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Abstract 
We report on a comparative evaluation of three evolutionary methods for training the probabilistic neural network 

(PNN). The specific focus here is on an investigation of the acceptable tradeoffs, in terms of accuracy vs. computational 
and memory demands, depending on the population size. An empirical evaluation is carried out on the well-known Par-
kinson Speech Dataset with Multiple Types of Sound Recordings following a common experimental protocol. The nu-
merical results identify the Unified PSO-based training as the most appropriate due to its superior classification accu-
racy and lower computational demands.   
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INTRODUCTION 

The probabilistic neural network (PNN) [1] 
implements a robust statistical classification 
method which operates well even when limited 
amount of representative training data is avail-
able. The original PNN [1] has only one ad-
justable parameter, referred to as the spread 
factor sigma. In many applications the value of 
sigma is not crucial for the PNN operation, 
however adjusting accurately this parameter 
could result in a significant improvement in 
the overall recognition accuracy. 

Hardware implementations of the PNN im-
pose certain restrictions on the choice of 
method for adjusting sigma. Among these are: 
(i) it has to be computationally inexpensive, 
(ii) insensitive to accumulation of rounding 
errors, (iii) if possible should avoid the compu-
tation of derivatives etc. Evolutionary meth-
ods, such as differential evolution (DE) and 
swarm intelligence algorithms satisfy many of 
these requirements, and have been successfully 
used for training of the PNN [2-9].  

In particular, a particle swarm optimization 
(PSO)-based algorithm was used for an en-
hanced training of the sigma parameter and 
also for the recurrent layer weights of the lo-

cally recurrent probabilistic neural network 
(LRPNN) [2]. The Unified PSO (UPSO) was 
found more successful than several other con-
sidered algorithms. A self-adaptive PNN 
trained with PSO showed improvement over 
the original PNN on two protein localization 
problems and two medical diagnostic tasks [3]. 
A differential evolution (DE)-based training 
method was also used successfully for the ad-
justment of sigma on a multiclass decision 
problem for pathogen classification [4].  

In the present study we evaluate three DE 
and PSO-based methods for adjusting sigma of 
the PNN in a common setup with experimental 
protocol based on the Parkinson Speech Da-
taset. The main focus here is on the explora-
tion of acceptable tradeoffs, in terms of accu-
racy vs. computational and memory demands, 
depending on the population sizes used in the 
DE and PSO algorithms.  
 
PROBABILISTIC NEURAL NETWORK 

The PNN [1] is a three-layer structure 
which in the first and second layer estimates 
the probability density function (PDF) for each 
and every class and then in the third layer 
makes use of a Bayesian optimal classification 
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scheme to decide the winning class.  Most of-
ten, the PDF is estimated by employing a sum 
of spherical Gaussian functions that are cen-
tered at each training vector:  
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where  1,...,i K=  is the class index, d
iσ  is the 

sigma aka smoothing factor, which regulates 
the receptive field of the kernel function. The 
input vector x  and the centers d

ij R∈x  of the 
kernel are of dimensionality ,d  and iM  is the 
number of pattern units in a given class ik . 
Finally, exp  stands for the exponential func-
tion, and the superscript T denotes the trans-
pose of the vector.  

Consequently, the PNN makes the classifi-
cation decision in accordance with the Bayes’ 
strategy for decision rules.  

{ }( ) arg max ( ) ( | ) ,  1,..., ,i i i
i

D P k p k i K= =x x   (2) 

where ( )iP k  is the a priori probability for class 
ik . Besides the decision, PNNs also provide a 

probability and reliability measure of each 
classification.  

  
EXPERIMENTAL SETUP 

 An evaluation of three optimization algo-
rithms based on DE and PSO is performed 
with focus on exploring the scaling effects of 
the population size for the estimation of opti-
mal sigma for a heteroscedastic PNN. The ex-
perimental evaluation is carried out on the 
Parkinson Speech Dataset with Multiple Types 
of Sound Recordings from the UCI machine 
learning repository [10,11]. The dataset con-
tains speech feature vectors with dimensionali-
ty 26, computed from voice recordings. Each 
of the feature vectors is tagged either Parkin-
son positive or negative. The experimental 
setup is based on the ten times cross-validation 
scheme, with division of the data 90% to 10% 
for training and testing, respectively. 

Specifically, three training methods 
DE/best/1/bin, Simple PSO, and UPSO with 
u=0.5 were evaluated. For each of those opti-
mization algorithms we carried out experi-
ments with population size of 10, 20, 30, 40 
and 50 particles. Every algorithm was run ten 

times for each of the five population sizes. 
Each run was with 1000 iterations and a stop 
condition was applied if the objective function 
did not change after 250 consequent iterations.  

For convenience, in the rest of this paper 
we refer to the 15 setups of the PNN training 
method with a provisional index (a-p), where a 
stands for the subsequent number of the train-
ing method and p for the population size (cf. 
Table I). 

 
Table I. Evaluation setups. 

Optimization algorithm Population size  
(1-1) DE/best/1/bin 10 
(1-2) DE/best/1/bin 20 
(1-3) DE/best/1/bin 30 
(1-4) DE/best/1/bin 40 
(1-5) DE/best/1/bin 50 
(2-1) Simple PSO 10 
(2-2) Simple PSO 20 
(2-3) Simple PSO 30 
(2-4) Simple PSO 40 
(2-5) Simple PSO 50 
(3-1) UPSO – u=0.5 10 
(3-2) UPSO – u=0.5 20 
(3-3) UPSO – u=0.5 30 
(3-4) UPSO – u=0.5 40 
(3-5) UPSO – u=0.5 50 

 
 

EXPERIMENTAL RESULTS 
The average error is computed based on the 

ten runs for each population size and is report-
ed in percentages (cf. Table II). For conven-
ience of visualization the results in Table II are 
sorted in descending order with respect to the 
average error. 

 
Table II. Average error in percentages computed 
for ten runs of each setup. 

Training method setup Error (%) 
(1-5) DE/best/1/bin 25.13% 
(3-4) UPSO – u=0.5 25.15% 
(3-5) UPSO – u=0.5 25.17% 
(1-4) DE/best/1/bin 25.19% 
(1-3) DE/best/1/bin 25.44% 
(3-3) UPSO – u=0.5 25.50% 
(3-2) UPSO – u=0.5 25.78% 
(1-2) DE/best/1/bin 26.09% 
(3-1) UPSO – u=0.5 26.77% 
(1-1) DE/best/1/bin 27.07% 
(2-5) Simple PSO 27.37% 
(2-4) Simple PSO 27.64% 
(2-3) Simple PSO 27.94% 
(2-2) Simple PSO  28.17% 
(2-1) Simple PSO 29.43% 
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In Table II we observe that seven instances 

have average error lower than 26%. However, 
in the current experimental protocol none of 
the five Simple PSO setups (with different 
population size) obtained an average error be-
low 27%. 

All experimental results are summarized in 
Fig. 1. In order to analyze the significance of 
the observed differences, we performed the 
Friedman statistical significance test with 
Holm post-hoc procedure [12]. This helps for 
controlling the accumulation of the Family-
Wise Error Rate (FWER) in the multiple com-
parisons analysis.  

In Table III we show the ranks after a 
Friedman test for the different populations of 
the optimization algorithm DE/best/1/bin as 
well as the overall p-value. The low p-value 
indicates that there is a significant difference 
among the considered instances. Regarding the 
achieved ranks for DE/best/1/bin, we see that 
the best performing population in terms of ac-
curacy (cf. Table II) also achieves the best 
rank. This trend of correspondence applies for 
the other setups of the population size as well, 
which results in population size 10 being the 
worst case with the highest error rate and the 
lowest rank. The ranks and the overall p-value 
for different setups of the Simple PSO-based 
methods are presented in Table IV. Likewise 
the results for DE/best/1/bin, shown in Table 
III, the low p-value for Simple PSO (cf. Table  

 
IV) indicates for a significant difference 
among the populations or at least among some 
of them. The best performing population in 
terms of accuracy achieves the best rank and 
the other setups follow in descending order 
starting from population size 40 downwards to 
population size 10. 

 
Table III. Ranks after the Friedman test for 
DE/best/1/bin and different population size. 

Population size 
(by rank) 

Population size 
ranks 

Population size 50 20.53 
Population size 40 21.70 
Population size 30 22.71 
Population size 20 27.76 
Population size 10 34.82 

  
p-value 3.0667e-22 

 
Table IV. Ranks after the Friedman test for Simple 
PSO and different population size. 

Population size (by rank) Population size ranks 
Population size 50 19.07 
Population size 40 21.20 
Population size 30 24.57 
Population size 20 26.62 
Population size 10 36.05 

  
p-value 4.3042e-19 
 
The overall p-value for the UPSO with 

u=0.5 (cf. Table V) and different population 
sizes is low enough to conclude that a signifi-
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Fig. 1. Boxplot of all evaluated algorithms and populations. 
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cant difference exists between all or some of 
the population sizes. 

 
Table V. Ranks after the Friedman test for UPSO 
with u=0.5 and different population size. 

Population size (by rank) Population size ranks 
Population size 50 20.34 
Population size 40 21.60 
Population size 30 25.07 
Population size 20 26.96 
Population size 10 33.55 

  
p-value 2.4636e-15 
 
In terms of ranks however, it can be noticed 

that the best-performing setup in terms of ac-
curacy is second in rank (population size 40) 
while the best rank is for the second setup in 
terms of accuracy (population size 50). Thus, 
further statistical tests are needed to investi-
gate whether there is or not a significant dif-
ference between these two setups.  

In order to establish a proper comparison 
between the population sizes for each algo-
rithm, we considered a multiple-comparison 
test followed by a post-hoc procedure. For 
each algorithm ten hypothesizes for similari-
ties were evaluated (cf. Tables VI-VIII).  

Specifically, in Table VI we show the re-
sults for DE/best/1/bin, where seven out of the 
ten hypothesizes were rejected with a signifi-
cance level α = 0.01. The average error for the 
population sizes 30, 40 and 50 is considered 
similar. In Table VII we show the statistical 
significance tests for the comparisons among 
the population sizes of Simple PSO. Five hy-
pothesizes were rejected with a significance 
level α = 0.01 and two with α = 0.05. The test 
fails to reject the similarity between population 
sizes: 40 – 50, 30 – 40 and 20 – 30. In the case 
of UPSO with u=0.5 (cf. Table VIII), a com-
parison among the results for different popula-
tion sizes found out statistical differences in 
eight cases. Six hypothesizes were rejected 
with significance level α = 0.01, one with α = 
0.05 and one with α = 0.1. The two pairs found 
similar are population sizes 40 and 50, and 
population sizes 20 and 30. 

Based on these results a further study on the 
effects of population size was performed for 
the three optimization algorithms considered 
here. For that purpose we selected the two 
best-performing setups (in terms of lowest av-

erage error rate, cf. Table II) for each algo-
rithm and performed multiple-comparison 
tests. In Table IX we present these setups sort-
ed in descending order. 

 
Table VI. Adjusted values with Holm post-hoc for the 
Friedman multiple comparison test for DE/best/1/bin. 

Comparison Unadjusted Holm 
pop 10 – pop 20 4.0254e-05 0.0002 
pop 10 – pop 30 2.2879e-11 1.8303e-10 
pop 10 – pop 40 3.0369e-14 2.7332e-13 
pop 10 – pop 50 7.0389e-16 7.0389e-15 
pop 20 – pop 30 0.0016 0.0062 
pop 20 – pop 40 2.8774e-05 0.0002 
pop 20 – pop 50 2.5773e-06 1.8041e-05 
pop 30 – pop 40 0.6093 0.6322 
pop 30 – pop 50 0.1382 0.4146 
pop 40 – pop 50 0.3161 0.6322 

 
Table VII. Adjusted values with Holm post-hoc for the 
Friedman multiple-comparison test for Simple PSO. 

Comparison Unadjusted Holm 
pop 10 – pop 20 5.7720e-07 4.0404e-06 
pop 10 – pop 30 1.8818e-09 1.5054e-08 
pop 10 – pop 40 1.2851e-13 1.1566e-12 
pop 10 – pop 50 4.9589e-16 4.9589e-15 
pop 20 – pop 30 0.2799 0.4566 
pop 20 – pop 40 0.0031 0.0123 
pop 20 – pop 50 6.0226e-05 0.0004 
pop 30 – pop 40 0.0607 0.1820 
pop 30 – pop 50 0.0023 0.0116 
pop 40 – pop 50 0.2283 0.4566 

 
Table VIII. Adjusted values with Holm post-hoc for the 
Friedman multiple comparison test for UPSO with 
u=0.5. 

Comparison Unadjusted Holm 
pop 10 – pop 20 0.0002 0.0013 
pop 10 – pop 30 1.1509e-06 9.2068e-06 
pop 10 – pop 40 6.5373e-11 5.8835e-10 
pop 10 – pop 50 4.6889e-12 4.6889e-11 
pop 20 – pop 30 0.2526 0.5053 
pop 20 – pop 40 0.0014 0.0069 
pop 20 – pop 50 3.1443e-05 0.0002 
pop 30 – pop 40 0.0198 0.0593 
pop 30 – pop 50 0.0027 0.0109 
pop 40 – pop 50 0.3708 0.5053 

 
Table IX. Best two performing populations for each 
algorithm. 

Optimization algorithm  
(by score) 

Population size err 
(err in %) 

(1-5) DE/best/1/bin 25.13% 
(3-4) UPSO – u=0.5 25.15% 
(3-5) UPSO – u=0.5 25.17% 
(1-4) DE/best/1/bin 25.19% 
(2-5) Simple PSO 27.37% 
(2-4) Simple PSO 27.64% 
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In Table X we show the overall p-value for 
these instances (Table IX) as well as the rank 
for each setup. Again, the low p-value indi-
cates for some significant differences. Here, 
the best rank is obtained for the best perform-
ing algorithm from Table IX. However, the 
positions of the following three ranks are in-
verted with respect to Table IX. 

 
Table X. Ranks achieved by Friedman test for the 
two best performing populations from each algo-
rithm. 

Population size (by rank) Population size ranks 
(1-5) DE/best/1/bin 20.28 
(1-4) DE/best/1/bin 21.33 
(3-5) UPSO – u=0.5 23.40 
(3-4) UPSO – u=0.5 25.11 
(2-5) Simple PSO 45.53 
(2-4) Simple PSO 47.37 

  
p-value 1.0087e-63 
 
As beforehand, Holm post-hoc procedure 

was used to investigate whether there are any 
differences among these setups. Table XI 
shows eight significantly different setups with 
significance level α = 0.01. A close inspection 
of the results shows that the eight occurrences 
of significant difference is between Simple 
PSO and the other two optimization algorithms 
(DE/best/1bin and UPSO with u=0.5). 

 
Table XI. Adjusted values with Holm post-hoc for the 
Friedman multiple comparison test for the two best per-
forming populations from each algorithm. 

Comparison Unadjusted Holm 
(1-4) – (1-5) 0.3161 1 
(1-4) – (2-4) 4.8663e-32 7.2994e-31 
(1-4) – (2-5) 2.7256e-28 3.5433e-27 
(1-4) – (3-4) 0.1179 0.7076 
(1-4) – (3-5) 0.7225 0.7416 
(1-5) – (2-4) 1.2205e-31 1.7086e-30 
(1-5) – (2-5) 5.1399e-28 6.1677e-27 
(1-5) – (3-4) 0.0153 0.1069 
(1-5) – (3-5) 0.2695 1 
(2-4) – (2-5) 0.2283 1 
(2-4) – (3-4) 3.3040e-19 2.9736e-18 
(2-4) – (3-5) 6.3719e-21 7.0090e-20 
(2-5) – (3-4) 5.7954e-18 4.6363e-17 
(2-5) – (3-5) 1.3215e-19 1.3215e-18 
(3-4) – (3-5) 0.3708 0.9484 

 
In Table XII we show the average number 

of iterations for all setups (cf. Table I). Obvi-
ously, the Simple PSO-based setups need sig-
nificantly lower amount of iterations for reach-

ing a solution. The iterations needed when us-
ing DE/best/1/bin and UPSO with u=0.5 based 
optimization are considered similar when 
compared to the Simple PSO. However, 
DE/best/1/bin shows the average number of 
iterations -- above 70 and in three cases above 
80. On the other hand, the UPSO with u=0.5 in 
most cases completes with 70 iterations on av-
erage. In one case there are 76.52 iterations on 
average (for population size 20) and 55.36 for 
population size 10. 
 
Table XII. Average number of iterations per training 
method and population size. 

Optimization algorithm Average iterations 
(1-1) DE/best/1/bin 70.47 
(1-2) DE/best/1/bin 75.38 
(1-3) DE/best/1/bin 85.36 
(1-4) DE/best/1/bin 83.92 
(1-5) DE/best/1/bin 86.61 
(2-1) Simple PSO 26.00 
(2-2) Simple PSO 31.37 
(2-3) Simple PSO 20.29 
(2-4) Simple PSO 10.74 
(2-5) Simple PSO 16.94 
(3-1) UPSO – u=0.5 55.36 
(3-2) UPSO – u=0.5 76.52 
(3-3) UPSO – u=0.5 71.20 
(3-4) UPSO – u=0.5 71.34 
(3-5) UPSO – u=0.5 70.67 

 
 
CONCLUSION 

On the PNN training problem considered 
here, the DE/best/1/bin and UPSO with u=0.5 
based methods were found out to be similar 
and demonstrated advantage in terms of accu-
racy over the Simple PSO. However, UPSO 
with u=0.5 needs lower number of cost func-
tion evaluations, when compared to the 
DE/best/1/bin based methods. 

In overall, when computational speed is the 
most restrictive criterion, Simple PSO might 
be the preferable choice, otherwise 
DE/best/1/bin or UPSO with u=0.5 would be 
the better option due to the better accuracy.  

When hardware implementation of the PNN 
and its training is considered the best trade-off 
between complexity and computational de-
mands is provided by the setups based on 
UPSO with u=0.5 and DE/best/1/bin.  

Although, the overall time required for the 
completion of iterations in the hardware im-
plementation will be considerably lower, the 
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setups that require lower number of cost func-
tion evaluations will remain relatively faster 
and will require smaller area on the chip. 
Hardware implementations however will most 
likely result in a decreased overall accuracy 
due to the finite number of bits.   
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