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Abstract

We apply the smaller alignment index (SALI) method for distinguishing between
ordered and chaotic motion in some simple conservative dynamical systems. In
particular we compute the SALI for ordered and chaotic orbits in a 2D and a 4D
symplectic map, as well as a two–degree of freedom Hamiltonian system due to
Hénon & Heiles. In all cases, the SALI determines correctly the nature of the
tested orbit, faster than the method of the computation of the maximal Lyapunov
characteristic number. The computation of the SALI for a sample of initial condi-
tions allows us to clearly distinguish between regions in phase space where ordered
or chaotic motion occurs.

1 Introduction

One of the most important approaches for understanding the behavior of a dy-
namical system is based on the knowledge of the chaotic vs. ordered nature of its
orbits. For Hamiltonian systems with two degrees of freedom (or equivalently for
2D symplectic maps), the inspection of the consequents of an orbit on a Poincaré
surface of section (PSS), can give us reliable information for the dynamics of in-
dividual orbits. On the other hand, the distinction between ordered and chaotic
motion becomes particularly difficult in systems with many degrees of freedom,
where phase space visualization is no longer easily accessible.

A quantitative method for distinguishing between order and chaos that has
been extensively used (also for multidimensional systems), is the computation of
the maximal Lyapunov characteristic number (LCN) [1, 3]. The LCN is the limit
of the finite time Lyapunov characteristic number:

Lt =
1

t
ln

|ξt|

|ξ0|
(1)

(where ξ0 and ξt are the distances between two points of two nearby orbits at times
t = 0 and t), when t tends to infinity. In other words, LCN measures the average
exponential deviation of two nearby orbits, so if LCN=0 the tested orbit is ordered
and if LCN > 0 it is chaotic. In maps, t is a discrete variable i.e. the number N
of iterations of the map, so the finite time Lyapunov characteristic number can be
denoted as LN . An advantage of this method is that it can be applied to systems
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of any number of degrees of freedom. The main disadvantage of LCN is that the
time needed for Lt to converge to its limit can be extremely high and in some cases
even unrealistic for the systems under study.

A fast, efficient and easy to compute criterion to check if orbits of multidi-
mensional maps are chaotic or not has been introduced in [5]: It concerns the
computation of the smaller alignment index (SALI). Recently this method has
been successfully applied to a two–degree of freedom Hamiltonian flow [7]. In the
present communication we first recall the definition of the SALI and show its ef-
fectiveness by applying it to a 2D and a 4D symplectic map, comparing it also
to the computation of LCN. We then use the SALI to study the dynamics of the
Hénon–Heiles Hamiltonian system; and illustrate its ability to distinguish between
regions of the phase space where ordered and chaotic motion occurs clearly and
faster than LCN.

2 Definition of the smaller alignment index (SALI)

Let us consider the 2n–dimensional phase space of a conservative dynamical system,
described by a symplectic map T or a Hamiltonian system defined by the n degrees
of freedom Hamiltonian function H . The time evolution of an orbit with initial
condition P (0) = (x1(0), x2(0), . . . , x2n(0)) is defined by the repeated applications
of the map T or by the solution of Hamilton’s equations of motion.

In order to find the LCN one has to compute the limit of the finite time Lyapunov
characteristic number Lt (1) for an initially infinitesimal deviation vector ξ(0) =
(dx1(0), dx2(0), . . . , dx2n(0)), as the time t or the number of iterations N tend to
infinity, for Hamiltonian flows and maps respectively. The time evolution of the
deviation vector is given by the equations of the tangent map

ξ(N + 1) =

(

∂T

∂P (N)

)

ξ(N), (2)

for maps, and by the variational equations

J · ξ̇′ = DH · ξ′, (3)

for flows, where (′) denotes the transpose matrix and matrices J and DH are
defined by

J =
(

0
n

−I
n

I
n

0
n

)

, DHij =
∂2H

∂xi ∂xj

with i, j = 1, 2, ..., 2n, (4)

I
n

being the n × n identity matrix and 0
n

the n × n matrix with all its elements
equal to zero.

In order to define the SALI for the orbit with initial conditions P (0) we follow
the time evolution of two initial deviation vectors ξ1(0) and ξ2(0). At every time
step we normalize each vector to 1 and define the parallel alignment index

d−(t) ≡ ‖ξ1(t) − ξ2(t)‖ (5)

and the antiparallel alignment index

d+(t) ≡ ‖ξ1(t) + ξ2(t)‖, (6)

following [5] (‖ · ‖ denotes the Euclidean norm of a vector). The smaller alignment
index SALI is given by

SALI = min(d−(t), d+(t)). (7)

From the above definitions we see that when the two vectors ξ1(t), ξ2(t) tend to
coincide we get

d−(t) → 0, d+(t) → 2, SALI → 0,



while, when they tend to become opposite we get

d−(t) → 2, d+(t) → 0, SALI → 0.

So, it is evident that SALI is a quantity that clearly informs us if the two deviation
vectors tend to have the same direction by coinciding or becoming opposite. The
reason why this information is useful for understanding if an orbit is chaotic or
not is that, for systems of 2n–dimensional phase space with n ≥ 2, the two vectors
tend to coincide or become opposite for chaotic orbits [8], i.e. the SALI tends
to zero. This is due to the fact that the direction of the two deviation vectors
tends to coincide with the direction of the most unstable nearby manifold. On the
other hand, if the tested orbit is ordered it lies on a torus and the two deviation
vectors eventually become tangent to the torus, but in general converge to different
directions. In that case the SALI does not tend to zero, but its values fluctuate
around a positive value.

Although the SALI method is perfectly suited for multidimensional systems, it
can also be applied to 2D maps. For 2D maps, whose phase space is 2–dimensional,
the SALI tends to zero both for ordered and chaotic orbits, but with completely
different time rates which allows us to clearly distinguish between the two cases.
This behavior is due to the fact that for ordered orbits the two vectors, as has
already mentioned, become tangent to the torus, which now is simply an invariant
curve. So, the only possibilities for the two vectors are to become identical or
opposite which means that the SALI tends to zero.

3 Applications of the SALI

3.1 Symplectic maps

Following [5] we compute the SALI in some simple cases of ordered and chaotic
orbits in symplectic maps with two and four dimensions. In particular we use the
2D map:

x′

1 = x1 + x2

x′

2 = x2 − ν sin(x1 + x2)
(mod 2π), (8)

and the 4D map:

x′

1 = x1 + x2

x′

2 = x2 − ν sin(x1 + x2) − µ[1 − cos(x1 + x2 + x3 + x4)]
x′

3 = x3 + x4

x′

4 = x4 − κ sin(x3 + x4) − µ[1 − cos(x1 + x2 + x3 + x4)]

(mod 2π), (9)

which is composed of two 2D maps of the form (8), with parameters ν and κ,
coupled with a term of order µ. All variables are given (mod 2π), so xi ∈ [−π, π),
for i = 1, 2, 3, 4. The map (9) is a variant of the 4D map studied by Froeschlé [2].
Some dynamical structures on the phase space of this map were examined in detail
in [6] for small values of the coupling parameter µ.

In the case of the 2D map (8) we consider the ordered orbit A with initial
condition x1 = 2, x2 = 0 and the chaotic orbit B with initial condition x1 = 3,
x2 = 0 for ν = 0.5. The phase plot of map (8) can be seen in figure 1(a), where
the initial conditions of orbits A and B are marked by black and light-gray circles,
respectively. The ordered behavior of orbit A and the chaotic nature of orbit B
are evident from the distribution of their consequents on the 2D phase space. In
particular the successive consequents of orbit A lie on a smooth invariant curve,
while the successive consequents of orbit B are scattered in the small chaotic region
that surrounds the main stability island around x1 = x2 = 0. The different nature
of the two orbits is revealed also by the behavior of the SALI. The initial deviation
vectors used for the computation of the SALI are ξ1(0) = (1, 0) and ξ2(0) = (0, 1)
for both orbits. These vectors eventually coincide in both cases, but at completely



Figure 1: (a) Phase plot of the 2D map (8) for ν = 0.5. The initial conditions of the ordered
orbit A (x1 = 2, x2 = 0) and the chaotic orbit B (x1 = 3, x2 = 0) are marked by black and
light-gray filled circles respectively. (b) The evolution of the SALI, with respect to the number
N of iterations of the 2D map (8) for orbit A (solid line) and for orbit B (dashed line).

different time rates. This is evident in figure 1(b), where the SALI is plotted
as a function of the number N of iterations for the ordered orbit A (black line)
and the chaotic orbit B (gray line) in log-log scale. For the ordered orbit A the
SALI decreases as N increases, following a power law and becomes SALI ≈ 10−13

after 107 iterations. On the other hand, the SALI of the chaotic orbit B decreases
abruptly, reaching the limit of accuracy of the computer (10−16) after only about
200 iterations. After that time, the two vectors become identical to computer
accuracy. So, it becomes evident that the SALI can distinguish between ordered
and chaotic motion even in a 2D map, since it tends to zero following completely
different time rates.

In the case of the 4D map (9) for ν = 0.5, κ = 0.1 and µ = 10−3 we consider the
ordered orbit C with initial condition x1 = 0.5, x2 = 0, x3 = 0.5, x4 = 0 and the
chaotic orbit D with initial condition x1 = 3, x2 = 0, x3 = 0.5, x4 = 0. The initial
deviation vectors used for the computation of the SALI are (1,1,1,1) and (1,0,0,0),
for both orbits. As we see in figure 2(a) the SALI of the ordered orbit C remains
almost constant (black line), fluctuating around SALI ≈ 0.28. On the other hand,
the SALI of the chaotic orbit D decreases abruptly, reaching the limit of accuracy
of the computer (10−16) after about 4.7 × 103 iterations (gray line). After that
time, the coordinates of the two vectors are represented by opposite numbers in
the computer (since the SALI actually coincides with d+ in this case), and any
further computation of their evolution is not necessary.

So, in 4D maps the SALI tends to zero for chaotic orbits, while it tends to
a positive value for ordered orbits. Thus, the different behavior of SALI clearly
distinguishes between ordered and chaotic motion. Another advantage of using the
SALI is that we can be sure about the nature of the tested orbit faster than using
LCN. This becomes evident by looking at the evolution of the finite time Lyapunov
characteristic number LN (1) for orbits C and D in figure 2(b). As expected, for the
ordered orbit C, LN decreases as the number of iterations N increases, following a
power law, reaching the value LN ≈ 1.6 × 10−6 after 107 iterations. On the other
hand, LN of the chaotic orbit D, after some fluctuations, seems to stabilize near a
constant non–zero value LN ≈ 5 × 10−2 after 107 iterations. By comparing panels
(a) and (b) of figure 2 we see that, after about 4.7× 103 iterations we can be sure
that orbit D is chaotic using the SALI, since it has become equal to 10−16 and the
two deviation vectors practically coincide, while we cannot stop the computation



Figure 2: The evolution in log-log scale of (a) the SALI and (b) the finite time Lyapunov
characteristic number LN , with respect to the number N of iterations of the 4D map (9) with
ν = 0.5, κ = 0.1, µ = 10−3, for the ordered orbit C with initial condition x1 = 0.5, x2 = 0,
x3 = 0.5, x4 = 0 (black line) and for the chaotic orbit D with initial condition x1 = 3, x2 = 0,
x3 = 0.5, x4 = 0 (gray line).

of LN at that time, since it is not yet evident whether the LCN for orbit D will
ultimately be zero or not.

3.2 The Hénon–Heiles Hamiltonian system

In order to illustrate the effectiveness of the SALI in determining chaotic vs. ordered
orbits in Hamiltonian flows, we consider the two degrees of freedom Hénon–Heiles
Hamiltonian [4]

H(x, y, px, py) =
1

2
(p2

x + p2
y) +

1

2
(x2 + y2) + x2y −

1

3
y3, (10)

where x, y are the generalized coordinates and px, py the conjugate momenta. In
particular, we consider the case of fixed energy H = 1/8, for which the system
exhibits a rich dynamical structure. As it can be seen on the Poincaré surface of
section (PSS) for x = 0 in figure 3 there exist islands of stability, where ordered
motion occurs, as well as extensive regions where chaotic motion takes place.

In order to apply the SALI method, we consider the ordered orbit E with ini-
tial condition x = 0, y = 0.55, px ≃ 0.2417, py = 0 and the chaotic orbit F
with initial condition x = 0, y = −0.016, px ≃ 0.49974, py = 0. The projec-
tion of the initial conditions of orbits E and F on the PSS are marked by black
and light-gray filled circles respectively in figure 3. The initial deviation vectors
(dx(0), dy(0), dpx(0), dpy(0)) used for the computation of SALI are (1, 0, 0, 0) and
(0, 0, 1, 0).

As we see in figure 4(a) the SALI of the ordered orbit E remains almost constant,
fluctuating around SALI ≈ 1 (black line), while the SALI of the chaotic orbit F
decreases abruptly reaching the limit of accuracy of the computer (10−16) after
about 1,700 time units (gray line). The behavior of the SALI is similar to the
one encountered in the 4D map (9) (figure 2(a)), since the phase space of the
Hamiltonian system is 4–dimensional as in the case of the 4D map. In figure
4(b) we see the time evolution of finite time Lyapunov characteristic number Lt

(1) for orbits E (black line) and F (gray line). Lt of the ordered orbit E, after an
initial transient time interval where it exhibits large fluctuations, starts to decrease
following a power law, reaching the value Lt ≈ 10−4 for t = 105. Lt of the chaotic



Figure 3: The Poincaré surface of section for x = 0 of the two degrees of freedom Hénon–Heiles
Hamiltonian (10) for H=1/8. The projection on the PSS of the initial conditions of the ordered
orbit E (x = 0, y = 0.55, px ≃ 0.2417, py = 0) and the chaotic orbit F (x = 0, y = −0.016, px ≃
0.49974, py = 0) are marked by black and light-gray filled circles respectively. The axis py = 0
is also plotted.

Figure 4: The evolution in log-log scale of (a) the SALI and (b) the finite time Lyapunov
characteristic number Lt as a function of time t, for the Hamiltonian (10) with H=1/8, for the
ordered orbit E with initial condition x = 0, y = 0.55, px ≃ 0.2417, py = 0 (black line) and for
the chaotic orbit F with initial condition x = 0, y = −0.016, px ≃ 0.49974, py = 0 (gray line).



Figure 5: (a) The value of SALI for t = 4, 000 for orbits with initial conditions on the py = 0
axis of the PSS shown in figure 3, as a function of the y variable of the initial condition. The
data are plotted as red points and are connected by blue lines. (b) Regions of different values of
the SALI on the PSS (y, py) after 1,000 time steps. Initial conditions that give SALI < 10−12 are
marked by black points, initial conditions that give 10−12 ≤ SALI < 10−8 are marked by deep
blue points, initial conditions that give 10−8 ≤ SALI < 10−4 are marked by blue points, while
initial conditions that give 10−4 ≤ SALI are marked by light blue points.

orbit F has larger fluctuations without tending to zero, although even for t = 105

it does not seem to stabilize around a non-zero value.
We underline the fact that in this case, using the SALI we were absolutely sure

that orbit F is chaotic at t = 1, 700, at which time SALI became practically zero,
although at that time the use of Lt could not give us the same information.

In figure 3 we see that in a large portion of phase space the motion of system
(10) is chaotic. The chaotic region corresponds to the area filled with scattered
points on the PSS, while ordered motion corresponds to the islands formed by the
invariant smooth curves. Since the SALI tends to completely different values for
ordered and chaotic orbits, its computation for a sample of initial conditions can
be used to distinguish between regions where ordered or chaotic motion occurs.

As a first example, we consider orbits that lie on the py = 0 line on the PSS
shown in figure 3, having initial conditions x = 0, py = 0, while px is defined by
the Hamiltonian (10). The values of the SALI for all these orbits, after 4,000 time
units, are plotted with red points in figure 5(a), as function of the y variable of
the initial condition. These points are line connected in order to be easily visible
the changes of the SALI as the initial condition moves on the py = 0 line. We can
clearly see regions of ordered motion where the SALI has values larger than 10−4,
corresponding to the islands of stability that are crossed by the line py = 0 in figure
3. There also exist regions of chaotic motion where the SALI has become smaller
than 10−12 or has even reached the limit of accuracy of the computer (10−16), in
agreement to the regions crossed by the py = 0 line where scattered points exist on
the PSS. Although most of the initial conditions give large (≥ 10−4) or very small
(< 10−12) values for the SALI, there also exist initial conditions that give, after
4,000 time units, intermediate values for the SALI (10−12 ≤ SALI < 10−4). These
correspond to sticky orbits existing near the borders of ordered motion, and more
time is needed for the SALI to reach very small values and reveal their chaotic
nature.

By carrying out the above analysis not only on a line on the PSS but for the
whole plane, plotting with different colors initial points that give values for the
SALI in different ranges, we can get an image of phase space regions where ordered



and chaotic motion are clearly distinguished (figure 5(b)). In figure 5(b) we see that
our PSS is practically divided into regions where ordered motion occurs, colored in
light blue, which corresponds to 10−4 ≤ SALI, and those colored in black, where
chaotic behavior occurs, corresponding to SALI < 10−12. On the borders between
these two regions we see points that give intermediate values for the SALI colored
in deep blue (10−12 ≤ SALI < 10−8) and in blue (10−8 ≤ SALI < 10−4), which
correspond to sticky orbits. The resemblance between figure 5(b) and figure 3 is
obvious. We should also mention that in figure 5(b), we can see some very thin
regions of ordered motion corresponding to very small islands of stability that
cannot be seen easily in figure 3. So, it is evident that starting with any initial
condition, the computed value of the SALI rapidly gives a clear view of chaotic
vs. ordered motion even for systems described by ordinary differential equations,
where surface of section plots are already time consuming for 2 degrees of freedom
and practically useless for systems of higher dimensionality.

4 Conclusions

In this paper, we have given some examples of symplectic maps and Hamiltonian
systems, where the computation of the smaller alignment index SALI allows us to
distinguish in a cost effective way between ordered and chaotic orbits.

The computation of the SALI is a fast, efficient and easy to compute numerical
method, perfectly suited for multidimensional systems, but it can also be applied to
2D maps. In 2D maps, the SALI tends to zero both for ordered and chaotic orbits,
but following completely different time rates which allows us to distinguish between
the two cases. In maps of higher dimensionality (and Hamiltonian systems) the
SALI tends to zero for chaotic orbits, while in general, it tends to a positive value
for ordered orbits. So, we can easily distinguish between regular and chaotic orbits.
Our approach, in fact, begins to be truly valuable for Hamiltonian systems of 2
degrees of freedom (where detailed surface of section plots are computationally
too costly) and promises to become extremely useful for higher than 2 degree of
freedom Hamiltonians and higher dimensional symplectic maps.

An advantage of using the SALI in Hamiltonian systems or in multidimensional
maps is that usually the chaotic nature of an orbit can be established beyond any
doubt. This happens because when the orbit under consideration is chaotic, the
SALI becomes zero, in the sense that it reaches the limit of the accuracy of the
computer. After that time the two deviation vectors, needed for the computation of
the SALI, are identical (equal or opposite), since their coordinates are represented
by the same or opposite numbers. Thus, they have exactly the same evolution
in time and cannot be separated. This practically means that we do not need to
continue the computation of the evolution of the two vectors further on.

We should also mention that in all cases studied, the use of the SALI helped us
decide if an orbit is ordered or chaotic much faster than the computation of the
finite time Lyapunov characteristic number Lt.
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