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Abstract- In this paper, a first analysis of the Particle
Swarm Optimization (PSO) method’s parameters, using
Design of Experiments (DOE) techniques, is performed,
and important settings as well as interactions among the
parameters, are investigated (screening).

1 INTRODUCTION

Computer experiments and simulations play an important role
in scientific research, since many real–world processes are
so complex that physical experimentation is either time con-
suming or expensive. Simulation models often need high–
dimensional inputs and they are computationally expensive.
Thus, the simulation practitioner is interested in the develop-
ment of simulation models, that enable him to perform the
simulation with the minimum amount of simulation runs. To
achieve this goal, design of experiments (DOE) methods have
been developed and successfully applied in the last decades.

The DOE techniques can be applied to optimization algo-
rithms, considering the run of an algorithm as an experiment,
gaining insightful conclusions into the behavior of the algo-
rithm and the interaction and significance of its parameters.
In this paper, the parameters of the Particle Swarm Optimiza-
tion method (PSO) are investigated using DOE techniques.

The rest of the paper is organized as follows: the PSO
method and the DOE techniques are briefly described in
Sec. 2 and 3, respectively. An experimental design (DESIGN
I) is chosen and experiments (simulation runs) are performed.
This design is discussed in detail in Sec. 4, and an improved
design (DESIGN II) is developed. The analysis results in rec-
ommendations for the parameter setting of PSO on a special
test function, that are statistically validated.

2 PARTICLE SWARM OPTIMIZATION

The term “Swarm Intelligence”, is used to describe algo-
rithms and distributed problem solvers inspired by the col-
lective behavior of insect colonies and other animal societies
[BDT99, KE01]. Under this prism, PSO is a Swarm Intel-
ligence method for solving optimization problems. Its pre-
cursor was a simulator of social behavior, that was used to
visualize the movement of a birds’ flock. Several versions

of the simulation model were developed, incorporating con-
cepts such as nearest–neighbor velocity matching and accel-
eration by distance [ESD96, KE95]. When it was realized
that the simulation could be used as a population–based opti-
mizer, several parameters were omitted, through a trial and
error process, resulting in the first simple version of PSO
[EK95, ESD96].

Suppose that the search space is �–dimensional, then
the �–th individual, which is called �������	, of the popula-
tion, which is called 
����, can be represented by a �–
dimensional vector, � � ����� ���� � � � � �����. The velocity
(position change) of this particle, can be represented by an-
other �–dimensional vector �� � ����� ���� � � � � �����. The
best previously visited position of the �–th particle is denoted
as �� � ����� ���� � � � � �����. Defining � as the index of the
best particle in the swarm (i.e. the �–th particle is the best),
and let the superscripts denote the iteration number, then the
swarm is manipulated according to the following two equa-
tions [ESD96]:
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where � � �� �� � � � � �; � � �� �� � � � � � , and � is the size of
the swarm; � is a positive constant, called acceleration con-
stant; ��, �� are random numbers, uniformly distributed in
��� �	; and � � �� �� � � �, determines the iteration number.

However, in the first version of PSO, there was no actual
control mechanism for the velocity. This could result in inef-
ficient behavior of the algorithm, especially in the neighbor-
hood of the global minimum. In a second version of PSO, this
shortcoming was addressed by incorporating new parameters,
called inertia weight and constriction factor. This version is
described by the equations [ES98, SE98b, SE98a]:
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where � is called inertia weight; ��, �� are two positive con-
stants, called cognitive and social parameter respectively; and
� is a constriction factor, which is used to limit velocity.



The role of the inertia weight �, in Eq. (3), is consid-
ered critical for the PSO’s convergence behavior. The iner-
tia weight is employed to control the impact of the previous
history of velocities on the current one. Accordingly, the pa-
rameter � regulates the trade–off between the global (wide–
ranging) and local (nearby) exploration abilities of the swarm.
A large inertia weight facilitates global exploration (search-
ing new areas), while a small one tends to facilitate local ex-
ploration, i.e. fine–tuning the current search area. A suitable
value for the inertia weight � usually provides balance be-
tween global and local exploration abilities and consequently
results in a reduction of the number of iterations required to
locate the optimum solution. Initially, the inertia weight was
constant. However, experimental results indicated that it is
better to initially set the inertia to a large value, in order to
promote global exploration of the search space, and gradu-
ally decrease it to get more refined solutions [SE98b, SE98a].
Thus, an initial value around ��� and a gradual decline to-
wards � can be considered as a good choice for � .

Proper fine–tuning of the parameters �� and ��, in Eq. (3),
may result in faster convergence of the algorithm, and alle-
viation of the local minima. An extended study of the ac-
celeration parameter in the first version of PSO, is given in
[Ken98]. As default values, �� � �� � � were proposed, but
experimental results indicate that �� � �� � ��
 might pro-
vide even better results. Recent work reports that it might be
even better to choose a larger cognitive parameter, ��, than a
social parameter, ��, but with �� � �� � � [CD01].

The parameters �� and �� are used to maintain the diversity
of the population, and they are uniformly distributed in the
range ��� �	. The constriction factor � controls on the magni-
tude of the velocities, in a way similar to the ���� parameter,
used in the first versions of PSO. In some cases, using both �
and ���� may result in faster convergence rates. In all exper-
iments in this paper, the PSO method described in Eqs. 3 and
4, with � � � was used.

Although PSO is an evolutionary technique, it differs from
other evolutionary algorithm (EA) techniques. Three main
operators are usually involved in EA techniques. The re-
combination, the mutation and the selection operator. PSO
does not have a direct recombination operator. However,
the stochastic acceleration of a particle towards its previ-
ous best position, as well as towards the best particle of
the swarm (or towards the best in its neighborhood in the
local version), resembles the recombination procedure in
EA [ES98, Rec94, Sch75, Sch95]. In PSO the information
exchange takes place only among the particle’s own expe-
rience and the experience of the best particle in the swarm,
instead of being carried from fitness dependent selected “par-
ents” to descendants as in GA’s. Moreover, PSO’s directional
position updating operation resembles mutation of GA, with
a kind of memory built in. This mutation–like procedure is
multi-directional both in PSO and GA, and it includes con-
trol of the mutation’s severity, utilizing factors such as the
���� and �.

Symbol Parameter

� search–space dimension
� swarm size
�� initial velocity
�� cognitive parameter
�� social parameter
� inertial weight (max value)
�����	 scaling factor for inertia weight
� fitness function, optimization problem
� dimension of �
�
�� maximum number of iterations
�	�� number of experiments for each scenario
�� total number of fitness function evaluations
� noise level
��		��� number of re-evaluations (noise)

Table 1: DOE parameter.

Var Factor I: Level II: Level

� � ����� ��� ����� ���� ���� 
��
� � ����� ��� ���� ����� ����� ���
�����	 � ����� ���
���
� ����� ���
� ��
��
�� � ���
� ���� ���� ���
� ����� ����
�� � ���
� ���� ���� ����
� ���
�� ���
�

Table 2: DESIGN I and DESIGN II.

PSO belongs to the class of EAs, that does not use the
“survival of the fittest” concept. It does not utilize a direct
selection function. Thus, particles with lower fitness can sur-
vive during the optimization and potentially visit any point of
the search space [ES98].

3 EXPERIMENTAL DESIGN

Experimental design provides an excellent way of deciding
which simulation runs should be performed so that the de-
sired information can be obtained with the least amount of
experiments [BHH78, BD87, Kle87, KVG92, Kle99, LK00].
The input parameters and structural assumptions, that define
a simulation model are called factors, the output value(s) are
called response(s). The different values of parameters are
called levels. An experimental design is a set of factor level
combinations. As mentioned in Sec. 2, fine–tuning of PSO
parameters is an important task. The role of the inertia weight
�, the relationship between the cognitive and the social pa-
rameters �� and �� or the determination of the swarm size are
important to ensure convergence of the PSO algorithm. Ap-
plying the DOE model assumptions to PSO algorithms, we
can define the parameter vector (cp. Tab. 1):

� � ��� ��� ��� ��� �� �����	�
	 (5)

and the design vector:

� � ����� �
��� �	��� ��� ��		���� ��
	 � (6)
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Figure 1: DESIGN I. Box-plot
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Figure 2: DESIGN I. Interaction plot



In the next section, we will apply DOE methods to improve
the behavior of the PSO algorithm for a given optimization
configuration. This task can be interpreted as the determina-
tion of optimal values of � for a given problem design � or as
an analysis of a regression meta-model [KVG92].

4 SENSITIVITY ANALYSIS APPLIED TO
PSO

Starting point for the first experiments is the minimization of
the sphere function ���� �

��

��� �
�
� � were � � ��. Al-

though the number of simulation runs required increases ge-
ometrically with � for a �
 factorial design as � is increased,
we chose a �� full factorial design for didactical purposes.
�� factorial designs clarifies the geometrical interpretation of
the results. Neglecting higher order interactions, fractional
factorial designs reduce the required amount of simulation
runs drastically [BHH78]. Efficiency and effectiveness of de-
signs are discussed in [Kle87, KVG92]. The corresponding
factor levels are shown in Tab. 2. To apply analysis of vari-
ance (ANOVA) techniques, we have to verify classical as-
sumptions, e.g. the ‘normality of errors’ [DS98].

Examination of the fit reveals, that the main effects and
some first order interactions are significant, but that it is nec-
essary to use a response transformation �� . After check-
ing the fitted regression model, we investigate the effects and
their interactions1.

Box-plots provide an excellent visualization of the effects
of a change of one factor level. For a factor , � denotes
the low, � the medium, and � the highest value. Regard-
ing the swarm size � in DESIGN I, we obtain: ��: ���,
��: ��, and ��: ����. Thus we can conclude from the first
three plots in Fig. 1, that the swarm size should be set to the
low �� level. �� outperforms the other � factor level set-
tings, but � and � should be set to their medium level values
(�����	 � ���
 resp. �� � ���), whereas � should be set to
its maximum value ���.

Fig. 2 shows the interactions between two factors. The
first figure reveals, that factor � performs best at its low level
��� – no matter how we set factor �. Obviously performs �
best, if we choose its low level ���, too. But we have to be
careful, since the ANOVA shows that the interaction � � � is
not significant.

Results from the analysis of DESIGN I lead to an im-
proved DESIGN II. The following investigations were based
on DESIGN II (corresponding settings marked with an aster-
isk in Tab. 2). We investigated the transferability of the results
to other designs by modifying two parameters of the design
vector � (cp. Eq. 6): Dimension � and noise �.
Increasing the search-space dimension does not change the
behavior of the PSO significantly: Fig.3 reveals the behavior
of the PSO for � � �� and � � � (instead of � � ��
in Fig. 2). As a first result, we can conclude: The general

1R, a language for data analysis and graphics was used to perform the
ANOVA and to generate the graphics in this paper [IG96].

behavior of the PSO on the sphere model does not change, if
the search space dimension is modified. Adding normal dis-
tributed noise to the fitness function value does change the
behavior of the PSO and requires different strategy parame-
ters to obtain convergence.2
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Figure 3: DESIGN II. Varying the search-space dimension: � �

�� (above) and� � �� (below).

5 Summary and Outlook

In this paper, a first analysis of the PSO method’s parameters,
using DOE techniques, was introduced, and important param-
eter settings and interactions were extracted (screening).

Extension to other fitness functions and real–world prob-
lems, are needed to verify the insightful results obtained in
this paper. Currently, experiments on the simplified elevator
simulator (S-ring) [MAB�01], are performed to improve the
efficiency of the design (fractional designs). A comparison
of PSO and other stochastic search methods, especially EAs,
will be given in future work.
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