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During the last few years considerable effort has been devoted to research related to
chaotic encryption. In this paper a new symmetric key cryptosystem that exploits the
- . idea of nonlinear mappings and their fixed points to encrypt information is presented.
Nonlinear mappings . . R
Fixed points Further'rno_re, a measure of the quality of the ke_ys u_se.d is introduced. Thg experimental
Zeros results indicate that the proposed cryptosystem is efficient and secure to ciphertext—only
Stability attacks. Finally, three modifications of the basic cryptosystem that render it more robust
are presented and efficiency issues are discussed.
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1. Introduction

Recently, the complexity of the geometrical signal and the statistical properties of chaotic systems have motivated their
application to cryptography, and chaotic encryption has received considerable attention [1-3].

Most of the proposed cryptosystems based on chaos consider the problem of information hiding in a symmetrical scheme.
Formally, a symmetric key cryptosystem can be defined as follows [4]. Consider an encryption scheme consisting of the sets of
encryption and decryption transformations {E. : e € KX} and {D, : d € K}, respectively, where X denotes the key space.The
encryption scheme is called symmetric key if for each associated encryption-decryption key pair (e, d) it is computationally
“easy” to determine d knowing only e, and to determine e from d. A large variety of classical symmetric key cryptosystems
exist [5-8].

In this paper a new symmetric key cryptosystem based on nonlinear dynamical systems is presented. The cryptosystem
exploits the idea of nonlinear mappings and their fixed points to encrypt information. In particular, the plaintext (original
message) consists of strings of symbols (characters) from a known alphabet (e.g. ASCII), while the ciphertext (encrypted
message) consists of fixed points of nonlinear mappings.

Prior to the description of the proposed cryptosystem some background material on nonlinear mappings and their fixed
points is required. In general, two-dimensional nonlinear mappings are of the following form:

X = ©1(X1, X2),
D {x 1
{Xz = 2(X1, X2). (1)

In a nonlinear mapping of the form (1) there exist points which are invariant, or fixed, under the mapping. These points
are commonly referred to as periodic orbits of the mapping. A point X = (x1, x,) " is called a fixed point of & if ®(X) = X. It
is called a fixed point of order p, or periodic orbit of period p, if

X:cbg(X)E@D((D---((D(X))---). (2)

p times
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Fig. 1. The Hénon’s quadratic area-preserving two-dimensional mapping at the (x;, x,) plane for (a) cosa = 0.24, g(x;) = —x3, (b) cos = 0.24,

g(x1) = —0.9%%, (c) cosar = 0.2,g(x1) = —x2,(d) cosex = 0.2, g(x1) = —0.9x3.

A typical example of a nonlinear mapping is Hénon’s quadratic area-preserving two-dimensional mapping [9,10]:

. X1 _ X1
@ <3<\2> =R@ <Xz +g(xl)> ’ (3)

where (x1,x;) T € R? and
cosa —sina
R(a) = (sina cos a) ’
where a € [0, 7] is the rotation angle and g(x;) = —xﬁ. In Fig. 1 instances of Hénon’s quadratic area-preserving two-
dimensional mapping for different values of its parameters are illustrated.

Although we use the two-dimensional Hénon mapping for illustration, a large variety of mappings can be used,
including the Standard mapping [11], the Gingerbreadman mapping [12], the Predator-Prey mapping [13], as well as,
higher-dimensional mappings including the Lorenz mapping [ 14], the Rossler mapping [15] and Hénon's four-dimensional
symplectic mapping [16], among others.

For the computation of periodic orbits of an n-dimensional mapping various methods have been proposed. For example,

using the CHABIS package [17,18] for Hénon’s mapping with a = cos~1(0.24) and g(x;) = —xf, the following fixed point
with period p = 5 is computed

Xo = ®2(Xo) = (0.5672405470221847, —0.1223202134278941) .
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To obtain the remaining fixed points of the same order, simple iterations of the mapping on the found fixed point are
required,

X; = @3 (Xo) = (0.5672405470221847, 0.4440820516139216) ",

X, = @5 (Xp) = @3 (X;1) = (0.0173925844399303, 0.5800185952239573) ",
X3 = @3 (Xp) = @3 (Xz) = (—0.5585984457571741, 0.1560161118011652)
X4 = @, (Xp) = @3 (X3) = (0.0173925844399305, —0.5797160932304572) .

Thus, if the mapping and a fixed point with period p are known, all the remaining (p — 1) fixed points of the same periodic
orbit can be easily computed. The CHABIS package enables us to compute stable and unstable (see Section 3) periodic orbits
with periods up to hundreds of thousands [10,16].

To each periodic orbit corresponds a rotation number o = v/(2w) = i1 /ip, where v is the frequency of the orbit and iy, i3,
are two positive integers. From the sequence in which the above points Xy, . . ., X4 are created on the (x1, x,) plane, we can
infer the rotation number of the orbit ¢ = 1/5, indicating that it has produced i, = 5 points, by rotating around the origin
iy = 1 times. For periodic orbits of higher periods of the mapping (3) with the corresponding rotation numbers see [10].

The rest of the paper is organized as follows. In Section 2 the basic form of the proposed cryptosystem is presented. In
Section 3 a measure of the quality of the keys used is given. Modifications of the basic form of the cryptosystem, as well
as efficiency issues are presented in Section 4. Experimental setup and results for the basic form of the cryptosystem are
reported in Section 5. Finally, conclusions are derived in Section 6.

2. Basic form of the proposed cryptosystem

The central idea of the proposed cryptosystem is to hide information in fixed points of an orbit (denoted by O) of a
nonlinear mapping. Let Xp, @f(xo), @5 Xo), .- -, <1>§_] (Xp) be the fixed points of the orbit O with period p. All the fixed points
of the orbit O are stored in the order in which they appear by iterating (p — 1) times the mapping @ using the initial fixed
point X,. Such an orbit O can be computed using the Characteristic Bisection method [10,17,18] as well as computational
intelligence methods [19,20], or other traditional zero finding methods (such as Newton or Broyden method).

Equivalently, consider the group G, = (Zp, +), with elements, r; € Zp, the number of iterations of the mapping &
over any initial fixed point X, of a periodic orbit O with period p. The operation “+” denotes the addition of the number of
iterations of the mapping @ over an initial fixed point X, and corresponds to the composition of the mapping @, i.e.,

f (Xo) © @g(Xo) = (&} o ¢€)(Xo) = @f;Hj(Xo).

Thus, the addition of the number of iterations of the mapping & corresponds to element addition modulo p, i.e., r; +
1j (mod p), where p is the period of the periodic orbit O.

If the nonlinear mapping @, the orbit O and a fixed point X of O (which is assumed to be the initial fixed point of O) are
known, we can count the number of times that the nonlinear mapping @ has to be iterated, starting from the initial fixed
point X, to obtain any other fixed point of the same orbit. It is important to observe that the elements of O, which are placed
on a linked-list, have a very specific order which is known only if the nonlinear mapping & is known. As will be shown, the
encryption-decryption procedures are based on the order of these fixed points.

2.1. Construction of the key

Inits basic form the cryptosystem accepts a message m as input (e.g. a sequence of ASCII characters) and produces a matrix
C e R'e"hmM*2 55 output. This implies that every character of the plaintext is encrypted to a fixed point of a specific orbit.
Assuming the use of Hénon’s mapping as an illustration for the construction of the key, then the key k of the cryptosystem
consists of the following:

(a) A nonlinear mapping @ with the following characteristics: (i) the value of « € [0, 7] and (ii) a nonlinear term g (x;),

(b) afixed point X,

(c) a positive integer p (large enough i.e. p > 300, preferably p should be a prime) which indicates the order of the orbit O
to which X, belongs.

Note that it is necessary to select periodic orbits whose period exceeds half the cardinality of the character set that is used.
For example, if we use the ASCII character set for the message, then p > 128.
The key construction algorithm consists of the following steps.

Key construction algorithm

1. Choose at random a rotation angle « € [0, 7 ].

. Choose a nonlinear term g (x1).

. Choose a quite large positive integer p (preferably p should be a prime).

. Choose a region of the plane in which the fixed point Xy must lie.

. Use a method (e.g. CHABIS [18]) to locate a fixed point Xj.

. Check if p is the smaller integer that satisfies X, = 45{,’ (Xp) and terminate.

AU WN
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Note that when p is a prime the sixth step of the construction algorithm can be omitted. Moreover, the choices of Steps 1-4
may not give a fixed point Xp and in this case a new choice for the input parameters is required.

2.2. Encryption and decryption algorithms

The encryption algorithm takes as input a message m with n characters, mym, - - - m,, (e.g. in ASCII format), and a key k;
and returns a ciphertext C € R™*2, The algorithm is described in the following steps.

Encryption algorithm
1. Initialize Cy = Xp, i = 1.
2. Iterate ASCII(m;) times the considered nonlinear mapping & starting from the fixed point Ci_;, to obtain G =
p
d)ASCII(m,- ) (Gi—).
3. Proceed to the next character by settingi = (i + 1).
4. if i < nthen goto Step 2, else terminate.

In reverse, the decryption algorithm takes as an input a ciphertext C € R"*? and a key k and provides as output the original

plaintext m, through the following procedure.

Decryption algorithm

1. Initialize Cp = Xp, i = 1.

2. Starting from the fixed point C;_1, count the number of iterations, noi, of the considered nonlinear mapping & required
to satisfy for the first time the relation GG = @501»(@,1). The character m; of the plaintext is obtained by the equality,
noi = ASCII(m;).

3. Proceed to the next character by settingi = (i + 1).

4. if i < n then goto Step 2, else terminate.

3. Quality of the keys

The essential part of the key for the proposed cryptosystem is the initial fixed point used, since all the remaining fixed
points of the same periodic orbit of the nonlinear mapping are generated from it. Notice that the initial fixed point is useless
if the mapping is unknown. The initial fixed point that is used for the key can suggest a measure of its quality. This is due to
the sensitivity property of the fixed points of a periodic orbit to perturbations. Specifically, the larger the real eigenvalues
of the returned Jacobian (see Step 2 of the following stability checking algorithm) calculated at the fixed point, the more
sensitive the key to small perturbations. Fixed points that are sensitive to small perturbations comprise periodic orbits that
are called unstable. In this case, all the fixed points of the unstable periodic orbit can be accurately obtained only if the initial
fixed point is known with high accuracy. Any small perturbation to the coordinates of one fixed point leads to large changes
to all other fixed points of the same periodic orbit. Thus, even if an adversary gains knowledge of some digits of the initial
fixed point of an unstable periodic orbit he cannot generate the remaining fixed points of the specific orbit. Following this
property, a definition of strong keys is given.

Definition 1. A key of the proposed cryptosystem is called strong, if the initial fixed point used in the key belongs to an
unstable periodic orbit of the given nonlinear mapping.

For the verification of the type of a periodic orbit, i.e. stable or unstable, the following stability checking algorithm can
be used. The algorithm takes as input the nonlinear n-dimensional mapping & and the initial fixed point X; that are used,
the period p of the periodic orbit to which the point Xy belongs, and the Jacobian matrix of the mapping &.

Stability checking algorithm

1. Compute the Jacobian matrix of the mapping @ for the initial fixed point Xp, and set ] = Jacobian(Xp).
2. fori=2:pdo
Xi = &V (Xi—1)
J = Jacobian(X;)J
enddo
3. Compute the eigenvalues Aq, A5, ..., A, € C of the matrix J.
4. if () # 0and (R(A)? +I(A)HV2 =1, foralli=1,2,...,n
then the orbit is “STABLE”
elseif 3(1;) # 0and (R(A)? + I(A)?)? # 1, foranyie {1,2,...,n)
then the orbit is “COMPLEX UNSTABLE”
elseif J(1;) = 0and R(};) # 1foralli=1,2,...,n
then the orbit is “UNSTABLE”
endif

If all the eigenvalues of the Jacobian matrix J are complex and they are located on the unit circle then the orbit is stable.
Otherwise, if at least one eigenvalue is complex and it is not located on the unit circle then the orbit is complex unstable.
Finally, if all the eigenvalues are real and their value is not equal to one then the orbit is called unstable. In the last case, the
larger in magnitude one of the eigenvalues is, the more unstable the orbit is considered to be.
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4. Modifications of the basic form of the cryptosystem and efficiency issues

In this section three modified versions of the proposed cryptosystem are presented. These variations aim at making the
cryptosystem more robust to possible attacks.

4.1. First modification

Consider the case where an adversary knows two ciphertexts C; and G (i.e. two fixed points that encrypt the characters
m; and m; of the message respectively) and the number of iterations of the mapping @ that is required to get G from C;. Then,
he can obtain the character m; of the plaintext. To avoid this a secret initial fixed point for the encryption of any plaintext
character can be used and is defined as follows.

Definition 2. A fixed point is called initial fixed point for the encryption of a character m; if it is used as a starting point to
get ASCII(m;) iterations of the mapping @.

Using a secret initial fixed point for the encryption of a character m;, we have
Encryption(m;) = ¢£scu(mi)(xinitialmi)-

In the basic form of the cryptosystem it is assumed that the initial fixed point of each character is the fixed point that
encrypts the previous character, i.e.,

Encryption(m;) = (pll;SCIl(mi) (¢zsc11(mi,1)(x0)> .
For the calculation of the initial fixed points of each character of the message, the following formulae are proposed:

Xinitialrm = EH(m)(mod p) (XO)’
Xinitial m; = (pyASClI(mi_ﬂ(mOd ) (Gi—y), fori=2,...

where S, y are two positive and large integers which must be appended to the key k, and H(m) is the result of a one-way
hash function on the message m (e.g. MD5 [21]). For 8 = y = 0, we get the basic form of the proposed cryptosystem.
Finally, a random dummy character can be added in front of the message m such that a completely different ciphertext is
always obtained.

4.2. Second modification

Consider the case where some information concerning the sorting of the fixed points of the periodic orbit used is revealed
to an adversary. In order to confront an attack that is based on frequency analysis of the appearing ciphertexts, in this
modification, every plaintext character is encrypted by a fixed point which is independent from the previously used fixed
points (that encrypt the previous characters). For the implementation of the described modification, two large positive
integers 8, y are chosen and appended to the key k. Moreover, a one-way hash function H that operates over the message
m and gives a value H(m), is applied. Then, the product H(m)g is computed and employed as a seed to a uniform random
number generator. Suppose that each time, i, the number generator is called it returns a random number rand(i) € [0, 1].
Subsequently to each call we compute the value rand, (i) = [rand(i)]p. Thus, the initial fixed point of each character for
stream ciphers is given by

Xinitialm; = Prand, (i) (mod p)(X0)s
and for non-stream ciphers by

Xinitialrm = quand;,(l)y(mod p) (X0)7
Xinitialm,- = (prandp(i) ASCII(m;_1)y (mod p) (XO)’ fori=2,....

4.3. Third modification

In this variant the following problem is considered. Given p fixed points of an orbit O in random order, find a mapping @
that has O as a periodic orbit with period p. This hypothetical case can be tackled by performing a bit-by-bit XOR operation
between the fixed point that encrypts a plaintext character with its initial fixed point. Thus, the fixed points of the orbit O are
not revealed. Moreover, the ciphertext set becomes of size Card(ASCII) p which corresponds to Card(ASCII) p! permutations
for a brute force attack.

4.4. Efficiency issues

In this section the number of FLOPs required for an encryption or decryption of a single character of the message
is provided. For Hénon’s mapping and the encryption (or decryption) of the character m;, using the basic form of the
cryptosystem, we have

FLOPs(C(m;)) = ASCII(m;)(6 4 FLOPs(g(x1))).
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Table 1

Experimental results for different kinds of plaintexts.
Plaintext type CPU time for encryption/decryption (s) Ciphertext percentage in

Zeros (%) Ones (%)

10000 random characters ~0.001 49.9999 50.0001
100000 random characters ~0.00102 49.9999 50.0001
100000 char. English text ~0.00103 49.9999 50.0001
100 000 same characters ~0.00103 49.9999 50.0001

For the modifications of the encryption/decryption algorithm a small number of FLOPs needs to be added. Specifically, the
additional FLOPs are

FLOPs(C(m;)) < p(6 + FLOPs(g(x1))) + ¢,

where t is a small constant.
5. Experimental setup and results

For the evaluation of the proposed cryptosystem, additionally to the number of FLOPs required which is presented
in Section 4.4, the CPU time needed for the encoding (and decoding) of several plaintexts (ciphertexts) is measured.
Subsequently, the percentage of zeros and ones contained in the resulting ciphertexts is reported.

For comparative purposes we have tested three different kinds of plaintexts, specifically, common English texts, texts
containing random characters and texts that repeat the same character. The results for the last kind of text are important to
ensure that even when the plaintext contains some patterns there is no information that can be deduced from the encrypted
message. The results obtained from the basic form of the proposed cryptosystem on a P4 machine with 512 MB RAM using
Matlab 6.5 are given in Table 1.

Regarding the CPU time required for the encryption/decryption of the texts only a few milliseconds where needed for
all kinds of plaintexts, which was expected since only some iterations of the nonlinear mapping are performed (note that
the implementation is not optimized for high performance). Furthermore, the only CPU time spent on the computation
of the key is due to the computation of the initial fixed point, as the choice of the nonlinear mapping takes no CPU time.
Employing a proper method, for example CHABIS [10], fixed points with period of some thousands can be computed in less
than a second of CPU time, using a typical modern personal computer.

Regarding the total number of zeros and ones on the resulting ciphertexts the percentages were about 50% 0’s and 50% 1's
for all types of plaintexts, i.e. random text, English text and repeated characters. This is an important result for the security
of the cryptosystem to ciphertext—only attacks as the ciphertexts do not contain information for possible patterns in the
corresponding plaintexts.

In Fig. 2(a) and (b), examples of possible keys (nonlinear mapping and initial fixed points) of the proposed cryptosystem
are depicted in the (x1, xo) plane. Even if an adversary gains knowledge about the employed nonlinear mapping, choosing
a slightly different initial fixed point will lead to a different periodic orbit (i.e. ciphertexts). Furthermore, a specific periodic
orbit is completely useless when a different mapping (even for a mapping with the same nonlinear term but different
rotation angle a) is used. In Fig. 2(c) and (d), the periodic orbit of Fig. 2(a) is placed over two slightly different nonlinear
mappings. As shown, these points do not constitute a periodic orbit of neither of the new mappings and, moreover, an
adversary cannot find a fixed point of the new mappings without gaining some knowledge about them.

6. Conclusions

In this contribution a new symmetric orbit based cryptosystem is presented. The proposed cryptosystem exploits the idea
of nonlinear mappings and their fixed points for encryption. Specifically, the encryption algorithm takes as input a string
of characters and outputs a number of fixed points of a nonlinear mapping defined by the key. Furthermore, a measure
of the quality of the keys is introduced. This measure is based on the sensitivity of the fixed points of a periodic orbit to
perturbations. Thus, by applying the stability checking algorithm one can decide if a key has the desired quality.

The security of the proposed cryptosystem is mainly attributed to the difficulty of sorting the elements of a given periodic
orbit when the nonlinear mapping is unknown. Any kind of brute force attack is completely inefficient, since small changes
of the parameters of the nonlinear mapping (e.g. rotation angle and nonlinear term), or perturbations of the initial fixed
point lead to very different results.

The experimental results indicate that the cryptosystem is quite efficient as it requires a small number of FLOPs for the
encryption/decryption of a single character and only some milliseconds of CPU time for the encryption and decryption of
messages with 100.000 characters. Moreover, the analysis of ciphertexts obtained by different kinds of plaintexts shows
that no pattern information can be deduced from the ciphertexts rendering, thus, the cryptosystem robust to ciphertext-
only attacks.

Finally, three different variants of the basic form of the cryptosystem that render it more effective to several types of
possible attacks are presented.
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Fig. 2. (a) Fixed points of the Hénon’s quadratic area-preserving two-dimensional mapping with cose = 0.24 and g(x;) = —x3, used as keys of the
cryptosystem, (b) details of keys used in (a), (c) keys of (a) placed over the Hénon'’s quadratic area-preserving two-dimensional mapping with cos« = 0.15
and g(x1) = —xﬁ, (d) keys of (a) placed over the Hénon’s quadratic area-preserving two-dimensional mapping with cos« = 0.35 and g(x;) = —xf.
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