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Abstract
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1. Introduction

The nonlinear betatronic motion in a large hadron accelerator is conveniently described
by the one-turn map on a given reference section. The geometry of orbits in phase space
and their stability properties are consequently analyzed by iterating the map (tracking) or
by constructing its normal form(2 15!, ‘

An effective way of tracking the orbits is provided by interactive graphics procedures on
a workstation, since the regions where the most interesting or intriguing features appear
can be localized and explored to the desired accuracy. In this respect the knowledge of
fixed points is relevant since they determine the local features of the orbits; indeed the
Taylor expansion of the map at a fixed point allows a local normal form analysis(2~15],
Implementing a viewer of 4D maps combined with a fixed points finder and normal forms
algorithms is a long range program. Here we describe an efficient algorithm to compute
the fixed points and the interactive procedure giotto to visualize the orbits of a 2D map-
ping. The inclusion of the interactive computation of normal forms is in progress and the
extension to 4D mapping under investigation.

Fixed points

. . . !’16 _____
Given a two dimensional map:

CJ 7= filz,y)

we say that x = (z,y) is a fixed point of F if F(x) = x and a fixed point of order g (or a
periodic orbit of period q) if

x = Fi(x) = F(F(...(F(x))...)) (g times) (1.2)

In general analytic expressions are available only if the map is a polynomial of low de-
gree and the period is low. On the other hand it is difficult to find in the literature
efficient methods for computing high period orbits if the map is not decomposable into
involutions17:22:23], Also, traditional iterative schemes such as Newton’s method and re-
lated classes-of a,lgorithms[za'c"' 7] often fail since they converge to a fixed point almost
independently of the initial guess, while there exist several fixed points, close to each oth-
er, which are all desirable for the a.pplica.tions[ll. Moreover these methods are affected by
the mapping evaluations taking large values in neighborhoods of hyperbolic fixed points.
Finally, in general, these methods often fail due to the nonexistence of derivatives or poorly
behaved partial derivatives!?®l.

In this report we describe an efficient algorithm based on the topological degree theory to
provide a criterion for the existence of a fixed point within a given region. More specifically
the method constructs a polyhedron in such a way that the value of the topological degree
of an iterate of the mapping, relative to this polyhedron, be +1, which implies the existence
of a fixed point within this polyhedron. Then it repeatedly subdivides this polyhedron in
such a way that the new refined polyhedron also retains the property of the existence of a
fixed point within its interior, without any computation of the topological degree. These
subdivisions take place iteratively, until a fixed point is computed to a predetermined
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accuracy. When a fixed point is computed, the method iterates the mapping to obtain all
the fixed points of the same period to the same accuracy.

This algorithm becomes especially significant for the computation of high period fixed
points (elliptic and hyperbolic) where other more traditional approaches (like Newton’s
method, etc.) cannot easily distinguish among closely neighboring fixed points.

Here we shall illustrate this method on Hénon’s quadratic mapping!?®:2%16l

(J) = R(a)<y+zf(m)>’ (1-3)

cosa sina

where

—sina  cos«a

to compute fixed points for given values of a and various periods.
The criterion for the existence of a fixed point using the characteristic polyhedron and
details for its construction can be found in 31:32:35]; here we point out that the initial

guess of such a polyhedron is easier and fast if an interactive viewer is available: .

giotto is an interactive viewer of the orbits of an area preserving map. It has been designed
in such a way that the user has only to provide a FORTRAN or C function to compute
the map and includes, in its library, the algorithm for the search of fixed points.

The viewer allows magnifications of any given region in phase space so that the fixed points
of interest can be localized providing a good initial guess of the characteristic polyhedron.
The use of giotto is simple: the beginning of a session is guided by a series of questions to
provide the basic parameters and the graphic session is menu oriented for all the desired
operations such as changing colour, magnifying a region, erasing orbits, searching fixed
points, writing a PS file to dump the screen for later printing.

The plan of this report is the following: in section 2 we define the topological degree and
illustrate the construction of the characteristic polyhedron, in section 3 we describe the
bisection method to refine the result, in section 4 we analyze the application of the method
to the 2D Hénon map, in section 5 we describe the viewer giotto and in section 6 we provide
an example of its use.

2. The topological degree.

In this section we shall implement topological degree theory to give a criterion for the
existence of a fixed point within a given region. This criterion is based on the construction
of a “characteristic polyhedron” within a scaled translation of the unit cube. So, in the
sequel, by reviewing the concept of a characteristic polyhedron we briefly present a proce-
dure for the construction of this polyhedron. The theoretical development of the concepts
employed here can be found in(31:32:35],

Bisection methods for finding roots of systems of equations depend on a “criterion” whose
result can guarantee that a root will lie within a given region; then this region can be
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subdivided in such a way that the result of the criterion can be again applied within the
new refined region.

In one dimension, this criterion consists in examining the signs of the function evaluations
at the endpoints of the given region. Specifically, if we desire to locate a root of the
equation f(z) = 0 in the interval (a,b), where f : (a,b) CR — R is continuous, we can
examine whether the following relation is fulfilled:

sgn f(a)sgn f(B) <0 (2.1)
where sgn is the well known sign function with values
-1 » <0
sgn ¥ = { 0 ¥v=0 (2.2)
1 $>0

and if so, then we certainly know that there is at least one solution within (e, 3) (see
figure 1). The above criterion is known as Bolgano’s criterion.

v=/{x) y={lx)

Fig.1:Bolgana’s criterion for the existence of at least one root of f(.’B) = 0 within (a,,B)

Instead of Bolgano’s criterion we can also use the following criterion

degif, (a,).0] = 3 {sen £(b) — sgn f(a)}. @3)

Now if the value of deg[f,(a,b),0] is not zero we know with certainty that there exists at
least one solution in (a,b).

The deg[f, (a,b),0] is called topological degree of f at zero, relative to (a,b)[?®). Note that
if the value of deg[f,(a,b),0] is not zero, then the Bolgano’s criterion is fulfilled. Also the
value of deg[f,(a,b),0] gives additional information concerning the behaviour of the roots
of f(z) = 0 in (a,b), relative to the slopes of f(z). For example, if deg(f,(a,b),0] = 1,
which means that f(b) > 0 and f(a) < 0, then the number of roots at points where f(z)
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y=fl x)

Fig.2:The slopes of f(r) at roots

has a positive slope exceeds by one the number of roots at points where f(z) has a negative
slopel?3! (see figure 2).

Now, using the value of the topological degree, we are able to calculate a root of f(z) =0
by bisecting the interval (a,b). So we subdivide (a,b) into two intervals (a, c|[c,b) where
¢ = (a +b)/2 is the midpoint of (a,b) and we keep the subinterval for which the value of
topological degree is not zero, relative to itself. In this way we keep the existence of at least
one root within a smaller interval. Now we can continue this procedure to approximate a
root until the endpoints of the final collected subinterval differ from each other less than
a prefixed amount.

This method (called bisection method) can be written as follows!19:20:21.31,32,34,35],

Tnt1 = Tn 1+ SN f(a')sgn f(xn)(b—a)/2n+l7 To = @, n= 0717"' (24)

A straightforward extension of Bolgano’s criterion to two dimensions is to consider a box
such that the function fi(z,y) may possess opposite signs at opposite sides and the function
f2(z,y) also has opposite signs at the remaining sides of the square (see figure 3)

Then if this criterion is satisfied there is at least one solution of the system

fl(w9y)
fg(fﬂ,y)

: =)

I

within the given box. This square, which is known as Miranda’s box2733] can be general-
ized in the case of higher dimensions to provide the criterion of existence. The meaning of
Miranda’s box is evident if we consider a sufficiently small neighborhood A of a point x.
where (2.5) is satisfied with a non-vanishing jacobian, so that no other solution of (2.5)
exists in A. In this case & = f; and &, = f, define a system of curvilinear coordinates,
with origin at x., subdividing A into four quadrants whose boundaries are the curves
fi1 =0, f, = 0. Joining any point in the first (f; > 0, f2 > 0), second (f1 > 0, f2 < 0),
third (f1 < 0, f; < 0) and fourth (f; < 0, f» > 0) quadrant one obtains a Miranda’s box
which obviously contains the origin. However, although Miranda’s box gives a criterion
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signfa=+/{

signfi=-1 signfr=+1

Fig.3:Miranda’s box sgnya=-!
with certainty for the existence of a root, its construction is very often impossible and can-
not be applied for the computation. In overcoming these difficulties we give a “suitable”
polyhedron whose construction guarantees the existence of at least one root in its interior.
Before presenting the concept of this polyhedron, let us give a generalization of the topo-
logical degree to two dimensions, on which various generalized methods of bisection are
based. According to these methods one establishes the existence of at least one root of the
system (2.5) where F = (f1,f2): D C R?> — R? is continuous on the closure D of D such
that F(x) # 0 for x on the boundary 8D of D, by computing the value of the topological
degree of F at © = (0,0) relative to D. This is denoted by deg[F, D, O] and can be defined
by the following sum

deg[F,D,0] = Z sgn det Jp(x) (2.6)

x€EF-1(0©)

where det Jp(x) indicates the determinant of the jacobian matrix. Now, if a nonzero value
of deg[F, D, O] is obtained, then by Kronecker’s existence theorem(28:7161] it follows that
there is at least one root of the system within D. On the other hand, if deg[F,D,®] =0,
no conclusion can be drawn because more information about F is needed(?®].

However, although the nonzero value of deg[F, D, O] plays an important role in the exis-
tence of a root, its exact value is useless, since it does not give any additional information
about the existence of the root of system (2.5). Moreover the computation of deg[F, D, ©]
is a time—consuming procedure and cannot be accurately achieved unless the modulus of
continuity of F on D is known. For more details about degree theory we refer the reader
tol28!, :

In what follows, we give the concept of a characteristic polyhedron. To define it, we have
to give some other tools. Consider a number ¢ with n binary digits

0<i=by+2bl .. 42771, _; <21 (2.7)
where b; = 0,1 and the matrices M, defined by
[Ma)is1,; = 265 — 1 (2.8)
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For n =1 and n = 2 we have respectively
-1 -1
-1 -1 1
/Ml = [ 1 ] /\/{2 = 1 —1 (2.9)
1 1

If n = 1 consider the segment [z;,z>] and evaluate the sign of f(z) at the end points: if
the matrix :

sgnf(zz)

agrees with M, up to a permutation of the rows, then we say that [z, z-] is a characteristic
polyhedron.

For n = 2 consider four points X, X», X3, X4, vertices of a quadrilateral box (polyhedron)
as shown in figure 4. Letting F' = (f1, f2) be a map of the plane we consider the matrix of
signs of the functions f1, f at the vertices of the polyhedron defined by

S(fiz1,22) = {Sgnf(“’”} (2.10)

sgn F(X1) sgn f1(X1) sgn f2(X1)

v v v vy | senF(X2) | _ [sgn fi(X2) sgn fa(X2)
SF: & XX b ) = sgn F(X3) |~ |sgnfi(X3) sgn f2(X3) (2.11)

sgn F(Xy) sgn f1(X4) sgn f2(X4)

The polyhedron X; X, X3 X, is called a characteristic polyhedron relative to F'if the matrix
of signs S(F;X;X>X3Xy) is identical with the 2-complete matrix M. For example the
polyhedron in figure 4 is characteristic, while the polyhedron in figure 5 isn’t.

f1>0<f2

fi<0>f2

Xi X4

Fig.4:A characteristic polyhedron

The polyhedron ABCD in figure 5 is not characteristic, since the entry (—1,1) of M, is
missing. Note that Miranda’s box in figure 3 is a characteristic polyhedron.

Now if the boundary of AEC D is “sufficiently refined”(2633! we know with certainty that
there exists at least one solution within AEC D, since the absolute value of the topological
degree relative to a characteristic polyhedron is always equal to +10351,
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f1<0<f2

f1>0<f2

f1<0>f2

n’\
Fig.S:ABC’D is not characteristic; AEC D is.

@]

The construction of a characteristic polyhedron starts with an arbitrary rectangle ABC D
which can be defined by the vertex 4 = (z°,3°) and two stepsizes hy = C — A and
ho = B — 4. Thus. in this case, the vertices of the rectangle ABC D are:

A=(2"y"),B=(z"y" +h),C = (z° + h1,3°), D = (2° + h1, 3" + ha). (2.12)

Now to construct a characteristic polyhedron we compare the matrix of signs S(F'; ABC D)
with the matrix M,. If they are identical, then ABCD is a characteristic polyhedron;
otherwise we have to find out points x™ in R? such that their vectors of signs produce
the rows of M, that are missing in S(F; ABCD). In the case of figure 5 we observe that
the row (—1,1) is missing in S(F; ABCD) so we need a point x* = (z*,y") such that
(sgn f1(x*),sgn f2(x*)) = (—1,1) which, in the case of the example of figure 5, is the point
E. To find a point E we can easily compute the point W which is the root of f; = 0, lying
on the edge BD. So, by holding the second component fixed and equal to y° + h2, we can
solve the one-dimensional equation

T filr,y’ +hy) =0 (2.13)
for r in the interval (B, D). Suppose that 7™ is such a solution; then the point W is given
by

W = (r*,yo + hg) . (214)

Now, if we change the first component of W, say
W = (r" +6,y° + ha) (2.15)

by an arbitrary amount §, we are in a position to compute a point E for the construction
of a characteristic polyhedron. We can use any one of the well known one-dimensional
methods to solve equation (2.15); here we use the traditional one—-dimensional bisection
method since frequently the edges of ABC'D are very long and also since a few significant
digits for the computation of the root of the equation (2.15) are required. Moreover this
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method has an additional advantage, since the minimum number of iterations required for
obtaining an approximate root, with accuracy € in some interval with length h, is known
and given by

= Tog(he™")] (2.16)

(here the notation [-] refers to the smallest integer not less than the real number quoted).

3. The bisection method.

In this section we briefly describe our method for the accurate computation of a single

fixed point. This method is particularly useful in cases where the period of the fixed point
is very high, since it always converges within the initial specified region. Moreover, this
algorithm is very efficient since the only computable information that is required is the
algebraic signs of the components of the mapping. Thus it is not affected by the mapping
evaluations taking large values in neighborhoods of unstable fixed points. The theoretical
development of the method can be found int31:35],
This method is based on the refinement of a characteristic polyhedron and is called char-
acteristic bisection. Specifically, the method bisects a characteristic polyhedron in such a
way that the new refined polyhedron is also a characteristic one. To do this the method
computes the midpoint of an edge of the characteristic polyhedron and replaces with such
point that vertex of the polyhedron for which the vectors of their signs are identical. For
example, as we see in figure 6, one can subdivide

(-1.DB D(1.D)

(-1,-DE

(-1-DA C(1.-1

Fig.8:Characteristic bisections applied to ABCD. The polyhedra ABCD, EBCD and FBCD

are characteristic

the polyhedron ABCD in the following way: starting from the edge C'D we find its mid-
point E and calculate its vector of signs, which in this case is (—1,1). So the vertex C is
replaced by E in such a way that the new refined polyhedron EBC D is also a characteristic
one. Using the same procedure we are able to refine this polyhedron again by considering
the midpoint F of EC and checking the vector of signs of this point. In this case its vector
of signs is (—1,1), hence the vertex E can be replaced by the vertex F, so that the new
refined polyhedron FBCD is still a characteristic one. This procedure continues until the
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midpoint of the longest diagonal of a refined polyhedron approximates the root within a
predetermined accuracy. Details of the above method can be found inf31:3%).

The number of characteristic bisections of a characteristic polyhedron with length of its
longest edge § that is required for obtaining a new refined characteristic polyhedron with
length of the longest edge smaller than € is given by

v = (log,(6e™1)] (3.1)

(see [22] for a proof).

4. Fixed points of 2D Hénon’s map.

We now give a procedure for computing all the fixed points of powers of a nonlinear
mapping to any predetermined accuracy by applying the method of the previous section.
The method is illustrated here on the following system of 2 equations in 2 unknowns:

2 .
Tiz1 = ricosa — (y; = Tj)sina

(4.1)

b

yir1 = Tisina + (yi = zj)cosa

with ., = To, yn = Yo and a constant. The mapping T, expressed by the above system of
equations, is known as Hénon’s mapping and can be written as follows:

T=R-S (4.2)
where S is a shearing parallel to the y axis:
S g (4.3)
and R is a rotation by the angle a:

Tizq = Ticosa —y;sina (4.4)

yig1 = T;sina + y: cos a
A point %* is called a periodic fixed point of T, with period P, PeNifT (x") = x*29,
Such periodic orbits are identified by their rotation number ¢ = v/27 = my/m, where v

is the frequency of the orbit and my, m: are two positive integers["’]‘hj
Now to compute a fixed point of a particular period P, we consider the following operator

F=TF -1, . (45)
where | is the identity mapping, and solve the following system of equations
F(z) = © =(0,0) (4.6)
To do this, we choose a starting point
x® = (z°,y°) (4.7)
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and two stepsizes in each coordinate direction

H = (h, h2) (4.8)

in such a way that the corresponding constructed box (see figure 5) forms a domain in
which the method will attempt to locate and compute a root of the system F(x) = O,
which is a fixed point of the mapping TP,

Suppose now that a fixed point z] has been computed within a predetermined accuracy e
such that

ITP(x;) - xill < e (4.9)

Then, in order to compute all the other fixed points x}, ¢ = 2,..., P with the same period
and accuracy € we iterate the mapping T as follows: first we obtain an approximation of
the next fixed point x3 given by T(x]) and check if the following relationship is fulfilled:

ITP(T(x)) = T(x])]| < e (4.10)

If so, then we choose x3 = T(x;); otherwise we choose T(xj) as initial guess for x5 and
refine the result until the desired accuracy is reached. The above procedure is applied
repeatedly until the last fixed point z} is obtained.

Let us now illustrate the above procedure on Hénon’s mapping for a given value of a and
various periods P. Thus. taking e.g. a = cos~!(0.24) we can see in the phase plot of
Hénon’s mapping (see figure 7)

that there is a chain of five big islands around the origin. So, in this case, we can search
for five elliptic and five hyperbolic fixed points of period P = 5 and rotation number
o =1/5. We could also choose, of course, other values of a. The reason for this choice is
that it produces a large region of stability around the origin and thus may be of interest
to applications in beam dynamics.

Now, in order to find the elliptic fixed points of this period, we choose one island, include
it into a box by taking appropriate values for x° and H,

() () =)=l e

and apply the bisection method with accuracy e = 10718,
In this case, we compute the following fixed point utilizing around 6.5 msec of CPU time
on the CERN VAX 9000-410 system:
z8 = 0.5672405470221347 y3 = —0.1223202134278941

Of course, we can easily verify that this point is indeed an elliptic fixed point by
applying the traditional technique of checking the eigenvalues of the linearized mapping!??!
Now, we can proceed with the computation of the rest of the elliptic fixed points of period
five. To do this we can either apply the bisection method or iterate the mapping, since we
have computed one of them within the predetermined accuracy of € = 1018, We prefer
to do the latter and successively compute the following points
z3 = 0.5672405470221847 y5 = 0.4440820516139216
z3 = 0.0173925844399303 y5 = 0.5800185952239573
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z3 = —0.5585984457571741 y; = 0.1560161118011652

z3 = 0.0173925844399305 Y = —0.5797160932304572

utilizing around 71 usecs of CPU time on the same machine. Now to compute the hyper-
bolic fixed points of period P = 5 we choose the following initial values

o= (-0 e

and apply the bisection method according to the accuracy of ¢ = 10718 to find one of
them. In this case, we have computed the following point utilizing 6.5 msecs:

z3 =0.2942106885737921 y3 = —0.4274862418615337

Then by iterating the mapping we compute the rest of the hyperbolic fixed points of period
five, within the predetermined accuracy of € = 10716: :

z3 = 0.5696326513533602 y5 = 0.1622406787439296
z§ = 0.2942106885737916 y5 = 0.5140461711325987
z3 = —0.3443814883177751 y; = 0.3882084578625210
z3 = —0.3443814883177746 y2 = —0.2696098483665559

Let us now apply this procedure to compute fixed points of higher periods. Looking at
the phase plot (figure 7) of Hénon’s map for the same value of o as before, we are able to
distinguish a chain of 16 islands around the central region of stability of the mapping. So,
in this case, we look for 16 elliptic and 16 hyperbolic fixed points of period P = 16. To do
this we choose one island and enclose it into a box by choosing appropriate values for x°

and H°. . ‘ .
0 _ il _ 08 _ 1 _ 01

X _<y°>_<0.1>’ H-<h2>-—<0'1 . (4.13)
Applying our generalized bisection method {with accuracy of € = 10~1%) we compute the
following fixed point utilizing 11.1 msecs:
z1® = 0.8504309709743801 y1® = 0.1490801034942473
Now using the previous procedure we can compute the rest of the elliptic fixed points of
period 16, whose rotation number is ¢ = 3/16. Proceeding in the same way we have been
able to compute the points of several periodic orbits of higher period. Of course, islands of
such periods can be visualized by enlarging the correponding vicinity of the (z,y) plane.

We end this section by presenting, in the concise form of Table 1 below, our results on
some higher period, stable periodic orbits of Hénon’s 2D-mapping.

Table 1
Rotation number o T Y1 CPU time
1/5 0.567240547 0.44408205161 6.5 msec
3/16 0.850430971 0.1490801035 11.1 msec
27/144 0.86850069 0.1341772209 46 msec
246/1296 0.865653945 0.1320418594 2.2 sec

Figure 7 gives for cos & = .24 the phase portrait of the map and its subsequent magnifica-
tions where the orbits around the fixed points listed in table 1 are visible. Finally we wish
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to point out that our method of finding characteristic polyhedra is easily generalized to
compute periodic orbits of 2NV-dimensional conservative mappings, with V > 1. In fact,
we have already carried out such a generalization and computed some of the low order

(period P = 3,4,5,...) periodic orbits of the 4-dimensional quadratic mapping
z} cosaj —sinag 0 0 Ty
Y sina;  cosog 0 0 Y1 — T3 + 73
T= L= . (4.14)
T5 0 0 cos (kg — SIn Qg T
Ya 0 0 sinas  cosas Yo — 2T1T2

This is an interesting model, since mappings of this form are of direct relevance to the dy-
namics of particle beams (in a two-dimensional phase space) passing repeatedly through
FODO cells of magnetic focusing elementsi®®. In this context the computation of high
period orbits can be quite useful in helping us establish the existence and study the struc-
ture of nearby invariant surfaces, which may be encompassing within them large regions
of bounded orbits. More detailed results in this direction, however, are expected to appear

in a future publication{m.

5. The viewer giotto.

giotto is an interactive 2D-graphic tool especially designed for computing and visualizing
colour images of phase plots generated by mappings of the plane onto itself. It has been
developed on Silicon Graphics IRIS and Hewlett Packard 9000/700 workstations but could,
in principle, run on any computer supporting a 2D-graphics library and a C compiler with
minor changes in the low—level interface between the program and the graphic firmware of
the host machine, whose capabilities are fully exploited, as well as those arising from an
efficient use of the mouse as an input device, allowing the user to choose operations and to
give data to the program by simply clicking on menu buttons. giotto enables to visualize
up to four different (and completely independent from each other) mappings on the same
screen, to resize the window of the plane where images are drawn, to change colour choosing
from a 256-colour palette, to erase unwanted trajectories, to find interactively fixed points
of any iterate of the mapping, to save images in disk files for later use, to re-visualize saved
images and to produce POST_SCRIPT code for both monochromatic and colour printing
of the generated picture. These last two features are either built in the program or can be
made possible by taking advantage of the tools usually installed in the workstation itself,
such as the IRIS snapshot utility.

Writing the mapping

The user needs only to write a C function (or a FORTRAN integer function, or a procedure
written in any supported language) which would be able to return to a calling program the
values of the coordinates z and y after one iteration of the mapping(s). In other words,
given a pair of real numbers (which we label as =, and yn) the function must compute a
new pair (Tn+1,Yn+1) according to a recursion algorithm

Tnt+l = ffl)(wm Yn)

Yn+1 = :gz)(xm yn)
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where the label 7 identifies which one among four possible algorithmns should be used. We
illustrate the parameters which enter the function by providing a specific example where
four maps are computed. These mps correspond to (1.3) for different nonlinearities: the
Hénon map, the gaussian and discontinuous beam-beam maps and a Zaslavski-like map.

The function quoted below is written in FORTRAN, but it could be written in C as well

integer function mappa_ ( Xc, Param, Imap, N )
implicit real*8 (a-h, o-z)
real*8 Xc(*), Param(10.4), Nonlin
integer done
common /static/ Rc, Rs, Alpha, Wind, done
x = X¢(1)
y = X(2)
if (done .ne. 1) then
Wind = Param(1,1) * 2.0 * 3.14159265358
Rc = cos( Wind )
Rs = sin( Wind )
Alpha = Param(2.1)

done =1
endif
go to (1.2,3,4), 1
1 Nonlin = Alpha*x*x
gotob
2 Nonlin = 1-exp(-Alpha*x*x)
gotob
3 Sign=1.0
if(x.It.0.) Sign=-1.0
Nonlin = Alpha*Sign
gotob
4 Nonlin = (1.0 - cos(Alpha*x*x))/Alpha
C
5 Xnew = Rc * x + ( Nonlin +y ) * Rs
Ynew = -Rs * x + ( Nonlin +y ) * Rc
Xe(1) = Xnew
Xe(2) = Ynew
end

The function takes as its arguments the following:

1) a two—entries array Xc(*) of real numbers in double precision which on input holds
the values of z, and yn respectively and on output the computed values of z,+1 and
Yn+1;5

2} a two indices array of real double precision numbers Param(10,4) storing up to 10 real
parameters for each of the mapping(s)

3) theinteger Imap labelling the algorithm to be used among the four eventually available;
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4) the integer N, the current index of iteration allowing computation of non autonomous
maps for which the algorithms f; and f2 do explicitly depend on the iteration number:

(i
Tn+l = fll)(«tn,yn;n)
_ £ .
Yn+1 = f2 (an,yn,Tl»)

It is possible to define less than four maps. The user doesn’t need to initialize neither the
Imap nor the N and Xc(1), Xc(2); this is done directly by giotto once a click of the mouse
takes place on a given pixel of the screen: this implies resetting N to zero, Imap to the
number (from one to four) corresponding to the quarter of the screen where the mouse
was clicked on and Xc(1)= zo, Xc(2)= yo to the image of the screen coordinates Sz and
Sy of that point through the obvious transformations

S.’B - Sxmm
Tog = Tmin T (mmaz - fcmin) Sz Sz
maz — YdLmin
Sy - Symin

Yo = Ymin (.’/maa: ymzn) Symu _ Symin
where the min’s and maz’s are meant as minimum and maximum of the world and screen
windows, the former being chosen by the user and the latter by giotto. Hence the only
argument of the function that must be initialized by the user is the forty—entries array of
real parameters for the mapping. Of course not the whole array needs to be initialized but
only those entries that will be actually used during the computation of the algorithms f;
and f, (may be none). The initialization of the array is made either interactively, letting
giotto itself ask for parameters and answering as needed, or through another user-defined
C function (possibly a FORTRAN one) which can load the array in the way one wishes,
even opening and reading disk files owned by the user and created by any other application.
Such a function should however exist (even if as an empty function) also in the case the
user had chosen to answer at giotto’s inquiring, because missing it could prevent the linker
from producing the executable code for the program. The arguments of this last function
are, of course, the same forty—entries array which appeared in the first one and an integer
four-entries array where the user can (if he/she wishes) store how many parameters have
been initialized for each of the four algorithms f; and f». This information, if present, 1s
used by giotto to report in the POST_SCRIPT code the numerical values of the parameters
used, producing in this way a printed picture completed with a short memo of the values
which generated that image. Here it follows a FORTRAN sample of this second function
which initializes the real parameters used in the previously quoted sample mappa. to give
values for the variables wind and alpha.

integer function input_mio_( Param, N )

real*8 Param(10,4), datum

integer N(*)

write(*,*) ' value of omega

read (*,*) datum

do 1l m=1,4

1 Param(1,m) = datum

15



write(*,*) ' value of alpha
(*

read (*,*) datum
do 2 m=1, 4
N(m) =2
2 Param(2,m) = datum
end

Finally we stress that the names of the two user-defined functions are mandatory: they are
respectively equal to the two lowercase strings “mappa.” and “input_mio.”. Care should
be taken, when writing them in a language other than C, about the ending underscore.
For instance, the FORTRAN compiler of the IRIS workstation adds, for some mysterious
reason, an underscore character to the names of functions which will undergo a binding with
C calling programs; hence in this case the user should call his/her FORTRAN functions
simply “mappa” and “input_mio” WITHOUT the underscore! This behaviour wasn’t noted
in the Hewlett—Packard workstations.

6. Executing giotto.

When giotto starts executing it asks for some numerical data such as the number of
mappings, the world’s window coordinates, the number of iterations to be done, the “over-
flow” value beyvond which the iterations would stop and (eventually) the parameters the
mapping(s) depend on. These data are given by typing their values on the workstation’s
keyboard and all have (except for the parameters of the mapping) a default value that can
be retained by simply typing the “enter” key instead of a number. At the end of this ini-
tial input section giotto opens a graphic window on the screen consisting of a square black
(in the default colonr palette) region, eventually subdivided in quarters, with a magenta-
coloured column at its right side. This column, we refer to as the “menu tablet”, is in
turn subdivided in six boxes, each marked with a keyword corresponding to a particular
function of giotto. From now on every operation of the program is driven by a mouse click
on a proper box of the “menu tablet” and the square black region itself could be thought
as a seventh box corresponding to the “default option” of the menus currently displayed.
There are indeed several different “menu tablets” which do appear when giotto wants a
decision to be taken: each of them has a different colour to help the user both to associate
every colour to a particular set of functions and to notice, through the change in colour of
the “menu tablet”, that giotto is waiting for some choice.

Run time: Once the user has written his/her functions he/she can run giotto by simply
giving the names of the two files where they are contained as two parameters of the
command “giotto”. Of course he/she must either specify the full pathname of the command
or add it to his/her PATH shell variable. The pathname depend on the installation and
should be asked to the system manager. Assuming that the PATH shell variable is correctly
set and that the two functions have been written in C language and are contained in files
“mappa.c” and “input.c”, the command line

giotto mappa.c input.c
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will start the execution. First of all the user is asked whether he/she wants help or
not. This is intended to remind a “more-than-beginner” user some features he/she had
forgotten. The best way to get help from giotto we suggest to a “true-beginner” is to run
the program, while monitoring on another close screen the output of the command

giotto help

The keyword “help” is not understood as a file name; the program enters “help mode”
instead, displaying on the screen a keyword-selected information on all its main features.
In this way the “beginner” can try directly on the other screen the procedures he/she has
just learnt and after a few minutes and even less mistakes (we hope) he/she will become
familiar with giotto. And since the best way to speak about a graphic package is to show
how it works and to use it in front of a workstation’s screen, we stop here its “off-line”
presentation.

Test run: We end presenting a test run for the computation and visualization of a pure
Hénon quadratic map of winding number w /27 = 0.21 on the workstation Hewlett-Packard
720 installed at CERN with TCP-IP number 128.141.6.163 using all the default values of
giotto. First of all it is necessary either to add the path

/usr/local/bin
to the PATH shell variable of the user or to specify the full pathname of the command
/usr/local/bin/giotto
to start the program. Assuming that the user had written the two files input.f and mappa.f
and typed the command given in the previous section by typing

giotto input.f mappa.f

one compiles, links and generates the executable program which is intantly executed. If

two C functions were written namely mappa.c and input.c then the same result is obtained
with

giotto input.c mappa.c
It is furthermore allowed mixed use of both languages, say
giotto input.c mappa.f

The execution begins with a series of questions to which one can answer by typing the
enter key. Any numerical input can be changed by simply typing the value one wishes; in
particular, if the user answers with any number instead of enter at the question “choose
options:”, giotto will prompt the user also for the bounds of the “world window” and for
the physical parameters of the mapping. In this case the user can specify a window not
necessarily centered at the origin and moreover she/he doesn’t need anymore to write a
“true” function “input_mio”. The price to be payed, especially when several mappings
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are being computed, is a somewhat ennoying input sequence because it is necessary to
give four numbers for each window rather than only one. If any error occurred during
the compilation of the user’s functions or the linking process the executable code is not
produced and an error message is issued. The user is informed of the type of error by means
of text files left in the current directory on exit from the command: if only compilation
errors occurred they are reported in the file schifezze; if the compilation was successful, but
some inconsistency was detected at linking level the corresponding system error message
is reported in the file CASOTTO; the user should find the bug of her/his logic, make the
necessary corrections and try again the command. At the end of the run the executable
code can be (optionally) saved in the executable file GIOTTO (please note the- capital
letters) and run again by simply typing the command

GIOTTO
Please remember. however. that the executable code GIOTTO is bound to the function
mappa_ that was linked with the lowercase command giotto.
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