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Abstract

Clustering, that is the partitioning of a set of patterns
into disjoint and homogeneous meaningful groups (clus-
ters), is a fundamental process in the practice of science.
k-windows is an efficient clustering algorithm that reduces
the number of patterns that need to be examined for simi-
larity, using a windowing technique. It exploits well known
spatial data structures, namely the range tree, that allows
fast range searches. From a theoretical standpoint, the k-
windows algorithm is characterized by lower time complex-
ity compared to other well-known clustering algorithms.
Moreover, it achieves high quality clustering results. How-
ever, it appears that it cannot be directly applicable in high-
dimensional settings due to the superlinear space require-
ments for the range tree. In this paper, an improvement
of the k-windows algorithm, aiming at resolving this def
iciency, is presented. The improvement is based on an al-
ternative solution to the orthogonal range search problem.

1. Introduction

Clustering, that is the partitioning of a set of patterns into
disjoint and homogeneous meaningful groups (clusters), is
a fundamental process in the practice of science. It is ap-
plied in various fields including data mining, statistical data

∗The authors acknowledge financial support of the Computer Technol-
ogy Institute, Greece.

analysis, pattern recognition, compression and vector quan-
tization.

Usually, clustering algorithms produce as f inal output
the means of discovered clusters. Providing that these
means are the representatives of the clusters, the con-
junction of attribute values describing each mean can be
considered as a clustering rule for describing data (tak-
ing, of course, into consideration and a number of certain
properties as density, variance, shape and separation [2]).
Recently, the task of extracting knowledge from large
databases, in the form of clustering rules, has been attract-
ing increasing interest. Clustering rules can be extracted
using unsupervised learning methods.

Algorithms for clustering data have been widely stud-
ied in various f ields including Machine Learning, Neural
Networks, Databases and Statistics. Clustering algorithms
can be classified [2] as either hierarchical or iterative (parti-
tional, density search, factor analytic or clumping and graph
theoretic). Complete-link, average link and single-link al-
gorithms [8] are the most popular hierarchical clustering al-
gorithms. K-means [12] along with its variants and hill-
climbing [4] are among the most popular partitional clus-
tering algorithms.

k-means is a very popular and one of the best algorithms
for implementing the clustering process. The time complex-
ity of the algorithm is dominated by the product of the num-
ber of patterns, the number of clusters and the number of it-
erations. k-means often converges to a local minimum. In a
former contribution [18] we had presented an improvement
of k-means clustering algorithm, the k-windows algorithm,
aiming at a better time complexity and partitioning accu-
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racy. That approach resulted in a reduction of the number
of patterns that need to be examined for similarity, in each
iteration, using a windowing technique. The latter is based
on well known spatial data structures, namely the range tree,
that allows fast range searches.

The k-windows algorithm is characterized by a lower
time complexity compared to other well-known clustering
algorithms, as shown in [18]. Moreover, it achieves high
quality clustering results. However, it appears that the k-
windows algorithm cannot be directly applicable in high-
dimensional settings due to the superlinear space require-
ments for the range tree. To address this problem, we
present an improvement of the k-windows algorithm, using
a different solution to the orthogonal range search problem,
namely the multidimensional binary tree method for orthog-
onal range search in d � 2 dimensions.

The rest of the paper is organized as follows. The k-
windows algorithm is briefly described in Section 2, along
with its computational complexity. The proposed improve-
ment of the k-windows algorithm is described in Section 3.
In Section 4, we present extensive empirical tests that il-
lustrate that the new version outperforms the previous one.
The paper ends with concluding remarks.

2 The k-windows Algorithm

The k-windows algorithm [18] is an improvement of the
k-means algorithm, which in turn is a very popular algo-
rithm particularly suited for implementing the clustering
process because of its ability to eff iciently partition very
large numbers of patterns.

k-means consists of two main phases. During the f irst
phase, a partition of patterns, in k clusters is calculated,
while during the second one, the quality of the partition is
determined. k-means is implemented by an iterative pro-
cess that starts from a random initial partition. The latter is
repeatedly revised until its quality function reaches an opti-
mum.

In particular, the whole process is built upon four basic
steps:

1) selection of the initial k means,

2) assignment of each pattern to the cluster with the near-
est mean,

3) revision of k means, and

4) computation of the quality function.

The last three steps are performed iteratively until conver-
gence.

The direct k-means algorithm is computationally very
expensive for large sets of patterns. It requires time propor-
tional to the product of the number of patterns, the number

of clusters and the number of iterations. More specif ically,
the computationally most expensive step is that of assign-
ing each pattern to the cluster with the nearest mean. This
is imposed not only by its time complexity in relative terms,
but, also, by its basic operation which is the calculation of
the squared Euclidean distance.

The k-windows algorithm deals with this problem by us-
ing a windowing technique, that permits the consideration
of only a limited number of patterns in each iteration. More-
over, the basic operation in the f irst loop, during the as-
signment of patterns to clusters, is now just the arithmetic
comparison between two numbers.

The key idea behind the k-windows algorithm is to use a
window in order to determine a cluster. The window is def
ined as an orthogonal range in the d-dimensional Euclidean
space, where d is the number of numerical attributes. There-
fore each window is a d-range and has a f ixed size. Every
pattern that lies within a window is considered as belong-
ing to the corresponding cluster. Iteratively, each window
is moved in the Euclidean space by centering itself on the
mean of the patterns included. This takes place until any
further movement does not result in an increase in the num-
ber of patterns that lie within it (see solid line squares in
Fig. 1). After this step, we are able to determine the means
of clusters as the means of the corresponding windows.
However, since only a limited number of patterns is consid-
ered in each movement, the quality of a partition may not
be optimum. Thus, the quality of a partition is calculated in
a second phase. At f irst, windows are enlarged, in order to
contain as many patterns from the corresponding cluster as
possible (see dotted line squares in Fig. 1). The quality of a
partition is determined by the number of patterns contained
in any window, with respect to all the patterns.

Figure 1. Movements and enlargements of a
window.
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The k-windows clustering algorithm is as follows:

Algorithm k-windows.

input k, a, v
initialize k means im1, . . . , imk along with their
k d-ranges wm1, . . . , wmk each of area a
repeat

for each input pattern il, 1 � l � n
do

assign il to wj ,
so that il lies within wj

for each d-range wj

do
calculate its mean imj = 1

|wj |
∑

il∈wj
il

and recalculate d-ranges
until no pattern has changed d-ranges
enlarge d-ranges up to no significant
change exists, in their initial mean
compute the ratio r = 1

n

∑k
j=1|il ∈ wj |

if r < v
do

re-execute the algorithm

At f irst, k means are selected (possibly in a random
manner). Initial d-ranges (windows) have as centers
these initial means and each one is of area a. Then, the
patterns that lie within each d-range are found, using the
Orthogonal Range Search technique of Computational
Geometry [3, 7, 11, 16]. The latter has been shown to be
effective in many practical applications and a considerable
amount of work has been devoted to this problem [16].
An orthogonal range search is based on a preprocess
phase where a range tree is constructed. Patterns that lie
within a d-range can be found traversing the range tree,
in polylogarithmic time. The orthogonal range search
problem can be stated as follows:

Input:
a) V = {p1, . . . , pn} is a set of n points in R

d the
d-dimensional Euclidean space with coordinate axes
(Ox1, . . . , Oxd),
b) a query d-range Q= [a1, b1] × [a2, b2] × . . . × [ad, bd]
is specif ied by two points (a1, a2, . . . , ad) and
(b1, b2, . . . , bd), with aj � bj .

Output:
report all points of V that lie within the d-range Q.

Then, the mean of patterns, that lie within each range, is
calculated. Each such mean def ines a new d-range, that
is considered a movement of the previous d-range. The
last two steps are executed repeatedly, until there is no d-
range that includes a signif icant increment of patterns after
a movement.

In a second phase, the quality of the partition is calcu-
lated. At first, the d-ranges are enlarged in order to include
as many patterns as possible from the cluster. This can be
achieved by forcing d-ranges to preserve their mean dur-
ing enlargement. Then, the relative frequency of patterns
assigned to a d-range in the whole set of patterns, is cal-
culated. If the relative frequency is small, then, possibly,
there may be a missing cluster (or clusters). In that case,
the whole process is repeated.

The time complexity of the k-means is O(ndkt) while in

the case of k-windows it is reduced to O(dkqr( logd−2 n
d +

s)), where qr is empirically shown to be proportional to t
[18]. This reduction is heavily dependent on the orthog-
onal range search. Thus, the k-windows algorithm has
a lower time complexity than other well-known cluster-
ing algorithms such as BIRCH [19], CHAMELEON [13],
CLARANS [15], CURE [10] and DBSCAN [9].

3 The proposed improvement.

It seems that the k-windows algorithm cannot be directly
applicable in practical settings due to the superlinear space
requirements for the range tree. The latter is obvious in
multidimensional cases. However, one could follow several
approaches for scaling up to very large data sets, as sam-
pling (e.g. [6]), or parallelizing (e.g. [14]), or distributing
(e.g. [5]).

The proposed improvement of the k-windows algorithm
is based on using the multidimensional binary tree method
for orthogonal range search for d � 2 dimensions.

Let us consider a set V = {p1, p2, . . . , pn} of n
points in d-dimensional space Rd with coordinate axes
(Ox1, Ox2, · · · , Oxd). Let pi = (xi

1, x
i
2, · · · , xi

d) be the
representation of any point pi of V .

Def inition: Let Vs be a subset of the set V . The middle
point ph of Vs with respect to the coordinate xi (1 � i � d)
is defined as the point which divides the set Vs-{ph} in two
subsets Vs1 and Vs2 , such that:
i) ∀pg ∈ Vs1 and ∀pr ∈ Vs2 , xg

i � xh
i � xr

i .
ii) Vs1 and Vs2 have approximately equal numbers of ele-
ments: If |Vs| = t then |Vs1 | = � t−1

2 � and |Vs2 | = � t−1
2 �.

The multidimensional binary tree T which stores the
points of the set V is constructed as follows (see Fig. 2).

1) Let pr be the middle point of the given set V , with
respect to the f irst coordinate x1. Let V1 and V2 be the
corresponding partition of the set V -{pr}. The point pr is
stored in the root of T .
2) Each node pi of T , obtains a left child left[pi] and a
right child right[pi] as follows: MBT(pr,V1,V2,1)
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Figure 2. A set V = {p1, p2, . . . , p16} of points in
2-dimensional space R2 and the correspond-
ing 2-dimensional binary tree.

procedure MBT(p,L,M ,k)
begin
k ←− k + 1
if k = d + 1 then k ←− 1
if L 	= ∅ then
begin
let u be the middle point of the set L with respect to the
coordinate xk . The point u divides the set L-{u} in two
subsets L1 and L2.
left[p] ←− u
MBT(u,L1,L2,k)
end
if M 	= ∅ then
begin
let w be the middle point of the set M with respect to the
coordinate xk and let M1 and M2 be the corresponding
partition of the set M -{w}.
right[p] ←− w
MBT(w,M1,M2,k)
end
end

Let us consider a query d-range Q= [a1, b1] × [a2, b2] ×

· · · × [ad, bd] specif ied by two points (a1, a2, . . . , ad) and
(b1, b2, . . . , bd), with aj � bj . The search of the tree T is
effected by the following algorithm which accumulates the
retrieved points in a list A, initialized as empty (see Fig. 3):
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Figure 3. Illustration of a range search in
the set V of the previous Figure. In the 2-
dimensional binary tree we show the nodes
actually visited by the search.

The orthogonal range search algorithm
1) A←− ∅
2) Let pr be the root of T : SEARCH(pr,Q,A,1)
3) return A
procedure SEARCH(pt,Q,A,i)
begin
if i = d + 1 then i ←− 1
let pt = (xt

1, x
t
2, · · · , xt

d)
if ai � xt

i � bi then if pt ∈ Q then A←− A∪{pt}
if pt 	= leaf then
begin
if ai < xt

i then SEARCH(left[pt],Q,A,i + 1)
if xt

i < bi then SEARCH(right[pt],Q,A,i + 1)
end
end
From the performance viewpoint, the multidimensional bi-
nary tree uses θ(dn) optimal storage and it can also be con-
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structed in optimal time θ(dn log n). The worst-case behav-
ior of the query time is O(|A| + dn1−1/d) (see [16]).

From a theoretical standpoint, k-windows has a lower
time complexity, with respect to other clustering algorithms.
Moreover, it achieves high quality clustering results. Since,
we could not compare our method to the great number
of k-means variations due to space limitations, we chose
to simply resort to visual inspection. We applied the k-
windows algorithm to various two-dimensional synthetic
sample databases (see Fig. 4). Note that these sample
databases have already been used as test data sets to eval-
uate BIRCH, CHAMELEON, CLARANS, CURE and DB-
SCAN (e.g. in [10, 13, 17]).

Figure 4. Clusters discovered by k-windows.

4 Empirical Tests

We have implemented the k-windows algorithm in the
C++ Language under the Linux operating system with the
“g++ ver 2.96” compiler. We have, also, implemented the
proposed improved version, in the same developing envi-
ronment, in order to evaluate its relative performance. For
comparative purposes, we have also implemented a brute
force version of the k-windows algorithm. In this version,
the computationally most expensive step is that of assign-
ing each pattern to the cluster with the nearest mean, which
is performed by a brute force search of all patterns. Using

those implementations, we have applied the above three ver-
sions of k-windows algorithm in six two-dimensional syn-
thetic sample databases. The test sample databases (DSet1-
6) are depicted in Fig. 5 and they include clusters with both
normal and irregular shape.

Figure 5. The six synthetic sample databases.

Moreover, we have applied the above three versions
of k-windows algorithm in multidimensional MagnetoEn-
cephaloGram (MEG) signals which are generated from the
ionic micro-currents of the brain and originated at the cel-
lular level [1]. The MEG analysis can provide information
of vital importance for the monitoring of brain dynamics
in both normal and pathological conditions of the Central
Nervous System. The MEG signals are recorded with the
use of specif ic Superconductive Quantum Interference De-
vices (SQUIDs). SQUIDs are very sensitive superconduc-
tive magneto-meters with the ability to detect and measure
very weak magnetic f ields, of the order of fT (= 10-15T)
and they can be used ideally for the recording of the MEG,
since they do not emit any radiation and they are totally non
invasive. To derive the multi-dimensional phase space from
the one-dimensional MEG signals a well-known technique
from the f ield of non-linear dynamics and chaos was used.
This technique is the embedding method for the reconstruc-
tion of multi-dimensional dynamics of a system from an
one-dimensional observable. According to the embedding
theorem the reconstructed multi-dimensional phase space
from an one-dimensional observable of a system is topolog-
ically equivalent to the original phase space of the system
under consideration.

We have applied the above three versions in four differ-
ent MEG multidimensional signals, namely the MEG1 an
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epileptic magnetoencephalogram signal of 500 points in 5-
dimensional space, the MEG2 a fetal magnetocardiogram
signal of 1500 points in 3-dimensional space, the MEG3
another fetal magnetocardiogram signal of 1500 points in
3-dimensional space and MEG4 a fetal magnetocardiogram
signal of 800 points in 5-dimensional space.
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Figure 6. Speedup for 2-dimensional space.

In this paper, empirical tests aim at examining the per-
formance of the three versions of the k-windows algorithm.
Notice that, as far as the partitioning accuracy is concerned,
all the three versions are identical. Thus, empirical results
for the partitioning accuracy with respect to k-means algo-
rithm can be found in [18]. In Fig. 4 clusters discovered by
k-windows are shown in the synthetic sample databases.
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Figure 7. Speedup for multidimensional
space.

In Fig. 6 the speedup is depicted for the multidimen-
sional binary tree (M.B.T.) and brute force versions with re-
spect to the first version of the k-windows algorithm applied
in the test sample databases. It seems that both M.B.T. and
the brute force versions outperform the first version for two

dimensions. In Fig. 7 the speedup is depicted for the mul-
tidimensional binary tree (M.B.T.) and brute force versions
with respect to the first version of the k-windows algorithm
applied in the MEG signals. It is obvious that the M.B.T.
version outperforms the f irst version for two dimensions.
Moreover, using the M.B.T. version there is a signif icant
speedup in building the range tree during a preprocessing
phase, as it is depicted in Fig. 8.

0,30
10,30
20,30
30,30
40,30
50,30
60,30
70,30
80,30
90,30

MEG3 MEG4

SAMPLE DATABASES

S
P

E
E

D
U

P

Figure 8. Speedup for building the range tree.

5 Concluding Remarks

The k-windows algorithm [18] constitutes an improve-
ment of the well known and widely used k-means algo-
rithm. However, it seems that the version of k-windows
algorithm, that uses the orthogonal range search technique
of Computational Geometry, cannot be directly applicable
in settings due to the superlinear space requirements for
the range tree. The latter is obvious in multidimensional
practical cases. Thus, we present an improvement of the
k-windows algorithm by using a different solution to the
orthogonal range search problem. This improvement pre-
serves the partitioning accuracy while at the same time it
is characterized by a lower overall time complexity, de-
spite the fact that the time complexity of the range search
is higher. The improvement is more pronounced in multi-
dimensional spaces. Finally, the proposed version exhibits
a signif icant improvement in the time complexity of con-
structing the range tree.
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