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Abstract: One of the main reasons for the slow convergence and the suboptimal 
generalization results of MLP (Multilayer Perceptrons) based on gradient descent training is the 
lack of a proper initialization of the weights to be adjusted. Even sophisticated learning 
procedures are not able to compensate for bad initial values of weights, while good initial guess 
leads to fast convergence and or better generalization capability even with simple gradient-
based error minimization techniques. Although initial weight space in MLPs seems so critical 
there is no study so far of its properties with regards to which regions lead to solutions or 
failures concerning generalization and convergence in real world problems. There exist only 
some preliminary studies for toy problems, like XOR. A data mining approach, based on Self 
Organizing Feature Maps (SOM), is involved in this paper to demonstrate that a complete 
analysis of the MLP weight space is possible even in the case of complex real world problems. 
This is the main novelty of this paper. The conclusions drawn from this novel application of 
SOM algorithm in MLP analysis extend significantly previous preliminary results in the 
literature. MLP initialization procedures are overviewed along with all conclusions so far 
drawn in the literature and an extensive experimental study on more representative tasks, using 
our data mining approach, reveals important initial weight space properties of MLPs, extending 
previous knowledge and literature results.   
 
Keywords: MLP initialization, gradient descent training algorithms, MLP convergence, MLP 
generalization, Clustering, SOM, data mining 
 
1. Introduction 
 
Weight training in Multilayer Perceptrons (MLPs) is generally formulated as the 
minimization of an error function, such as the mean square error between the target 
and actual outputs averaged over all training examples, by iteratively adjusting the 
connection weights. Most training algorithms, such as back propagation (BP) and 
conjugate gradient algorithms [9] are based on gradient descent. There have been 
many successful applications of MLPs trained with gradient descent algorithms in 
various areas [1], [9], but these MLPs present drawbacks [1], [9], due to their often 
getting trapped in local minima of the error function and being incapable of finding a 
global minimum if the error function is multimodal/non-differentiable. A detailed 
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review of BP and other learning algorithms based on gradient descent can be found in 
[9]. One of the main factors having impact in the results achieved by MLPs trained 
with gradient descent procedures, regarding both convergence speed and 
generalization capability, has been identified to be initialization of weights [1], [9]. In 
this paper we revisit the problem of weight initialization for neural networks trained 
with gradient descent based procedures. We verify, experimentally, a number of 
results reported by several researchers for the XOR-network and we extend these 
results to a well known problem, the IRIS classification problem. Our approach is 
based on clustering of the weight vectors after having trained an MLP with the BP 
procedure. Classification of the weight vectors into clusters is performed using 
unsupervised clustering of Kohonen’s self organizing feature maps, or simply self-
organizing maps (SOM). Results of our experiments not only reveal, as it was 
expected, the basins of attraction for the gradient descent learning algorithm, but also 
provide significant evidence that no inherent clustering exists for the initial weight 
space. 
 
2. Problem Statement and Previous Work 
 
Sequential or incremental mode of gradient descent makes the search in the weight 
space stochastic by nature [9]. Thus, BP training suffers from been very sensitive to 
initial conditions. In general terms, the choice of the initial weight vector w0 may 
speed convergence of the learning process towards a global or a local minimum if it 
happens to be located within the attraction basin of that minimum. Conversely, if w0 
starts the search in a relatively flat region of the error surface it will slow down 
adaptation of the connection weights. Research work of Kolen and Pollack [13] 
revealed regions of high sensitivity in the weight space, so that, for two very close 
initial points BP can lead to significantly different trajectories in the weight space 
resulting in different learning curves. These results provide an alternative justification 
for the sensitivity of BP procedure to initial weights, along with other learning 
parameters.  
Since the initial formulation of the error BP learning rule, Rumelhart et al. [18] 
reported weight initialization as a problem of symmetry breaking. They counteracted 
this problem by choosing small random weights to start with. However this has not 
proven to be the best strategy for many problems. If the synaptic weights are assigned 
small values the BP procedure may operate on a very flat area around the origin of the 
error surface [9]. On the other hand large initial values of the synaptic weights are 
very likely to drive network’s neurons into saturation as reported by Hush et al [10] 
and Lee et al [15]. It follows that, the proper choice of initialization lies somewhere 
between these two extreme cases. 
In order to avoid the problem of premature saturation Wessels and Barnard [24] state 
that a good strategy for choosing the magnitudes of the initial connection weights is to 
start with a small random weighted sum for an arbitrary unit. This can be achieved by 
setting the initial weights of a unit namely i, to be on the order of 1 if  where if  is 
the number of inputs for unit i. 
Fahlman [6] performed studies about random weight initialization techniques for 
multilayer neural networks. He proposed the use of a uniform distribution over the 
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interval [-1.0, 1.0], but experimental results showed that the best initialization interval 
to the problems he dealt with varied in ranges between [-0.5, 0.5] and [-4.0, 4.0]. 
Sensitivity of BP to initial weights, as well as to other learning parameters, was 
studied by Kolen and Pollack [13]. Using Monte Carlo simulations on feed forward 
networks trained with BP to learn the XOR function they discovered that convergence 
of these networks exhibits a complex fractal-like structure as a function of initial 
weights.  
According to LeCun [14], a good strategy for selecting initial weights is to assume 
that they are drawn from a uniform distribution with zero mean and a variance equal 
to the reciprocal of the number of connections of a neuron.   
Following an extensive experimental study Schmidhuber and Hochreiter [19] 
concluded that repeating random initialization, that is, “guessing” the weights, many 
times results in the fastest way to convergence.  
Kim and Ra [11] calculated a lower bound for the initial length of the weight vector 

of a neuron to be
in

a
d , where α is the learning rate and din is the neuron’s fan-in. 

Boers and Kuiper [2] initialize the weights using a uniform distribution over the 
interval [ 3 , 3 ]in ind d− +  without any mathematical justification. 
A simple modification of the widely used random initialization process was proposed 
by Nguyen and Widrow [17]. The weights connecting the output units to the hidden 
units are initialized with small random values over the interval [-0.5, 0.5]. The initial 
weights at the first layer are designed to improve the learning capabilities of the 
hidden units. Using a scale factor, �� = 0.7(q)1/p, where q is the number of hidden 
units and p is the number of inputs, the weights are randomly initialized and then 

scaled by 
vv
v

β=  where v is the first layer weight vector. 

Random initialization of connection weights seems to be the most widely used 
method. A number of approaches such as those presented previously provide 
substantial improvements in BP convergence speed and avoidance of bad local 
minima. Thimm and Fiesler [21] have compared several random initialization 
schemes by using a very large number of computer experiments. It appeared that the 
best initial weight variance is determined by the dataset, but differences for small 
deviations are not significant and weights in the range 0.77± seem to give the best 
mean performance. 
Some authors propose initialization of weights based on clustering techniques. Such 
initialization methods seem to be more appropriate for use in classification problems. 
Denoeux and Langelle [4] propose the initialization of the hidden unit weight vectors 
with normalized vectors selected randomly from the training set. Other approaches 
within this direction include work done by Weymaere and Martens [25] as well as 
work of Duch, Adamczak, and Jankowski [5]. Such clustering methods first pre-
process the given training vectors to lie into the unit hyper-sphere and, afterwards, 
following dendrograms or other clustering methods, they find the mean of the 
normalized data clusters. In the sequel they choose initial connection weights to equal 
to the centres of these clusters. These research efforts assume a direct mapping 
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between normalized clusters of input data and clusters of clusters of MLP initial 
weight space.   
Finally, based on the capability of Genetic Algorithms to perform sampling on the 
entire search space, de Castro et al. [3] propose an Evolutionary Approach to weight 
initialization. Actually, this capability of GA to perform global exploration of the 
initial weight space is used to find the best way of initializing the weights. It is thus 
used to complement the local search performed by the training algorithm, BP, 
conjugate gradient or other gradient descent procedure. 
 
 
3. Revisiting the Problem of Effective Weight Initialization – 
Analysis of the Weight Space  
 
Our approach consists in performing analysis of the weight space after having trained 
an MLP with the BP procedure for a significant number of weight vectors and for 
various different sets of training patterns. This approach has already been used by 
other researchers in the XOR problem, but what is new here is its application to a well 
known real life problem, the IRIS classification problem. Analysis of the weight 
space is done using a data clustering and visualization technique. We consider that 
this approach extends results obtained previously by other researchers. Main 
considerations of these previous researches are presented hereafter.  
Kolen and Pollak [13], stressed the importance of a good choice for the initial set of 
weights. They showed the existence of chaotic behaviour of the learning dynamics for 
back propagation due to initial conditions and especially weight initialization.  They, 
also, argued that, when more than one hidden unit is utilized, or when the 
environment has internal symmetry or is very unconstrained, then there will be 
multiple attractors.  
Similar results were reported by Lisboa and Perantonis [16]. These researchers 
provide an analytic solution to learning the XOR problem by a neural network 
illustrating how local minima of the cost function for some training tasks in 
multilayered networks can be revealed by analysis. Their work also deals with weight 
initialization and reports a number of results regarding dependence of BP 
convergence on weight initialization of the neural system. It seems that no general 
rule can be derived regarding the structure or specific features of the initial weights.  
Hamey [7] reconsiders the XOR problem and provides a theoretical study of the error 
surface for the standard mean square error function. However, he notes the difficulty 
of having analytic solutions for the general pattern classification case as the study of 
the error surface is hampered by high dimensionality and because of the difficulty of 
theoretical analysis. 
 
In light of these results it seems that it is not possible, in general, to provide complete 
theoretical verification for a number of research results claiming to cope effectively 
with the problem of weight initialization. This is, partially, due to the fact that an 
exhaustive study of the error surface and of the learning dynamics is almost 
unfeasible for the general case of the pattern classification problem. On the other hand 
it is tempting to examine if the initial weight space possesses some kind of structure 
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or if it is able to reveal features which may lead to an effective choice of initial 
weights. To this end, an effective means seems to be the analysis of the weight space 
of MLPs in different pattern classification problems. This also permits to gain 
significant evidence on the validity of different results having either a theoretical 
basis or proven by experiments.  
From another point of view, that one of data mining in the weight space of an MLP, 
this is similar to performing a survey in order to gain insight into the data and 
determine whether these data are sufficient, by themselves, to justify existing research 
results on weight initialization. Essential tools for such a survey are data summaries 
and data visualization. We are interested here in forming clusters of data, since they 
uncover important characteristics of the input data.  
 
4. Kohonen’s Self Organizing Feature Maps, as a Data Mining Tool 
for the Analysis 
 
Data clustering and visualization of the clusters, in this paper is based on Kohonen’s 
SOM. The SOM is a type of neural network which is based on unsupervised learning. 
Thus, unlike supervised learning methods, a SOM is able to perform clustering of data 
without any reference to the class membership of the input data.  
Usually, a SOM consists of a regular, one or two-dimensional grid of neurons. Each 
node on the grid corresponds to a neuron of the SOM and is represented by a weight 
vector, called a model vector of dimension n, where n is the dimension of the input 
space. The set of weight vectors is called a codebook. For each unit of the map a 
number of adjacent neurons are defined and connected to it, according to a 
neighborhood relation, which defines the topology of the map (rectangular or 
hexagonal). 
Training the map is an iterative process. At each step a sample vector x is randomly 
chosen from the input data set and distances between x and all the codebook vectors 
are computed. Distances between codebook vectors and sample data correspond to 
similarities between input data and units of the SOM. The best matching unit (BMU), 
i.e. the most similar unit, is the map unit whose weight vector is closest to x. The 
training algorithm updates the weight vector of the BMU and of those of its 
neighborhood so as to get these units move closer to the input vector x, i.e. diminish 
their distance to the sample vector [22]. More details on SOM can be found in [12]. 
The SOM algorithm performs a mapping from the high dimensional input space onto 
map units. This mapping preserves topology, in the sense that, relative distances 
between data points in the input space are preserved by distances between map units. 
This means that data points lying near each other in the input space will be mapped 
onto neighboring map units. The SOM can thus serve as a clustering tool of high 
dimensional data. Compared to standard techniques (k-means, ISODATA, 
competitive learning etc) SOM not only performs better in terms of effectively 
clustering input data to unknown clusters but also it is computationally more effective 
[20], [23]. Other comparisons and studies on the data mining capabilities of SOM can 
be found in the literature. 
We should mention here the use of the SOM Toolbox for SOM training, data 
visualization, validation and interpretation. SOM Toolbox was developed at Helsinki 
University of Technology [26]. It is a software package comporting Matlab scripts for 
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basic initialization, training and validation algorithms of the SOM. SOM Toolbox, 
also, offers a number of functions for ease and effective SOM visualization. 
 
5. Analyzing the Weight Space for MLPs Trained with BP 
 
We considered two classical benchmarks, the XOR function and the Iris classification 
problem. The XOR function was studied with a 2-2-1 network while the IRIS 
classification problem was investigated with two different network architectures, one 
with 4-10-3 units and another one with 4-5-3 units. For all units the logistic sigmoid 
was used as an activation function. Experiments for both problems and for different 
network architectures were carried out according to the following steps:  
 
1. MLPs were trained with the BP learning algorithm and more specifically with the 

on-line gradient descent procedure provided by Matlab. All experiments were 
carried out with the same training parameters, that is interval for initial weights    
[-2.0, 2.0], learning rate 0.9, max number of epochs 30000 and error between 
target and actual network output less than 0.01. 

 
2. A relatively large number of weight vectors, that is 5000, were chosen from the 

initial weight space. Weight vectors were randomly sampled in the interval [-2.0, 
+2.0] using uniform distribution. After training, the set of weight vectors was 
roughly divided into two distinct subsets, or categories, of weight vectors. One 
subset was made up from, those weight vectors for which both, training 
succeeded (the error goal was reached), and generalization performance was 
good, i.e. less than 20% of previously unseen patterns rejected per class. These 
vectors are called the successful weight vectors while those not meeting the 
above criteria are called the failed weight vectors and they fall within the second 
category. 

 
3. For each weight vector 0

iw considered before training, the MLP was trained with 

the on-line gradient descent and a weight vector *
iw  after training was obtained. 

Thus, gradient descent is considered mapping the weight space before training W 
onto the weight space after training W’. Given the high dimensionality of these 
spaces we then used SOMs and projected each one of them on the 2-dimensional 
space. This approach is graphically depicted in Figure 1.  

 
  gd   
 W(n)  W’(n) 

som 
 

 
 

 W(2)  W’(2) 
   

Figure 1. 
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4. The 2-dimensional projections of W and W’ thus obtained presented the clusters 
of weight vectors being discovered by the SOM. Visual inspection of the map 
representing W’ permitted to draw some interesting qualitative information 
regarding the basins of attraction for the gradient descent procedure. Activation 
of the SOM units and visualization of the unified distance matrix (UM) to 
identify classification of weight vectors into different clusters. Details on these 
results are presented in the following section. 

 
5. We, finally, used the possibility offered by the SOM Toolbox to identify the 

weight vectors for which a unit of the SOM is activated to verify density of W 
regarding convergence and generalization. Actually, given a SOM node in a 
cluster of successful weight vectors we identified one weight vector before 
training 0

iw  that gave after training a successful weight vector *
iw . By injecting 

additive noise, with normal distribution 2(0, )N σ , on 0
iw , we took a number of 

weight vectors in the vicinity of 0
iw . Retraining the MLP with the same BP 

procedure and mapping the weight vectors after training on the SOM we 
discovered that even for very small variance many of the noisy weight vectors 
did not behave the same way as 0

iw . 
 
6. Main Results and Discussion  
 
The tool for presenting results and analyzing them is the unified distance matrix 
(UM). UM represents the organization of the SOM units into groups, as uniform areas 
on the 2-dimensional grid. These areas correspond to neighboring units that 
demonstrate similar activation when receiving the same input weight vectors. An 
example is given in Figure 2. 
 
Result 1. For weight vectors before training the UM did not reveal any particular 

area and the whole map gives a roughly uniform activity for the units, 
which is absolutely right given the distribution for the choice of the 
weight vectors before training; see Figure 3.  

Result 2. Clustering of the weight vectors after training, which is performed by the 
SOM without any class membership information, depicts uniform regions 
of unit activity corresponding to successful weight vectors and thin 
borderline areas for the failed weight vectors. Actually, the UM 
demonstrates that, the units, activated for successful weight vectors, are 
those associated with uniform areas, that is with clusters, while failed 
weight vectors mainly activate units lying between clusters. This is 
particularly true for the IRIS classification problem and for both network 
architectures tested, the one using 10 nodes in the hidden layer, Figure 4, 
a), and b), and the other using 5 nodes in the hidden layer, Figure 4, c) 
and d). 
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SOM displays, using the UM, multiple regions for the successful weight vectors. In 
accordance to what has been advanced by Kolen and Pollack [13] these regions can 
be attributed to different basins of attraction for the BP algorithm. This hypothesis 
still stands if one considers the number of regions corresponding to successful weight 
vectors in the case of 4-5-3 network, also used for the IRIS problem Figure 4, c) and 
d). In this case the number of “successful weight regions” is less than the 
corresponding number in the case of the 4-10-3 network for the IRIS problem.  
The above are, also, valid for the XOR function experiments, as presented in Figure 5 
a), b). What is worth underlining here is that Figures 5, a) and b) are somewhat 
complementary, in the sense that Figure 5, a) presents clusters for successful weight 
vectors while clusters not affected by these vectors are those activated in Figure 5, b) 
by the failed weight vectors.  
This is not surprising considering that the SOM does not distinguish between clusters 
belonging to one class or to the other. It just performs clustering and it is the 
observer’s job to distinguish class membership for individual clusters, Vesanto et al, 
[23]. Given that the number of failed weight vectors is 1110, more than 20% of the 
total number of vectors used, SOM forms clusters for these vectors too and does not 
arrange them in regions between clusters. Hence, clusters for both successful and 
failed weight vectors coexist in the same SOM. On the other hand, considering 
Figures 6, a) and b), one will notice that assignment of weight vectors in clusters is 
similar to the case of IRIS problem. Actually, these Figures present mapping of the 
behavior of a XOR network with linear activation function for the output node. This 
network has significantly fewer failed weight vectors (111 for our experiment) than 
the one using logistic sigmoid activation function. The important question in the case 
of XOR problem is whether clusters of failed weight vectors correspond to “strange 
attractors”. If the answer is positive a straightforward conclusion is that replacing the 
non linear activation function with the linear one permitted gradient descent to bypass 
local minima.  
The clusters formed by the SOM correspond to the various minima reached by the 
gradient descent throughout each experiment. These minima can be global or local as 
shown by the XOR experiment. In this sense and together with the topology 
preservation mapping of the SOM it is straightforward to assume that clusters 
indicated basins of attraction for the dynamics of the learning procedure. As Kolen 
and Pollack argued there is a dependence of the number of attractors and the number 
of units in the hidden layer of the network. This is an experimental confirmation that 
as the number of units increases in the hidden layer the number of basins of attraction 
increases and therefore the study of the weight space becomes more difficult, see 
Kolen and Pollack [13].   
 
 
Result 3. Execution of step 5, described above, for a number of different values of  

2σ  demonstrated that even for very small variance many of the noisy 
weight vectors did not behave the same way as the initial vector 0

iw , i.e. 
they did not result in successful training. 
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This experiment was done for the following values of 2σ ; {0.0001, 0.0025, 0.005, 
0.0075, 0.001, 0.0025, 0.005, 0.0075, 0.01, 0.025, 0.05, 0.075, 0.1, 0.25, 0.5, 0.75, 
1.0}. For each trial a number of 100 ‘noisy’ weight vectors were produced, and the 
MLP was retrained. After training the weight vectors for these 100 ‘noisy’ initial 
vectors were mapped using the existing SOM. The mapping demonstrated that for 
very small values of 2σ  (approximately less than 0.025) there was no significant 
change of the behaviour of the ‘noisy’ weight vectors compared to the initial weight 
vector. However, for values of 2σ  greater than or equal to 0.025 not all the ‘noisy’ 
weight vectors result in successful training. Several between them fail in terms of 
convergence of the gradient descent and generalization; see Figures 7 a), b), c) and d).  
This result not only confirms what was reported by Kolen and Pollack [13], but also 
extends assumptions made by these researchers for the XOR problem to a real life 
problem such as IRIS.   
It should be noted here that in all figures the size of the spots is proportional to the 
number of the weight vectors hitting the SOM unit.  
Despite the fact that the above results are very important they are not of practical 
consequence. Thus we reconsidered rules of thump, proposed by other researchers as 
stated in section ‘Previous work’, above. In order to acquire a better idea on how to 
deal with these research results we proceeded in a number of experiments using the 4-
10-3 MLP for the IRIS problem. During these experiments we used values for the 
synaptic weight randomly chosen from intervals [-α, +α], with α varying from -6.0 up 
to +6.0, by a step of 0.20. Though not exhaustive these experiments they cover only 
that class of research results concerning the size of the sampling interval for the initial 
weights. The aspect of taking into account the inherent structure of the pattern space, 
as claimed by other researchers, was consider by executing each experiment at least 
twice; once with a single set of training patterns for the whole set of initial weight 
vectors and once by shuffling the input space and training groups of weight vectors 
with different sets of training patterns. Results of these experiments are stated 
hereafter. 
 
Result 4. Training seems to be very sensitive to the choice of the training patterns. 

For the same interval of initial weight vectors and even the same weight 
vectors, learning curves and subsequent generalization of BP are clearly 
different.  

 
However, during these trails we did not adopt some specific strategy on how to 
choose the training patterns and so it remains unclear what characteristic of the input 
space really biases the learning phase. A possible explanation relies on the inherent 
structure of the IRIS problem, where two classes are highly correlated. Finally, it 
seems that a good “strategy” to overcome this problem is to carry out training 
changing the set of training patterns every 50 or 100 initial weight vectors, these 
numbers chosen arbitrarily.   
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Result 5. Training tends to be more successful when the weight vectors are chosen 
in an interval ,α α⎡ ⎤⎣ ⎦− +  with 2

pα σ≈ , where 2
pσ  is the 

maximum standard deviation of the variables of the input pattern space.  
 
While this result is in the same line with some previous research outcomes, it seems 
that it more accurately reflects a good strategy for weight initialization than previous 
similar results in the literature. This paper shows that it is not possible to be more 
specific in the weight initialization range than the above result. More experiments, 
however, are needed to establish such an outcome. 
 
Result 6. While training seems to be more successful for values of the initial 

weights within some interval ,α α⎡ ⎤⎣ ⎦− +  as described above, it is very 
likely for he BP to give a successful; learning curve for even greater 
values. 
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0.248

0.434

SOM 07-Apr-2008

U-matrix

0.137

0.217

0.298

SOM 07-Apr-2008

U-matrix

 
Figure 2. The unified distance matrix for weight 
vectors after training (Iris network) 

Figure 3. The unified distance matrix for the weight 
vectors before training  (Iris network) 
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Mapping of weight vectors for the Iris network 
Figure 4a). Mapping of the successful weight 
vectors for the 10 hidden units Iris network 

Mapping of weight vectors for the Iris network 
Figure 4b) Mapping of the failed weight vectors for 

the 10 hidden units the Iris network 
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Mapping of weight vectors for the Iris network 
Figure 4c) Mapping of the successful weight 

vectors for the 5 hidden units Iris network 

Mapping of weight vectors for the Iris network 
Figure 4d) Mapping of the failed weight vectors for 

the 5 hidden units Iris network 
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Mapping of weight vectors for the XOR network. 
Logistic sigmoid activation function used for the 

output node 
Figure 5a) Mapping of the successful weight 

vectors for XOR network 

Mapping of weight vectors for the XOR network. 
Logistic sigmoid activation function used for the 

output node 
Figure 5b) Mapping of the failed weight vectors for 

XOR network 
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Mapping of weight vectors for the XOR network. 
Linear activation function used for the output node 

Figure 6a) Mapping of the successful weight 
vectors for XOR network 

Mapping of weight vectors for the XOR network. 
Linear activation function used for the output node 
Figure 6b) Mapping of the failed weight vectors for 

XOR network
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Figure 7a) Mapping of a successful weight vector 

for the IRIS network. 
Figure 7b) Mapping of ‘noisy’ weight vector 

for the IRIS network. (
2 0.005σ = ) 
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Figure 7c) Mapping of a successful weight vector 

for the IRIS network. 
Figure 7d) Mapping of ‘noisy’ weight vector 

for the IRIS network. (
2 0.05σ = ) 

 
 

7. Conclusions and Future Trends 
 
This paper revisits MLP initialization problem in the case of BP training and extends 
literature results both in the description of the weight space as well as in the 
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estimation of a good strategy for selecting weight initialization range. The analysis is 
performed on a complex classification task, like Iris problem, which is more 
representative of “real” world problems characteristics than benchmarks used so far in 
the literature. To this end, a data mining approach, based on Self Organizing Feature 
Maps (SOM), is involved in this paper. The conclusions drawn from this novel 
application of SOM algorithm in MLP analysis extend significantly previous 
preliminary results in the literature. More detailed analysis on real world benchmarks 
is needed to establish better these results and more elaborate specification of the 
weight initialization range than the ones of results 5,6 in this study are needed not, 
however, too “accurate” as in previous studies. Previous studies have been misleading 
in this aspect not showing that the weight initialization space is not dense in solutions 
but it follows an almost fractal structure and, therefore, a probabilistic approach is 
more suitable in order to find out a good strategy for MLP weight initialization. 
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