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Abstract
A method that improves the speed and the success rate of the backpropagation algorithm

is proposed. This method adapts the learning rate using the Barzilai and Borwein [IMA
J.Numer. Anal., 8, 141–148, 1988] steplength update for gradient descent methods. The
learning rate is automatically adapted at each epoch, using the weight and gradient values
of the previous one. Additionally, an acceptability criterion for the learning rate has been
enforced. More specifically, we impose that the error function value of each new epoch must
satisfy an Armijo-type criterion, with respect to the maximum error function value of a
predetermined number of previous epochs. Experimental results show that the proposed
method has considerably improved convergence speed, and for the chosen test problems,
outperforms other well-known training methods.

1 Introduction

Artificial Neural Networks (ANN’s) have been used widely in many application areas and have
shown their strengths in solving hard problems in artificial intelligence. Many different mod-
els of neural networks have been proposed, but multilayered feedforward ANN’s are the most
common. In order to train an ANN supervised training is probably the most frequently used
technique. The training process is an incremental adaptation of connection weights that prop-
agate information between simple processing units called neurons. Neurons are arranged in
layers and there are connections between neurons in one layer to the following. Let us consider
a feedforward ANN whose l-th layer contains Nl neurons, for l = 1, . . . ,M . The network is
based on the following equations:

netlj =
Nl−1∑
i=1

wl−1,l
ij yl−1

i , yl
j = f(netlj),

where netlj is for the j-th neuron in the l-th layer (j = 1, . . . , Nl), the sum of its weighted inputs.
The weights from the i-th neuron at the (l − 1) layer to the j-th neuron at the l-th layer are
denoted by wl−1,l

ij , yl
j is the output of the j-th neuron that belongs to the l-th layer, and f(netlj)

is the j-th’s neuron activation function.
The training process can be realized by minimizing the error function E defined by :

E =
1
2

P∑
p=1

NM∑
j=1

(
yM

j,p − tj,p
)2

=
P∑

p=1

Ep, (1)

where
(
yM

j,p − tj,p
)2

is the squared difference between the actual output value at the j-th output
layer neuron for pattern p and the target output value; p is an index over input-output pairs.
This function also provides an error surface over the weight space.
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To simplify the formulation of the equations let as use a unified notation for the weights.
Thus, for a feedforward ANN with a total of n weights, w denotes a column weight vector with
components w1, w2, . . . , wn and it is defined in the n–dimensional real space IRn; E represents
the batch error measure defined as the sum-of-squared-differences error function over the entire
training set; ∇E(w) defines the gradient vector of the error function E at w.

In this work we propose and study the behaviour of a NonMonotone Back Propagation
(NMBP) method that uses the Barzilai and Borwein steplength update [2] and is combined
with a generalization of the Armijo’s rule as a steplength acceptance criterion.

The remaining of the paper is organized as follows: In Section 2 we propose a training
algorithm with adaptive learning rate and describe the acceptability criterion. Experiments
and simulation results are presented in Section 3. The final section contains concluding remarks
and a short discussion for further work.

2 The NonMonotone BackPropagation Training Method

2.1 Description of the NMBP Training Method

Our aim is to minimize the error function E

minE(w), w ∈ IRn, (2)

where E ∈ C2. The gradient ∇E(w) can be obtained by means of back-propagation of errors
through the layers. Let the family of gradient training algorithms having the iterative form

wk+1 = wk + ηkdk, k = 0, 1, 2, . . . (3)

where wk be the current point, dk be a search direction, and ηk be the steplength. Various
choices of the direction dk give rise to distinct algorithms. A broad class of methods uses
dk = −∇E(wk) as a search direction. The widely used gradient-based training algorithm,
named batch back–propagation (BP), minimizes the error function using the following steepest
descent method with constant, heuristically chosen, learning rate η:

wk+1 = wk − η∇E(wk). (4)

Clearly, the behaviour of any algorithm depends on the choice of the steplength no less than
the choice of the search direction. It is well known that pure gradient descent methods with
fixed learning rate tend to be inefficient (see [10]). This happens, for example, when the search
space contains long ravines that are characterized by sharp curvature across them and a gently
sloping floor [11].

In [2] a gradient method has been proposed where the search direction is always the negative
gradient direction, but the choice of the steplength (learning rate) is not the classical choice
of the steepest descent method. The motivation for this choice is that it provides two–point
approximation to the secant equation underlying quasi-Newton methods [10]. This yields the
iteration:

wk+1 = wk − ηk∇E(wk), (5)

where ηk for the kth epoch is given by

ηk =
〈δk−1, δk−1〉
〈δk−1, ψk−1〉

(6)
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where δk−1 = wk − wk−1, ψk−1 = ∇E(wk) − ∇E(wk−1) and 〈· , ·〉 denotes the standard inner
product. The key features of this method are the low storage requirements and the inexpensive
computations. Moreover, it does not guarantee descent in the error function E.

Our experiments in a previous work [6], show that this property is valuable in neural network
training, because very often the method escapes from local minima and flat valleys where other
methods are trapped. The only implementation problem of the above method, when applied
to train an FNN, is that the update formula (6) potentially gives large values for the learning
rate ηk. In this case, the method may overshoot the minimum w? or possibly diverge. To tackle
the above problem we had introduced a parameter µ, called maximum growth factor, which
controled the growth of the learning rate. The side effect of parameter µ is that sometimes
decreases the speed of convergence, because it is constant during the training process and does
not take into account the local shape of the error function and the current direction.

While no learning rate acceptance rule will always be optimal, it does seem to be common
sense to require that E(wk+1) < E(wk). It must be noted that this simple condition does
not guarantee that the sequence of weight vectors {wk}∞k=0 will converge to a minimizer w∗
of E. Additionally, the use of a learning rate selection rule which enforces monotonicity can
considerably slow the rate of convergence. A well-known monotone line search method, given
by Armijo in [1], uses as an acceptability criterion for the learning rate, the following condition:

E
(
wk − ηk∇E(wk)

)
− E(wk) ≤ −σ ηk

∥∥∇E(wk)
∥∥2

(7)

where 0 < σ < 1, ensures that using this ηk, the error function is reduced during the training
process. It comes as no great surprise that a direct combination of the (5) gradient method
using (6) as learning rate, with the Armijo’s condition (7) has some disadvantages. In particular,
monotone line search forcing decrease at every epoch will destroy some of the local properties of
the method and may reduce it to the back-propagation, which is known for its slow convergence.

A nonmonotone line search for Newton-type methods has been proposed in [4] and some
computational advantages of this technique for large scale unconstrained minimization problems
have been pointed out in [7]. They suggest that the learning rate ηk can be computed along
the search direction dk by an Armijo-type nonmonotone line search, which does not enforce
E(wk+1) < E(wk), but uses a learning rate acceptability criterion which can be viewed as a
generalization of the Armijo’s rule [1]. More specifically imposes that the error function value
E of each new epoch must satisfy the Armijo’s condition with respect to the maximum error
function value of a prefixed number M of previous epochs. Formally, the condition is given by:

E
(
wk − ηk∇E(wk)

)
− max

0≤j≤M
E(wk−j) ≤ −σ ηk

∥∥∇E(wk)
∥∥2

(8)

where M is a nonnegative integer. The above condition allows an increase in the function values
without affecting the global convergence properties as has been proved in [7]. This condition is
preferred in order to accept the learning rate given by (6) as frequently as possible.

In the next subsection, the NMBP training algorithm is summarized.

2.2 The NMBP training algorithm

A high-level description of the NMBP method is outlined below:
Step 0: Initialize by setting the number of epochs k = 0, the weights w0, the learning rate to
an arbitrary value η0, the error goal ε, the σ ∈ (0, 1) and M ≥ 1.
Step 1: Compute the weight vector w1 according to relation (5) using η0 as the learning rate
and set k = k + 1.
Step 2: Compute the new learning rate ηk using the relation (6).
Step 3: Update the weight vector wk+1 according to the relation (5).
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Step 4: If the learning rate acceptability condition(8) is fullfilled go to Step 6.
Step 5: Set ηk = ηk/2 and go to Step 3.
Step 6: Check if E(wk+1) > ε, set k = k + 1 and go to Step 2; otherwise get the final weight
vector w∗, and the corresponding value of E.
Remark: Steps 4–5 constitute an efficient method to determine an appropriate learning rate
without additional gradient evaluations. As a consequence, the number of gradient evaluations,
in general, is less than the number of error function evaluations.

3 Experiments and Results

A computer simulation has been developed to study the performance of the learning algorithms.
The simulations have been carried out on a Pentium 133MHz PC IBM compatible using MAT-
LAB version 5.01. The performance of the NMBP algorithm has been evaluated and compared
with the batch versions of BP, momentum BP (MBP) [5], and adaptive BP (ABP) [12], from
Matlab Neural Network Toolbox version 2.0.4. Toolbox default values for the heuristic param-
eters, of the above algorithms, are used unless stated otherwise. For the NMBP algorithm, we
have fixed the values of M = 10 and σ = 10−5. Especially for the XOR problem we have studied
the performance of the NMBP method for various values of M and we give a table summarizing
these simulations. The algorithms were tested using the same initial weights, initialized by the
Nguyen–Widrow method [9], and received the same sequence of input patterns. The weights of
the network are updated only after the entire set of patterns to be learned has been presented.

For each of the test problems, a table summarizing the performance of the algorithms for
simulations that reached solution is presented. The reported parameters are: min the minimum
number of epochs, mean the mean value of epochs, max the maximum number of epochs,
s.d. the standard deviation, and succ. the simulations succeeded out of 1000 trials within the
error function evaluations limit. If an algorithm fails to converge within the above limit, it
is considered that it fails to train the FNN, but its epochs are not included in the statistical
analysis of the algorithms. This fact clearly favours BP, MBP and ABP that require too many
epochs to complete the task and/or often fail to find the minimum w?.

We must also note that for the BP, BPM and, ABP one gradient and one error function
evaluation are necessary at each epoch, while the number of error function evaluations (FE) of
NMBP is, in general, larger than the number of gradient evaluations (GE), due to the accept-
ability criterion. As a consequence even when NMBP fails to converge within the predetermined
limit of function evalutions, its number of gradient evaluations is smaller than the corresponding
number of the other methods. Keeping in mind that a gradient evaluation is more costly than
an error function evaluation (see for example [8], where suggests to count a gradient evalua-
tion three times more than an error function evaluation), one can understand that the NMBP
method requires fewer floating point operations and actually is much faster, when compared
with the other methods. From the above discussion it is clear why in the tables there are two
lines for the NMBP method; the first one indicates the statistics for the FE and the second for
the GE.

3.1 The Exclusive-OR Problem

The first test problem we will consider is the exclusive-OR (XOR) Boolean function problem,
which has historically been considered a good test of a network model and learning algorithm.
The XOR function maps two binary inputs to a single binary output. This simple Boolean
function is not linearly separable (i.e. it cannot be solved by a simple mapping directly from
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the inputs to the output), and thus requires the use of extra hidden units to learn the task.
Moreover, it is sensitive to initial weights as well as to learning rate variations and presents
a multitude of local minima with certain weight vectors. A 2-2-1 FNN (six weights, three
biases) has been used to train the XOR problem. The network is based on hidden neurons of
logistic activations with biases and on a linear output neuron with bias. For the BP and MBP
algorithms the learning rate is chosen to be 0.1 instead of the default value 0.01 to accelerate
their convergence, since – for this problem – they converge slowly with the default value. The
termination criterion is E ≤ 0.01 within 1000 error function evaluations. The results of the
simulation are shown in Table 1.

Table 1: Results of simulations for the XOR problem
Algorithm min mean max s.d. succ.
BP 32 185.43 947 175.16 61.4%
MBP 26 197.01 973 189.08 60.5%
ABP 20 119.94 993 189.14 67.6%

7 107.01 999 237.25NMBP 73.7%7 96.32 571 122.58

In Table 2 we have summarized the performance of the NMBP method for the XOR problem
and various choises of M . The statistics shown are for the error function evaluations and it
is clear that the original monotone Armijo’s condition (for M = 1), has excibited the worst
performance, while for values of M > 3 the performance of the method have been improved
significantly.

Table 2: Results of simulations for various values of M (XOR problem)
M min mean max s.d. succ.
1 7 55.45 474 86.47 63.7%
2 7 55.24 495 84.59 64.2%
3 7 58.08 510 88.43 63.5%
4 7 73.35 540 99.39 74.8%
5 7 74.81 535 94.78 72.5%
6 7 85.34 562 111.46 74.8%
7 8 87.74 560 111.38 73.2%
8 6 83.94 565 111.82 73.2%
9 8 91.71 583 120.79 72.4%
10 7 96.32 571 128.36 73.7%

3.2 The Font Learning Problem

In this simulation we consider the font learning problem. We present to the network 26 matrices
with the capital letters of the English alphabet. Each letter has been defined in terms of binary
values on a grid of size 5×7. For this problem a 35-30-26 FNN (1830 weights, 56 biases) has been
used. The network is based on hidden neurons of logistic activations with biases and on a linear
output neuron with bias. The performance of the methods has been measured and the Table 3
shows the results. In order to improove the performance of the methods with fixed learning rate
(i.e. BP and MBP), the weights have been initialized following the Nguyen–Widrow method
but afterwards the weights and biases of the output layer have been multiplied by 0.01. NMBP
method has also performed very well without this scaling and exhibited a success rate of 100.0%,
when the other methods always failed to converge. Additionally, the error function evaluations
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Table 3: Results of simulations for the font problem
Algorithm min mean max s.d. succ.
BP 1098 1561.84 1999 202.81 76.8%
MBP 1142 1519.06 1931 169.32 4.9%
ABP 1119 1773.06 1999 168.88 37.2%

113 182.01 309 33.47NMBP 100.0%73 119.39 193 20.47

limit has been increased to 2000, since (as indicated by the minimum number of epochs needed
to train the FNN) all the methods – except the proposed one, which had maximum number of
error function evaluations 309 – failed to complete the task within the standard limit we have
used in the previous test problem (XOR).

3.3 Continuous function approximation

The third test problem we consider is the approximation of the continuous trigonometric func-
tion, f(x) = sin(x) cos(2x). In this problem we consider the performance of the methods to
form a look-up table for the function mentioned above. In this case a 1-15-1 FNN (thirty

Table 4: Results of simulations for function approximation
Algorithm min mean max s.d. succ.
BP 328 706.65 998 175.56 13.8%
MBP 332 699.18 993 174.76 13.7%
ABP 166 628.03 994 216.77 26.9%

29 241.65 988 195.11NMBP 92.2%26 158.24 625 114.71
weights, sixteen biases) is trained to approximate the function f(x), where the input values are
scattered in the interval [0, 2π] and the network is trained until the sum of the squares of the
errors (over 20 input/output sets) becomes less than the error goal 0.1. The network is based
on hidden neurons of logistic activations with biases and on a linear output neuron with bias.
Comparative results are exhibited in Table 4. Once again, the NMBP method exhibited the
best performance and had a excellent success rate 92.2%.

4 Concluding Remarks

A simple technique for the adaptation of the learning rate for batch training FNNs is proposed.
It is shown that this adaptation improves the convergence speed in several classical test prob-
lems. Our experimental results clearly show that the proposed method outperforms the classical
training algorithms (BP, MBP and ABP). It runs much faster, performs less floating point op-
erations, has improved average number of epochs, and better convergence rates. Further work
must be done in order to evaluate the generalization performance of NMBP on well-known
classification benchbarks, and test it on bigger and more complex real-life learning tasks.
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