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Abstract: In this report, we implement the concept of topological degree to isolate and
compute all zeros of systems of nonlinear algebraic equations when the only computable
information required is the algebraic signs. The basic theorems of Kronecker�Picard theory
relate the number of roots to the topological degree. Recent fast methods, which work
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Méthodes de signes pour le calcul de racines réelles de

systèmes algébriques

Résumé : Dans ce rapport, nous utilisons le concept de degré topologique pour isoler et
calculer les zéros réels d'un système d'équations non-linéaires, la seule information utilisée
étant le signe d'expressions algébriques. Les théorèmes de base de la théorie de Kronecker�
Picard relient le nombre de zéros réels au degré topologique. De récentes et rapides méthodes
de calcul de signes, travaillant avec des nombres �ottants, sont appliquées pour déterminer le
signe d'expressions algébriques. Ces techniques sont combinées avec des méthodes de grilles
pour l'isolation des zéros. La complexité de cette approche est ensuite détaillée.

Mots-clés : Théorie de Kronecker�Picard, degré topologique, racine réelle, isolation de
zéros, approximation, détermination de signe
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1 Introduction

Algebraic equations are instrumental in studying and solving problems on geometric, kine-
matic, and other constraints in a variety of �elds including modeling and graphics, robotics,
vision, molecular biology, signal processing, and computational economics; see [3, 5, 9, 10]
and the references thereof. Most of the algorithms of this article apply to the wider class of
analytic functions.

We exploit methods based on the minimum possible information, namely the algebraic
sign of the (algebraic) function. We rely on the concept of topological degree in order to
isolate and compute all zeros of systems of nonlinear algebraic equations given only the sign.
Such methods can be applied to problems with imprecise function values. This is signi�cant
for problems where the function values follows as a result of an in�nite series such as Bessel
or Airy functions, because the sign stabilizes after a relatively small number of terms [16].
Topological degree methods can also be extended to counting and computing the extrema
of systems of equations.

This paper is organized as follows. The next section o�ers a background on topological
degree. Then we explain bisection methods for solving systems of equations, in particular
the notion of characteristic polytopes. Section 4 discusses algorithms for computing the
topological degree and thus counting and isolating roots. In section 5 we analyze fast and
accurate methods for computing the sign of algebraic functions over �xed precision.

2 Topological degree basics

We brie�y exploit topological degree theory and Picard's extension [6] for determining the
exact number of real roots (and extrema) of a system of nonlinear algebraic equations.
Isolation and approximation of all real roots as well as computation of the topological degree
are all discussed in the next sections.

Suppose that the function Fn = (f1; : : : ; fn):Dn � IRn ! IRn is de�ned and two times
continuously di�erentiable in a bounded domain Dn of IRn with boundary b(Dn). Suppose
further that the roots of the equation Fn(x) = �n, (�n = (0; : : : ; 0) denotes the origin of
IRn), are not located on b(Dn) and they are simple i.e. the determinant of the Jacobian JFn
of Fn at these roots is nonzero.

De�nition 2.1 If FnjDn
2 C2 and all roots in Dn � IR are simple and do not lie on b(Dn),

then the topological degree of Fn at �n relative to Dn is denoted by deg[Fn;Dn; �n] and
can be de�ned by the following sum:

deg[Fn;Dn; �n] =
X

x2Dn:Fn(x)=�n

sgn det JFn(x);

where sgn denotes the sign function.

When Fn is only continuous, then Fn(x) = �n has at least one root inDn if deg[Fn;Dn; �n] 6=
0. Furthermore, ifDn = D1

n[D2
n, whereD1

n andD2
n have disjoint interiors, then deg[Fn;Dn; �n] =
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4 I.Z. Emiris & B. Mourrain & M.N. Vrahatis

deg[Fn;D1
n; �n] + deg[Fn;D2

n; �n]. We may extend this theory to counting complex roots
by doubling the dimension. For instance, the total number of simple complex zeros of an
analytic function f : D2 � C! C in an open bounded region D2 is equal to deg[F2;D2; �2],
where F2 = (f1; f2), with f1 = <ff(x1 + ix2)g, f2 = =f(x1 + ix2)g:

Picard considered the extension Fn+1 = (f1; : : : ; fn; fn+1) : Dn+1 � IRn+1 ! IRn+1,
where fn+1 = y JFn , y is the (n + 1)-st variable, and Dn+1 = Dn � I , with I being an
arbitrary interval of the y�axis containing the point y = 0. Then the roots of the following
system of equations:

fi(x1; x2; : : : ; xn) = 0; i = 1; : : : ; n;
y JFn(x1; x2; : : : ; xn) = 0;

(2.1)

are the same simple roots of Fn(x) = �n provided y = 0. On the other hand it is easily seen

that the Jacobian of (2.1) is equal to (JFn(x))
2.

Theorem 2.1 The total number of real roots of Fn(x) = �n equals deg[Fn+1; Dn+1; �n+1],
provided that Fn is two times continuously di�erentiable and that all roots are simple and
lie in the strict interior of Dn+1.

3 Bisection methods for computing the roots

This section uses bisection methods, based on the topological degree, for solving arbitrary
systems of analytic functions. Our focus is on a generalized bisection method using charac-
teristic polytopes.

Let us concentrate on one-dimensional problems for simplicity. For a continuous function
f , it is well known that a solution of f(x) = 0 is guaranteed to exist in some interval [a; b]
where f(a)f(b) 6= 0 if f(a) f(b) � 0. This criterion is known as Bolzano's existence criterion
and, essentially, transfers all information regarding the roots to the boundary of the given
region. We can use Bolzano's criterion or topological degree to calculate a solution of f by
bisecting the interval I0 = (a; b) into two intervals (a; c]; [c; b) where c = (a + b)=2 so that
we always keep a solution within a smaller interval. This is called the bisection method and
can be generalized to higher dimensions.

Instead of Bolzano's criterion we may use the value deg[f; (a; b); 0]which equals 1
2 (sgn f(b)� sgn f(a)) :

If this value is not zero we know with certainty that there is at least one solution in (a; b).
It also gives additional information concerning the behavior of the solutions of f in (a; b)
relative to the slopes of f and can be generalized to higher dimensions [15]. If f : [a; b] �
IR ! IR is continuous, a simpli�ed version of the bisection method leads to the formula
xi+1 = xi + sgnf(x0) sgnf(xi) (b � a)=2i+1, for i = 0; 1; : : : ; with x0 = a. This sequence
converges to a root r 2 (a; b) if for some xi; i = 1; 2; : : : ; sgnf(x0) sgnf(xi) = �1: An
analogous formula holds otherwise [15]. The number of iterations for obtaining an approxi-
mate root r� such that jr � r�j � " for some " 2 (0; 1) is given by dlog2(`(I0) "�1)e, where
l(�) expresses the length and I0 is the initial interval. The method always converges within
the given interval and is a global convergence method. Moreover it has the great advantage
that it possesses asymptotically the best possible rate of convergence. Additionally, it is
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easy to have beforehand the number of iterations that are required for the attainment of an
approximate root to a predetermined accuracy. Finally, it requires only the algebraic signs
of the functions values to be computed.

The rest of the section examines systems of n equations in n variables and describes
characteristic polytopes. We implement topological degree theory to provide a criterion for
the existence of a zero of Fn(x) = �n within a given region. Once a zero has been isolated,
this procedure approximates its value to any desired accuracy [15]. Suppose that Pn =
hV1; V2; : : : ; V2ni is an oriented n�dimensional polytope with 2n vertices, Vi 2 IRn; (i.e. an
orientation has been assigned to its vertices), and let Fn = (f1; f2; : : : ; fn):Pn � IRn ! IRn

be a continuous mapping. Let S(Fn; Pn) be the 2
n�n matrix whose entries in the k-th row

are the corresponding coordinates of vector
�
sgn f1(Vk); sgn f2(Vk); : : : ; sgn fn(Vk)

�
: This

will be called matrix of signs associated with Fn and Pn. Then, Pn is called a characteristic
n�polytope relative to Fn, if S(Fn; Pn) is identical, possibly after some permutations of its
rows, with a 2n � n matrix whose rows are formed by all possible combinations of �1; 1.

Theorem 3.1 [14]. Let � = f�ig2ni=1 be the set of facets of characteristic polytope Pn. Let

S = fSi;jg2ni=1;
ji
j=1, where ji � 1 denotes the number of simplices corresponding to facet �i,

be a set of (n� 1)-simplices which lie on b(Pn). Suppose that (a) b(Pn) =
P2n

i=1

Pji
j=1 Si;j ,

(b) the interiors of the members of S are disjoint, (c) these simplices make b(Pn) su�ciently
re�ned relative to sgnFn, and (d) the extreme points of simplices Si;j for any j are vertices
of �i. Then deg [Fn;Pn; �n] = �1 6= 0:

When the topological degree is nonzero, this implies that there is at least one root inside
Pn, although the converse is not always true. The condition on the su�cient re�nement
guarantees, informally, that no more than one function changes sign between two successive
critical points of the boundary. These points are precisely the points where the algebraic
signs are computed. Section 4 formalizes and quanti�es this discussion; see also [7, 12, 13].

The above theorem yields an algorithmic procedure for the approximation of isolated
roots. In two dimensions, the algorithm bisects the longest edge of the characteristic quadri-
lateral thus de�ning a new one, which has again vertices corresponding to all four combi-
nations of two signs. In order to approximate the value of the root with accuracy �, the
algorithm takes O(lgD=�) steps, whereD is the initial diameter of the characteristic polygon.

4 Computation of topological degree

Several analytic formulae for the computation of the topological degree have been proposed,
particularly those based on the Kronecker integral. These methods count the number of roots
in a given region and, therefore, lead to algorithms for the isolation of roots. Notice that root
isolation is not straightforward with other methods such as those based on characteristic
polytopes. Hence, topological degree computation can be the �rst step in a root isolation
and approximation package; see, e.g. [12]. Here we focus on a method by Kearfott [7] which
can be combined with the characteristic polytope algorithm and compares favorably to other
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6 I.Z. Emiris & B. Mourrain & M.N. Vrahatis

methods in e�ciency. The second part of the section brie�y analyzes the complexity of a
method for su�ciently re�ning the boundary.

Suppose that Sn�1 = hx1; x2; : : : ; xni is an (n � 1)�simplex in IRn and assume Fn =
(f1; f2; : : : ; fn) : Sn�1 ! IRn is continuous. Then the range simplex associated with Sn�1

and Fn, denoted by R(Sn�1; Fn), is an n � n matrix with elements %ij ; 1 � i; j � n such
that %ij = 1 if fj(xi) � 0 and %ij = �1 otherwise. R(Sn�1; Fn) is called usable if, after a
permutation of its rows, the elements %ij of the matrix are: %ij = 1, if i � j, and %ij = �1,
if j = i+ 1.

When R(Sn�1; Fn) is usable, then its parity Par
�
R(Sn�1; Fn)

�
is de�ned to be 1, if the

number of the permutations of the rows required to put it into usable form is even. Otherwise
the parity equals �1. For all other cases, we set the parity to zero. Suppose that Pn is an
n�dimensional polytope for some n � 2; possibly a characteristic polytope. Furthermore,
suppose that fSn�1

i gmi=1 is a �nite set of (n� 1)�simplices with disjoint interiors such thatPm
i=1 S

n�1
i = b(Pn). If the boundary of Sn�1

i is su�ciently re�ned relative to the signs of
Fn, then

deg[Fn;Pn; �n] =

mX
i=1

Par
�
R(Sn�1

i ; Fn)
�
:

The rest of the section addresses the issue of ensuring su�cient re�nement of the bound-
ary of the examined region, which is the main factor in establishing the method's overall
complexity. We base our approach on the deterministic algorithm of Stynes [13] in order
to derive bounds on the number of sign determinations. This article's main algorithm in
section 4 starts with a collection of k0 simplices and successively subdivides them in such a
way as to su�ciently re�ne the polytope they bound. Let ki be the total number of simplices
at step i, for i = 0; : : : ; �, and let di be the maximum edge length among all simplices at
step i.

In what follows we analyze the algorithm for the 2-dimensional case, where the polytope
is a polygon and the simplices are its 1-dimensional edges. An analogous analysis holds
in more than 2 dimensions. At every step, the algorithm splits all edges whose length
exceeds 2di=

p
5, hence di � d0(2=

p
5)i. On the 2-dimensional plane we can deduce that

ki = �1 + 2ki�1, for i � 1, therefore ki = 1 + 2i(k0 � 1). The termination condition is that
d� < �, where � depends on the modulus of continuity of the given (analytic) system. It
su�ces that d0(2=

p
5)� < �, which is guaranteed for � = dlogp5=2(d0=�)e (this is the worst

case value of �). Thus, we can bound the �nal number of simplices k� < 3k0(d0=�)
6:3.

Bounding � can be done in several ways, usually as a function of the in�nite norm of
the polynomials on the domain boundary and of the respective Lipschitz constants on the
entire domain. These norms and constants may be bounded either by analytic formulae,
interval analysis or the method of section 5. These are recurrent and deep problems in
topological degree estimation, (see e.g. [1]), so we do not pretend to o�er original �nal
solutions. However, we expect that our methods will be e�cient enough in practice.
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5 Sign determination of algebraic expressions

The complexity of sign computation for root counting and isolation is instrumental in es-
tablishing bounds on the overall complexity of our algorithms. The section concludes with
an extension of our methods to estimating lower bounds on the in�nite norm of the given
functions.

This section adapts the methods of Brönnimann, Emiris, Pan and Pion [2] to the present
context. We focus on multivariate polynomial expression with rational coe�cients, which
covers the case of rational expressions as well.

The computation has an exact part and a numeric part which are combined in order to
guarantee the exactness of the sign computed. In the �rst part, exactness is achieved by using
modular computation. The modular representation of a rational number includes a su�cient
number of moduli, i.e. the projections of the number to the respective �nite �elds de�ned
by a sequence of prime integers. Let m1; : : : ;mk be k pairwise relatively prime integers and
let m =

Qk
i=1mi. For any number x (not necessarily an integer), we let xi = x mod mi be

the only number in the range
��mi

2 ; mi

2

�
such that xi �x is a multiple of mi. Manipulating

moduli in the �nite �eld of mi and computing the xi, for all i, requires only �xed-precision
operations. Now let k, b, m1; : : : ;mk denote positive integers, m1; : : : ;mk being pairwise
relatively prime, such that mi � 2b=2+1. Let x be an integer whose magnitude is smaller
than bm=2c.

Given the xi, the second part reconstructs the sign of x using only �oating-point arith-
metic performed with b-bit precision. This computation is approximative, but the error is
bounded in such a way as to guarantee that the recovered sign is exact thus solving the
above problem. One method, named after Lagrange, uses an iteration which stops when the
computed value is large enough so that it has the proper sign, despite roundo� error. The
algorithm then returns its sign. Intuitively, if x is large, the computed quantity will have
the same sign as x. Otherwise, fewer moduli su�ce to de�ne x so we can consider a smaller
k.

An alternative method, named after Newton, is incremental and thus can be adapted to
a probabilistic algorithm that does not require any a priori bound on the magnitude of x.
We brie�y discuss this approach since it will be later applied to bound the in�nite norm of
the function. Let m(j) =

Qj
i=1mi and x(j) = x mod m(j); for j = 1; : : : ; k; so that x(1) = x1

and x = x(k). Then, for all j = 2; : : : ; k,

x(j) = x(j�1) +
��

xj � x(j�1)
�
(m(j�1))�1 mod mj

�
m(j�1): (5.1)

This formula is evaluated in f.p. arithmetic for the sign determination. Probabilistically, we
can apply it until, for some j, the expression in the large parenthesis is zero.

Theorem 5.1 [2] Assume f is a polynomial whose value in the domain of interest has

modulus bounded by bm=2c, where m =
Qk

i=1mi and the mi are �xed-precision relatively
prime integers as above. In the worst case, the total bit complexity of both Lagrange and
Newton methods for exact sign reconstruction is in O(k2).
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8 I.Z. Emiris & B. Mourrain & M.N. Vrahatis

By this theorem, these methods do not improve asymptotically over the standard mul-
tiprecision approach. The methods are simple, however, require little or no overhead, and
their parallel time complexity is in O(k log k). To exploit modern day hardware, we exclu-
sively rely on �oating point (f.p.) numbers. In practice, our methods have complexity lower
than that estimated above and compares favorably with known multiprecision methods, thus
they are very well suited for implementation, as illustrated in [2].

Remark 5.1 In practice, Lagrange's technique performs O(k) �xed-precision operations,
which can be guaranteed when x is large, i.e. where (almost) all moduli are required in its
representation. On the other hand, Newton's method has O(k) total bit complexity when x
is small, i.e. can be de�ned by a constant number of moduli.

Let us consider an arbitrary n-variate dense polynomial, with degree d in each variable.
Evaluation costs O�(dn), where O�(�) indicates that polylogarithmic factors are omitted.
Alternative complexity estimates exist for sparse polynomials, the most straightforward one
being a quasi-linear function of the bound on the number of nonzero terms. Assume now that
the sign must be determined on a grid of pn points, de�ned by p � d distinct coordinates per
dimension. Then the total bit complexity for all sign determinations is in O�(pn) Moreover,
the aggregate complexity may be reduced by exploiting the fact that the evaluation points
usually lie on the axes after a suitable linear transformation. More sophisticated techniques
can be applied if the polynomial has a certain form, e.g. is expressed by a determinant.

We have encountered, in previous sections, the need to estimate lower bounds on the
in�nite norm of the examined polynomials. One way is to lower bound the polynomial
value at a su�cient number of points. We can choose these points to coincide with those at
which we have to determine the polynomial sign. Thus, the sign determination computation
can be combined with the magnitude estimation. Newton's formula is suitable for the
combined computation and lets us approximate x with a relative magnitude error bounded
by (k � 1)2�b, where b depends on the f.p. numbers used; e.g. b = 53 in the case of the
IEEE 754 double precision standard. To see this, consider equation (5.1) and let yj be
the integer in the outer parenthesis, which is computed exactly modulo mj . Therefore,

x = x1 +
Pk

i=2 yim
(i�1). This can be approximated by Horner's scheme [11] with k � 1 f.p.

additions and as many multiplications, each with relative error bounded by 2�b�1.
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