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Summary. In this paper we present the application of Principal Component Analysis (PCA)
on subsets of the dataset to better approximate clusters. We focus on a specific density-based
clustering algorithm,k-Windows, that holds particular promise for problems of moderate di-
mensionality. We show that the resulting algorithm, we call Orientedk-Windows (OkW), is
able to steer the clustering procedure by effectively capturing several coexisting clusters of
different orientation. OkW combines techniques from computational geometry and numerical
linear algebra and appears to be particularly effective when applied on difficult datasets of
moderate dimensionality.

1 Introduction

Density based methods are an important category of clustering algorithms [4, 13, 23],
especially for data of low attribute dimensionality [6, 17, 26]. In these methods, clus-
ters are formed as regions of high density, in dataset objects, surrounded by regions
of low density; proximity and density metrics need to be suitably defined to fully de-
scribe algorithms based on these techniques though there are difficulties for problems
of high attribute dimensionality; cf. [1, 16]. One recent technique in this category is
“Unsupervisedk-Windows” (UkW for short) [28], that utilizes hyperrectangles to
discover clusters. The algorithm makes use of techniques from computational geom-
etry and encapsulates clusters using linear containers in the shape ofd-dimensional
hyperrectangles that are aligned with the standard Cartesian axes and are iteratively
adjusted with movements and enlargements until a certain termination criterion is
satisfied; cf. [24, 28]. An advantage of the algorithm is that it allows a reduction in
the number of objects examined at each step, something especially useful when deal-
ing with large collections. Furthermore, with proper tuning, the algorithm can detect
clusters of arbitrary shapes. We show here a general approach that appears to improve
the effectiveness of UkW. This approach relies on techniques from linear algebra to
orient the hyperrectangles into directions that are not necessarily axes-parallel. The
technique used in this process is PCA [18], implemented via singular value decom-
position (SVD) [14]. The paper is organized as follows. The details of unsupervised
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k-Windows are described in Section 2. Section 3 describes OkW, while Section 4
presents experimental evidence of its efficiency. Finally, Section 5 contains conclud-
ing remarks. We would be assuming that datasets are collections ofd-dimensional
objects, and can be represented by means of ann×d object-attribute matrix; unless
specified otherwise, “dimension” refers to attribute cardinality,d.

2 Unsupervisedk-Windows clustering

UkW aims at capturing all objects that belong to one cluster within ad–dimensional
window. Windows are defined to be hyperrectangles (orthogonal ranges) ind dimen-
sions; cf. [28] for details. UkW employs two fundamental procedures:movementand
enlargement. The movement procedure aims at positioning each window as close
as possible to the center of a cluster. The enlargement process attempts to enlarge
the window so that it includes as many objects from the current cluster as possible.
The two steps are illustrated in Figure 1. UkW provides an estimate for the number
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Fig. 1. (a) Sequential movements M2, M3, M4 of initial window M1. (b) Sequential enlarge-
ments E1, E2 of window M4.

of clusters that describe a dataset. The key idea is to initialize a large number of
windows. When the movement and enlargement of all windows terminate, all over-
lapping windows are considered for merging by considering their intersection. An
example of this operation is exhibited in Figure 2.

The computationally intensive part ofk-Windows is the determination of the
points that lie in a hyperrectangle. This is the well known “orthogonal range search”
problem [22]. The high level description of the algorithm is as follows:

algorithm UkW
(
a, θe, θm, θc, θv, θs, k

) {
executeW=DetermineInitialWindows(k,a)
for eachhyperrectanglew j in W do

repeat
executemovement(θv,w j )
executeenlargement(θe,θc,θv,w j )

until the center and size ofw j remain unchanged
executemerging(θm,θs,W)
Output

{
clusterscl1,cl2, . . . so that:cl i = {i : i ∈ w j , label(w j) = l i}

}
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Fig. 2. (a)W1 andW2 satisfy the similarity condition andW1 is deleted. (b)W3 andW4 satisfy
the merge operation and are considered to belong to the same cluster. (c)W5 andW6 have a
small overlap and capture two different clusters.

}
function DetermineInitialWindows(k,a)

{
initialize k d-dimensional hyperrectangleswm1, . . . ,wmk with edge lengtha
selectk points from the dataset and

center the hyperrectangles at these points
return a setW of thek hyperrectangles}

function movement(θv, hyperrectanglew)
{

repeat
find the objects that lie in the hyperrectanglew
calculatethe meanmof these objects
setthe center ofw equal tom

until the Euclidean distance betweenm and
the previous center ofw is less thanθv}

function enlargement(θe,θc,θv, hyperrectanglew)
{

repeat
foreachdimensioni do

repeat
enlargew along current dimension byθe%
executemovement(θv,w)

until increase in number of objects
along current dimension is less thanθc%

until increase in number of objects
is less thanθc% along each dimension}

function merging(θm,θs, set of hyperrectanglesW)
{

for eachhyperrectanglew j in W not markeddo
mark w j with labelw j

if ∃ wi 6= w j in W, that overlaps withw j

computethe number of pointsn that
lie in the overlap area

if ( n
|wi | )≥ θs and|wi |< |w j |
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disregard wi

if 0.5∗ ( n
|w j | +

n
|wi | )≥ θm

mark all wi labeled hyperrectangles inW with labelw j}

3 k-Windows with PCA based steering

Results with UkW in [28] showed that a procedure based on moving and enlarging
hyperrectangles together with merging is effective in discovering clusters. All move-
ments, however, were constrained to be parallel to any one of the standard cartesian
axes. We next consider the possibility of allowing the hyperrectangles adapt both
their orientation and size, as means to more effective cluster discovery. Let us as-
sume, for example, thatk d-dimensional hyperrectangles of the UkW algorithm have
been initialized, as in functionDetermineInitialWindows above. After executing
the movement function, the center and contents of each hyperrectangle might change.
It would then be appropriate to re-orient the hyperrectangle from its original position
(axes-parallel in the first step, maybe different in later ones) so as to take into account
the local variabilities present in the data. This is accomplished by means of PCA on
a translation of the subset of points (objects) included in the specific hyperrectangle.

Let, for example,A(i) ∈ Rni×d be the object-attribute matrix corresponding to
objects in a subsetP of the original dataset. MatrixB(i) := A(i)− 1

ni
ee>A(i), where

e∈Rni is a vector of all 1’s, contains the pointsB(i), that is the points ofP written in
terms of the cartesian axes centered at the centroidg = 1

ni
e>A(i) of P . Let the SVD

of B(i) be B(i) = U (i)Σ(i)(V(i))> and{u j ,σ j ,v j}, j = 1, ...,d the nontrivial singular
triplets of B(i), in decreasing order, i.e.σ1 ≥ σ2 ≥ ·· · ≥ σd ≥ 0. For simplicity we
omit the indexi. One way to build a hyperrectangle bounding the elements ofP is
to use the fact that the columns ofVi are the principal directions of the elements of
P . The hyperellipsoid with semiaxesσ j encloses all ofP . It can, however, cover a
much larger volume than the volume enclosed by the span ofP and even the hy-
perellipsoid of minimal volume containingP . On the other hand, computing either
of these minimal bodies and keeping track of geometrical operations with them is
difficult; e.g. see [20]. Instead, since OkW was based on hyperrectangles, we prefer
to preserve that choice here as well. We search, then for hyperrectangles that bound
the points ofP , but no longer requiring that they are axes-parallel. A simple, yet
effective choice, is to exploit the equalityB(i)V(i) = U (i)Σ(i) which shows that the
projections of theni rows of B(i) on any of the principal axes, sayv j , is given by
the elements of columnj of U (i) multiplied by σ j . Therefore, we can construct a
bounding hyperrectangle forP by taking g as center and the values2σ j‖u j‖∞ as
edge lengths. An alternative (sometimes better) approximation would be to project
all points onj th principal direction, and use as corresponding edge length parallel to
axis j, the largest distance between the projected points. Note that adapting the edge
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lengths in this manner makes the algorithm less sensitive to the size of the original
hyperrectangle edge length.
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Fig. 3. The initial data and window (a) are shifted and the principal directions are computed
(b). We compute the minimum bounding principal directions oriented hyperrectangle (c) and
the corresponding hypercube (cf. next subsection 3.1) (d). Finally, we shift the data back (e).

An example of the above process is illustrated in Figure 3. Initially the data points
are centered and the principal components of the corresponding matrix are computed.
Then, we compute the minimum principal directions oriented hyperrectangle with
edge lengths2σ j‖u j‖∞, j = 1, ...,d. Finally, we compute a suitable hypercube (we
analyze this issue in the next subsection, 3.1) and shift the data back. Then, the
enlargement process takes place along each dimension of the rotated window. We
call the proposed algorithmOrientedk-Windows (OkW)and summarize it below.

algorithm OkW
(
u, θe, θm, θc, θv,k

) {
executeW=DetermineInitialWindows(k,u)
for eachd dimensional hyperrectanglew j in W do

executemovement(θv,w j )
executeSVD-enlargement(θe,θc,θv,w j )

executemerge(θm,θs,W)
Output

{
clusterscl1,cl2, . . . so that:cl i = {i : i ∈ w j , label(w j) = l i}

}

function SVD-enlargement(θe,θc,θv, hyperrectanglew)
{

repeat
computethe principal componentsV of the points inw
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computea hyperrectangle with edge length2σ1‖u1‖∞, . . . ,2‖ud‖∞
foreachdimensiondo

repeat
enlargew along current dimension byθe%
executemovement(θv,w)
until increase in number of objects

along current dimension is less thanθc%
until increase in number of objects

is less thanθc% along every dimension}

3.1 Computational issues

A challenge in the proposed approach is the efficient handling of non axes-parallel
hyperrectangles. Unlike the axes-parallel case, where membership of anyd-dimensional
point can be tested via the satisfaction of2d inequalities (one per interval range, one
per dimension), it appears that oriented hyperrectangles necessitate storing and oper-
ating on2d vertices. To resolve this issue, we follow a trick from computational
geometry designed to handle queries for non-axes parallel line segments, which
amounts to embedding each segment in an axes-parallel rectangle [11]. Similarly,
in OkW, we embed each hyperrectangle in an axes-parallel “bounding hypercube”
that has the same center, sayc, as the hyperrectangle, and edge length,s, equal to the
maximal diagonal of the hyperrectangle. This edge length guarantees enclosure of
the entire oriented hyperrectangle into the axes-parallel hypercube. Thus, the bound-
ing hypercube can be encoded using a single pair(c,s). To perform range search
and answer if any given point,x, in the bounding hypercube also lies in the oriented
hyperrectangle, it is then enough to check the orthogonal projection of the point onto
thed principal directions. Ifl j , j = 1, ...,d denote the edge lengths of the hyperrect-

angle, thenx lies in the hyperrectangle if it satisfies all inequalities|x>v j | ≤ l j
2 for

j = 1, ...,d. Therefore, we only need to storeO(d) elements, namely(c,s, l1, ..., ld).
OkW necessitates the application of SVD on every centered data subset in the

course of each enlargement step. It is thus critical to select a fast SVD routine, such
as LAPACK [3], for boxes of moderate size without any particular structure, or from
[7], for sparse data. In any case, it is important to exploit the structure of the dataset
to reduce the cost of these steps. The call to an SVD routine for problems with-
out specific structure carries a cost ofO(nid2), which can be non-negligible. In the
applications of greater interest for OkW, however, the attribute dimensionalityd is
typically much smaller thann and evenni , so that we can consider the asymptotic
cost of the SVD to be linear in the number of objects. Furthermore, whend is much
smaller thanni , it is preferable to first compute theQR decomposition ofB(i) and
then the SVD of the resulting upper triangular factor [14].
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4 Experimental Results

UkW and OkW were implemented in C++ under Linux using the gcc3.4.2 compiler.
The SVD was computed using a C++ wrapper3 around SVDPACK4. All experiments
were performed on an AMD Athlon(tm) 64 Processor 3200+, with1GBof RAM. We
outline here some results and defer to [27] for more detailed experiments.

Two artificial and two real datasets were used. The former are considered to be
difficult, even for density-based algorithms. The first,Dset1, consists of four clusters
(three convex and one non-convex) for a total of 2,761 objects, while the second one,
Dset2, consists of 299 objects, organized in two clusters forming concentric circles.
The values of the parameters{θe,θm,θc,θv} were set to{0.8,0.1,0.2,0.02} for both
UkW and OkW. We used 64 initial windows forDset1 and 32 forDset2. Results are
depicted in Figure 4. For both datasets, OkW was able to discover the correct clus-
tering. ForDset1, UkW was able to identify correctly only the three convex clusters,
while it split the non-convex one into three clusters. Finally, forDset2, UkW split
the outer circle in four clusters. UkW was able to identify correctly the outer cluster
only when the number of initial windows was increased to over 200.

Fig. 4. Dsets1,2 with the result of UkW (left) and OkW (right).

The real datasets wereDsetUCI and DsetDARPA. The former is the Iris dataset
from the UCI machine learning repository [8], that consisted of 150 objects of 4
attributes each, organized in three classes, namely Setosa, Versicolour, Virginica.
The final real dataset was from the KDD 1999 intrusion detection contest [19]. It

3 http://www.cs.utexas.edu/users/suvrit/work/progs/ssvd.html.
4 http://www.netlib.org/svdpack/
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contained 100,000 objects of 37 (numerical) attributes,77,888objects corresponded
to “normal connections” and22,112 corresponding to “Denial of Service” (DoS)
attacks. The confusion matrices forDsetUCI were obtained from each one of UkW
and OkW for 32 initial windows with the same parameter setting, are depicted in
Table 1. Both algorithms successfully identified the number of clusters. However,
the number of points that have different class and cluster labels, were8 for UkW and
7 for OkW. Finally, the application of UkW onDsetDARPA with 32 initial windows,
estimated the presence of 6 clusters. One of them contained22,087 DoS objects;
the remaining clusters contained objects corresponding to normal connections, with
the exception of one cluster that also contained37 DoS objects. Therefore, UkW’s
performance was moderately adequate. The application of OkW on the above dataset
estimated the presence of five clusters. All, except one cluster contained exclusively
either normal or DoS objects. Only2 DoS objects were assigned in a cluster of747
normal objects. Therefore, OkW resulted in considerably fewer misclassifications,
and thus greater accuracy, than UkW.

Table 1.Confusion data forDsetUCI: The elements in each pair corresponds to the confusion
matrices for UkW and OkW.

Iris class
Cluster id Setosa Versicolour Virginica

1 50, 50, 0, 0 0, 0
2 0, 0 46, 48 4, 5
3 0, 0 4, 2 46, 45

5 Related work and discussion

The use of PCA in OkW offers a paradigm of synergy between computational linear
algebra and geometry that appears to significantly enhance the ability ofk-Windows
to capture clusters having difficult shapes. OkW follows the recent trend in clustering
algorithms to capitalize on any local structure of the data to produce better clustering
of datasets of moderate dimensionality; see e.g. [9, 10, 12]. Preliminary results ap-
pear to indicate that OkW competes well with algorithms such as these and density
based workhorses such as DBSCAN [13]. We plan to report on these issues in the
near future [27] as well as on the challenges posed by OkW, e.g. when it is applied
on problems of high dimensionality and the associated costs for large numbers of
objects. We close by noting that oriented hyperrectangles have been under study in
other contexts, including fast interference detection amongst geometric models and
in computing approximations to the set of reachable states in a continuous state space
in hybrid systems research [5, 15, 21, 25].
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