

Step 17. Set zi+' = zi + s0sihv/Zi+' and return to Step 11. 
Step 18. Output {q). 

Remark 3: In order to obtain zeros of the other Airy functions, 
Steps 6, 8, 13, and 15 of the above algorithm have to be changed 
accordingly. 

Table I: Several runs of Algorithm I 

a b 

- 5. 0. 
- 10. - 5. 
- 15. -10. 
- 20. - 15. 
- 25. - 20. 
- 30. -25. 
- 35. - 30. 
- 40. - 35. 
- 45. - 40. 
- 50. -45. 
- 55. - 50. 
- 60. - 55. 
- 65. -60. 
- 70. -65. 
- 75. - 70. 
- 80. -75. 
- 85. - 80. 
- 90. -85. 
- 95. - 90. 
-100. -95. 

I' of AI  "$- of BI V of A i  I of Bi 

2 3 3 2 
4 4 4 4 
6 6 6 6 
7 6 6 7 
7 8 8 7 
9 8 8 9 
9 9 9 9 
9 10 10 9 

1 1  10 10 1 1  
I I  
11 
12 
13 
13 
14 
14 
14 
15 
15 
16 

11 11 
11 

11 
12 12 
12 12 12 

13 12 12 
14 14 13 

14 13 13 
14 14 14 
14 15 15 

14 14 15 
15 16 16 
16 IS  15 

Table 11: Several runs 01 Algorithm 2 

i 
- 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

r, of Ai 

- 2.3381074101 
- 4.0879494438 
- 5.5205598278 
- 6.7867080898 
- 7.9441335869 
- 9.0226508531 
- 10.0401743414 
- 11.0085243036 
- 11.9360155631 
- 12.8287767527 
- 13.6914890350 
- 14.5278299516 
- 15.3407551358 
- 16.1 326851 568 
- 16.9056339973 
- 17.6613001056 
- 18.4OIl325991 
- 19.1263804741 
- 19.8381298916 
- 20.5373329075 
- 2 1.2248299435 
-21,9013675955 
-22.56761 29174 
-23.2241650010 
-23.871 5644554 
-24.5103012365 
-25.140821 1660 
- 25.7635314009 
- 26.3788050520 
-26.9869851115 
- 27.5883878098 
- 28.1833055025 
-28.7720091651 
- 29.3547505587 
-29.931 7641 190 
-30.50326861 13 
- 3 1.069468585 1 
- 31.6305556579 
-32.1867096528 
- 32.7380996089 

ri of Bi 

- 1.1737132222 
- 3.27105'33025 
- 4.8307378414 
- 6.1698521281 
- 7.3767620791 
- 8.4919488463 
- 9.5381943791 
- 10.5299135065 
-11.4769535511 
- 12.3864171384 
- 13.2636395228 
- 14.1 127568089 
- 14.9370574120 
- 15,7392103510 
- 16.5214195505 
- 17.2855316244 
-18.0331132871 
- 18.7655082843 
- 19.4838801329 
-20.1 892447853 
-20,8824959941 
- 21 ,5644252846 
- 22.2357378817 
- 22.8970655541 
- 23.5489770795 
- 24.1919868505 
-24.8265620120 
- 25.453 I284270 
-26,0720756983 
- 26.6837614250 
- 27.2885 148300 
- 27.88663987 16 
-28.47841 79256 
-29.0641 101077 
- 29.6439592958 
-30.2181918969 
- 30.7870193978 
- 31.350639731 1 
-31,9092384835 
- 32.4629899667 

r, of Ai' 

- 1.0187929723 
- 3.2481975825 
- 4.82009921 15 
- 6.1633073559 
- 7.3721772553 
- 8.4884867342 
- 9.5354490526 
- 10.5276603971 
- 11.4750566337 
- 12.3847883720 
- 13.2622189618 
- 14.1 115019706 
- 14.9359371969 
- 15,7382013738 
- 16.5205038256 
- 17.2846950504 
- 18.0323446226 
- 18.7647984378 
- 19.4832216567 
-20.1886315096 
-20.881 9227556 
- 21.5638877233 
- 22.2352322855 
- 22.8965887390 
- 23.5485262961 
- 24.1915597096 
-24,8261564260 
- 25.4527425619 
- 26.0717079353 
- 26.6834103284 
- 27.288179121 6 
- 27.8863184089 
- 28.4781096832 
-29.0638141628 
-29.6436748147 
-30.2179181246 
- 30.7867556481 
- 31.3503853792 
-31.9089929585 
- 32.4627527463 

- 2.2944396830 
- 4.0731550894 
- 5.5123957299 
- 6.7812944462 
- 79401786894 
- 9.0195833590 
- 10.0376963351 
- 11.0064626619 
- 11.9342616452 
- 12.8272583093 
- 13.6901558270 
- 14.5266457636 
- 15.3396930824 
- 16.1317247825 
- 16.90475941 20 
- 17,6604987433 
- 18.4003943673 
- 19.1256971566 
- 19.8374947186 
- 20,5367402416 
- 21.2242750450 
-21,9008464453 
-22.5671220806 
- 23.22370 152 13 
-23.871 1257718 
- 24,5098851 1 71 
- 25.1404256555 
-25,7631547770 
- 26.378445791 3 
- 26.98664 18599 
- 27.5880593593 
- 28.1829907714 
- 28.77 1707 18 10 
-29.3544604447 
-29.9314850821 
- 30.5029999320 
-31.0692096088 
- 31.6303057877 
-32.1864683427 
- 32.7378663585 
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4. Applicat ions a n d  concluding remarks  

We have tested our algorithms on Ai, Bi, Ai' and Bi' using several 
random intervals (a, b). Our experience is that our methods behave 
predictably and accurately. The utilized input values of 5 and d of 
Algorithm 1 and E of Algorithm 2 were lo-', and lo-", 
respectively. Some of the obtained results are exhibited in Tables I 
and 11. In the first table we give the total number of roots Jzr. of 
the above mentioned Airy functions existing within several intervals. 
In the second table we display, giving ten decimal digits, the "first" 
40 roots ri of these functions which were computed by Algorithm 2. 

As mentioned above, Algorithm 1 localizes only one of the roots 
inside (a, b). If someone needs to isolate the rest of the zeros, one 
has to repeat the whole procedure for the remaining intervals (a, a*) 
and (b*, b). Furthermore, if the total number of roots in the interval 
(a, b) is odd, then the user is able to apply the bisection method in 
order to compute one of them within an accuracy E and, of course, 
to localize this zero in a small interval with length 2~ (for details, 
see [ 111). 
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ATANASSOVA, L. 

On the R-Order of a Generalization of SingleStep 
Weierstrass Type Methods 

MSC (1991): 65H05, 30C15, 65B05, 65G10 

This note deals with the R-order of convergence of the Weierstrass 
type single-step methods for the simultaneous determination of all 
simple polynomial roots. 

1. I n t r o d u c t i o n  

Consider a polynomial of degree n > 3, 
n 

f(x) = x" -I- a,-,x"-' + ... + a, = n (x - Xi), (1.1) 
i= 1 

with only simple real or complex roots xl, x2, ..., x,. 

The polynomial equation f(x) = 0 leads to the following fixed 
point equation, 

Suppose that x:, xi, . . . , x: are distinct, reasonably close ap- 
proximations to the simple roots xl, x2, ..., x, of (1.1) at the k-th 
iterative step. Then the equation (1.2) gives raise to the following 
iterative method introduced by WEIERSTRASS [8] for the simultaneous 
determination of all simple roots of (1.1): 

, i - = 1 , 2  ,..., n ;  k = 0 , 1 ,  .... f ($1 
n (x: - x;, 

$+I = x: - " 

(1.3) 
j =  1, j + i  

The Weierstrass method (1.3) was subject of investigations by 
several authors and a survey on its properties can be found in [9].  
It has been shown in [5] that the method (1.3) is the Newton method 
applied to the Vitte system of n equations in xl, ..., xnr obtained 
by equating to ai the coefficients of xi for i = 0, ..., n - 1 in the 

expansion of fl (x - xj) as a polynomial in x (see also [9]). The 

iteration (1.3) has local quadratic convergence if it starts close 
enough to the roots xlr  . . . , x. of (1.1). 

The convergence order can be increased by calculating the new 
approximations x:' ', 1 2 i 5 n, in (1.3) using the already calculated 
approximations .",' ', . . . , x:?: (the so-called Gauss-Seidel ap- 
proach). Namely, the Gauss-Seidel procedure applied to the method 
(1.3) leads to the iteration 

n 

j =  1 

i =  1,2 ,..., n ;  k = 0 , 1 ,  ..., (1.4) 

for the simultaneous determination of all simple roots of a poly- 
nomial f. 

The Gauss-Seidel method (1.4) was analyzed by ALEFELD and 
HERZBERCER in the case of real roots of a given polynomial f [I]. 
Let h: = xf - xi, i = 1,2, ..., n, k = 0, 1, ... . Then, the following 
estimation can be verified [ 11: 

Using (1.5), ALEFELD and HERZBERGER proved that the R-order of 
convergence of procedure (1.4) is at  least 1 + c,, where 6, is the 
unique positive solution of the equation 6" - cr - 1 = 0. 

For simultaneously determining all roots of a given polynomial 
(1.1) the following total-step method (TSM), 

1 fl (xf - x; - d:-'.k 
s = l , s + i  

J i = 1 , 2  ,..., n ;  p = l , 2  ,..., R ;  k = 0 , 1 ,  ..., 

was proposed by ANDREEV and KJURKCHIEV in [6].  For a fixed 
integer R > 0 the method (1.6) is a modification of the Weierstrass 
method (1.3) with raised order of convergence. 

Let x?, i = 1, ... , n, be the initial approximations for the roots 
such that all simple roots xi, i = 1, ..., n, are contained in the discs 
centered at xo with radii p ,  i.e. IxP - xi/ 5 p for i = 1, ..., a. Then, 
the following assertion for the order of convergence of (1.6) was 
given in [3] (see also [6]). 




