
Balancing the exploration and exploitation capabilities
of the Differential Evolution Algorithm

M.G. Epitropakis, V.P. Plagianakos, and M.N. Vrahatis

Abstract— The hybridization and composition of different
Evolutionary Algorithms to improve the quality of the solutions
and to accelerate execution is a common research practice. In
this paper we propose a hybrid approach that combines Differ-
ential Evolution mutation operators in an attempt to balance
their exploration and exploitation capabilities. Additionally, a
self-balancing hybrid mutation operator is presented, which
favors the exploration of the search space during the first phase
of the optimization, while later opts for the exploitation to aid
convergence to the optimum. Extensive experimental results
indicate that the proposed approaches effectively enhance DE’s
ability to accurately locate solutions in the search space.

I. INTRODUCTION

Evolutionary algorithms (EAs) are nature inspired prob-
lem solving optimization algorithms. The broad class of
EAs has demonstrated numerous methods that have been
effectively and successfully applied to many difficult real-
life optimization tasks [1]. All these algorithms share the
common conceptual base of simulating the evolution of the
individuals that form the population using a predefined set of
operators. Commonly two kinds of operators are used: the
selection and the search operators. The most widely used
search operators are mutation and recombination.

For the rest of the paper we consider the minimiza-
tion problem of finding global minimizers of a continuous
nonlinear, (possibly) nondifferentiable, multimodal objective
function f . More specifically, our goal is to locate global
minimizers x∗t of the real–valued objective function f : E →
R:

f(x∗t) � f(x), ∀x ∈ E ,
where t = 1, 2, . . . , and the compact set E ⊆ R

n is a n–
dimensional scaled translation of the unit hypercube.

We attempt to tackle the above minimization problem
using the Differential Evolution (DE) Algorithm [2], [3].
DE is one of the most promising and widely used EA,
and is capable of handling non-differentiable, nonlinear and
multimodal objective functions. It has been designed as a
stochastic parallel direct search method and typically requires
few, easily chosen, control parameters.

Experimental results have shown that DE has good con-
vergence properties and outperforms other well known evo-
lutionary algorithms [2], [4], [5], [6]. However, not all of the

All the authors are with Computational Intelligence Laboratory (CI Lab),
Department of Mathematics, University of Patras Artificial Intelligence
Research Center (UPAIRC), University of Patras, GR–26110 Patras, Greece.
(email: {mikeagn, vpp, vrahatis}@math.upatras.gr).

This work was partially supported by an “Empirikion Foundation” award
that helped the acquisition and the implementation of the distributed
computer cluster.

DE mutation operators are equally efficient. In this paper
we demonstrate that some of the DE mutation operators
favor the exploration of the search space, while some other
operators favor its fast exploitation. The explorative mutation
operators have a greater possibility of locating the minima
of the objective function, but generally need more iterations
(generations). On the other hand, the exploitive mutation
operators rapidly converge to a minimum of the objective
function. In this case exists the risk of premature convergence
to a suboptimal solution.

To combine the exploration and exploitation capabilities
of DE, we propose a new hybrid scheme that utilizes an
explorative and an exploitive mutation operator, in an attempt
to balance their effects. Additionally, a self-balancing hybrid
mutation operator is presented. This mutation operator favors
the exploration, during the first phase of optimization, in or-
der to locate the most promising regions of the search space,
while later applies almost exclusively the exploitive mutation
operator to aid convergence to the optimum. Extensive ex-
perimental results indicate that the proposed approaches are
promising.

The rest of the paper is organized as follows. In Section II
the DE algorithm is briefly described, while in Section III
its exploration and exploitation capabilities are analyzed.
In Section IV we propose a hybrid Differential Evolution
Algorithm, while in Section V, we present a self-balancing
mutation scheme. Section VI is devoted to the presentation
and the discussion of the experimental results. The paper
ends with concluding remarks and some pointers for future
work.

II. THE DIFFERENTIAL EVOLUTION ALGORITHM

Differential Evolution [2] has been designed as a stochastic
parallel direct search method, which utilizes concepts bor-
rowed from the broad class of EAs. The method typically
requires few, easily chosen, control parameters. Experimental
results have shown that DE has good convergence properties
and outperforms other well known EAs [2], [4], [7].

More specifically, DE is a population–based stochastic
algorithm that exploits a population of potential solutions, in-
dividuals, to effectively probe the search space. The popula-
tion of individuals is randomly initialized in the optimization
domain with NP, n–dimensional, vectors following a uniform
probability distribution. Individuals evolve over successive
iterations to explore the search space and locate the minima
of the objective function. Throughout the execution process,
the population size, NP, is fixed. At each iteration, called
generation, new vectors are derived by the combination of

randomly chosen vectors from the current population. This
operation in our context can be referred to as mutation, while
the outcoming vectors as mutant individuals. Each mutant
individual is then mixed with another, predetermined, vector
– the target vector – through an operation called recombina-
tion. This operation yields the so–called trial vector. Finally,
the trial vector undergoes the selection operator, according
to which it is accepted as a member of the population of the
next generation only if it yields a reduction in the value of
the objective function f relative to that of the target vector.
Otherwise, target vector is retained in the next generation.

The search operators efficiently shuffle information among
the individuals, enabling the search for an optimum to focus
on the most promising regions of the solution space. Next,
we briefly describe the search operators that were considered
in this paper.

A. Original Mutation Operators

Here we describe the original mutation operators proposed
in [2]. Specifically, for each individual xi

g , i = 1, 2, . . . ,
NP, where g denotes the current generation, the mutant
individual vi

m,g+1 is generated according to one of the
following equations:

vi
1,g+1 = xbest

g + F (xr1
g − xr2

g), (1)

vi
2,g+1 = xr1

g + F (xr2
g − xr3

g), (2)

vi
3,g+1 = xi

g + F (xbest
g − xi

g) + F (xr1
g − xr2

g), (3)

vi
4,g+1 = xbest

g + F (xr1
g − xr2

g) + F (xr3
g − xr4

g), (4)

vi
5,g+1 = xr1

g + F (xr2
g − xr3

g) + F (xr4
g − xr5

g), (5)

where m = 1, 2, . . . , 5 denotes the mutation operator ap-
plied, xbest

g is the best member of the previous generation,
r1, r2, r3, r4, r5 ∈ {1, 2, . . . , i− 1, i+ 1, . . . ,NP}, are ran-
dom integers mutually different and not equal to the running
index i, and F > 0 is a real parameter, called mutation
constant. The mutation constant, controls the amplification
of the difference between two individuals, and is used to
prevent the risk of stagnation, of the search process.

Trying to rationalize the above equations, we observe that
Eq. (2) is similar to the crossover operator employed by
some Genetic Algorithms; while Eq. (1) is derived from
Eq. (2), by substituting the best member of the previous
generation, xbest

g , for the random individual xr1
g . Eqs. (3),

(4) and (5) are modifications obtained by the combination
of Eqs (1) and (2). It is clear that more mutation operators
can be generated using the above ones as building blocks,
such as the trigonometric mutation operator [8] and recently
proposed genetically programmed mutation operators [9].

For the rest of the paper, we call DE1, DE2, . . . , DE5

the DE algorithm that uses Eq. (1), Eq. (2), . . . , Eq. (5) as
the mutation operator, respectively.

B. Recombination and Selection Operators

Having performed mutation, the recombination operator is
subsequently applied to further increase the diversity of the
population. To this end, the mutant individuals are combined

with other predetermined individuals, called the target indi-
viduals. Specifically, for each component l (l = 1, 2, . . . , n)
of the mutant individual vi

m,g+1, we randomly choose a real
number r in the interval [0, 1]. Then, we compare this number
with the recombination constant, CR. If r � CR, then we
select, as the l–th component of the trial individual ui

g+1, the
l–th component of the mutant individual vi

m,g+1. Otherwise,
the l–th component of the target vector xi

g becomes the l–th
component of the trial vector. This operation yields the trial
individual.

Finally, the trial individual is accepted for the next gen-
eration only if it reduces the value of the objective function
(selection operator).

III. DE EXPLORATION VS. EXPLOITATION

An issue when applying EAs is to determine a set of
control parameters that balances the exploration and the
exploitation capabilities of the given algorithm. There is
always a trade off between the efficient exploration of the
search space and its effective exploitation. In extreme cases,
inadequate choice of the parameter values can hinder the
algorithm’s ability to locate the optimum. For example, if the
mutation rate is too high, much of the space will be explored,
but there is a high probability of losing promising solutions;
the algorithm has difficulty to converge to an optimum due
to insufficient exploitation.

Recently, the exploration and exploitation capabilities of
different mutation strategies were studied. Following the
methodology presented in [10], we show that not all DE
search operators have the same impact on the exploration
of the search space. Thus, the choice of the most efficient
mutation operator and/or optimal parameter values can be
troublesome. To illustrate this we utilize the following simple
multimodal 2–dimensional function:

f(x1, x2) = sin(x1)2 + sin(x2)2,

where (x1, x2) ∈ R
2. This function has an infinite number of

global minimizers in R
2, with function value equal to zero,

at the points (κπ, λπ), where κ, λ ∈ Z. Restricted in the
hypercube [−5, 5]2 the function f has 9 global minimizers.
In Figure 1 a surface plot of the function f is exhibited.

The original DE variants described above are applied to
compute a global minimizer of the objective function f .
Experimental results indicate that DE1 exhibits very fast
convergence to one of the global minima of f . On the
contrary, DE2 explores a large portion of the search space
before converging to a solution. This fact is illustrated
in Figures 2 and 3, where (for visualization purposes) a
population consisting of 1000 individuals is plotted after 1,
5, 10, 20 generations of DE1 and DE2, respectively.

A closer look at Equations (1) and (2) reveals that DE1

uses the best individual as a starting point for the computation
of the mutant vector, thus constantly pushing the population
closer to the location of the best computed point. On the
other hand, since DE2 utilizes three randomly chosen indi-
viduals for the computation of the mutant one, its exploration

capability is greatly enhanced. However, it exhibits lower
convergence speed.

The performance of algorithms DE3 and DE4 resembles
that of DE1, due to the use of the best individual. However,
DE3 and DE4 exhibited better exploration than DE1, since
they also incorporate randomly selected individuals. Algo-
rithm DE5 uses only randomly selected individuals resulting
in maximum exploration and the individuals of its population
are simultaneously attracted by more than one minimizers.

IV. THE BALANCED DIFFERENTIAL EVOLUTION

ALGORITHM

In the previous section we have shown that some DE
mutation operators favor the exploration over the exploitation
of the search space (and vice versa). Here, we propose a hy-
brid approach that combines an explorative and an exploitive
mutation operator, in an attempt to balance their effect. The
new operator is a linear combination of an explorative and an
exploitive operator. More specifically, the mutant individual
wi

g+1 is generated using the following equation:

wi
g+1 = ξ · (vi

a,g+1) + (1 − ξ) · (vi
b,g+1), (6)

where ξ ∈ [0, 1] determines the influence of the explo-
rative over the exploitive mutation operator, a denotes the
explorative operator (vi

a,g+1), while b denotes the exploitive
mutation operator. For ξ = 1, Eq. (6) is equivalent to the
explorative operator. Similarly, for ξ = 0, Eq. (6) is equal
to the exploitive operator. For all the intermediate values of
ξ, the resulting operator combines the exploration and the
exploitation operators. Notice that the above combination
has shown promising results to other stochastic optimization
methods, such as the Particle Swarm Optimization (PSO)
algorithm, resulting the Unified PSO (UPSO) [11], [12],
[13], [14], and a UPSO-based variant of DE that utilizes
the concept of the local neighborhood of each population
vector [15].

The above approach creates new classes of DE algorithms
that depend on the selection of the explorative and exploitive
mutation operators. For example, one can choose DE2 or

-4
-2

0

2

4
-4

-2

0

2

4

0

0.5

1

1.5

2

-4
-2

0

2

4

Fig. 1. 3–D Plot of the sin(x1)2 + sin(x2)2 function

-4

-2

 0

 2

 4

-4 -2 0 2 4

-4

-2

 0

 2

 4

-4 -2 0 2 4

-4-2

 0

 2

 4

-4

-2

 0 2 4

-4-2 0 2 4-4-2 0 2 4Fig. 2.DE1population after 1, 5, 10, and 20 generations-4-2 0 2 4-4-2 0 2 4-4-2 0 2 4-4-2 0 2 4

where g is the current generation, ρ ∈ [0, 1] is a random
number from the uniform distribution, and c is the noise
decay constant. In our experiments c had a value equal to the
one tenth of the maximum allowed number of generations.
Furthermore, to restrict the values of ξ in the range [0, 1], if
ξ > 1 we assign ξ = 1; similarly if ξ < 0 we assign ξ = 0.

The values of ξ computed using Eq. (7) initially favor
exploration. In order to favor exploitation during the first
phase of the optimization process, we compute the value of
ξ using Eq. (8). Finally, Eq. (9) is the average of the two
previous cases and balances their effects. In Figure 4 we
plot the values of ξ1, ξ2, and ξ3 to exhibit their behavior
(the maximum allowed generation number used to plot this
figure is 1000). Notice that the values of ξ approach zero,
when the number of generations exceeds the half of the
maximum allowed generation number. During that phase of
optimization only the exploitation operator is used in an
attempt to help the DE algorithm to converge.

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

Number of Generations

V
al

ue
 o

f ξ
1

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

Number of Generations

V
al

ue
 o

f ξ
2

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

Number of Generations

V
al

ue
 o

f ξ
3

Fig. 4. Plot of the values of ξ1 (Top), ξ2 (Middle), and ξ3 (Bottom)

VI. EXPERIMENTAL RESULTS

We implemented and tested the proposed hybrid DE
algorithm and the self-balancing mutation scheme on a large
number of optimization benchmarks. In this study we report
experimental results from eight well–known minimization
test functions.

The computational experiments were performed utilizing
a DE interface developed in C++, using GNU compiler
collection (gcc) version 3.4.6 on a Debian GNU Linux
operating system. For each test function and each mutation
operator, we have conducted 1000 independent runs and have
used the fixed values of F = 0.5 and CR = 0.7 as the DE
mutation and crossover constants respectively. Furthermore,
in Table I the parameter setup used in the numerical ex-
periments conducted is summarized. Specifically, D denotes
the dimensionality of the problem, NP stands for the size
of the population used for each function, while MaxGen
is the maximum number of generations allowed. The noise

decay constant of the self-balancing scheme had the value
c = 10/MaxGen.

No Test function D NP MaxGen
1 Sphere function 5 30 1000
2 Rosenbrock’s saddle 2 30 1000
3 Step function 5 20 1000
4 Quartic function 30 100 2000
5 Shekel’s foxholes 2 30 1000
6 Corana’s parabola 4 15 2000
7 Griewangk’s function 10 50 10000
8 Levy No.5 function 2 40 1000

TABLE I

PARAMETER SETUP VALUES

Next, we will briefly report the benchmark optimization
functions used along with their global minima and minimiz-
ers in the search space.

A. Test Functions

More information about the eight test functions selected,
appear in [2], [18], [19], [20], [21], [22].

1) Sphere:

f1(x) =
5∑

j=1

x2
j , xj ∈ [−5.12, 5.12]. (10)

The sphere test function is a considered to be a simple
minimization problem. The minimum is f∗

1 (0, . . . , 0) = 0.
2) Rosenbrock’s Saddle:

f2(x) = 100 · (x2
1 − x2)2 + (1 − x1)2, (11)

xj ∈ [−2.048, 2.048].

This is a two–dimensional test function, which is known to be
relatively difficult to minimize. The minimum is f∗

2 (1, 1) =
0.

3) Step Function:

f3(x) = 30 +
5∑

j=1

�xj�, xj ∈ [−5.12, 5.12]. (12)

The minimum of this function is f∗
3 (−5−ξ, . . . ,−5−ξ) = 0,

where ξ ∈ [0, 0.12]. This function exhibits many flat regions
that can cause search stagnation.

4) Quartic Function:

f4(x) =
30∑

j=1

(
j · x4

j + η
)
, (13)

where xj ∈ [−1.28, 1.28]. This is test function is designed to
evaluate the behavior of minimization algorithms in the pres-
ence of noise. To this end, η is a random variable following
the uniform distribution in the range [0, 1]. The inclusion of η
makes f4 more difficult to optimize. The functional minimum
of the function is f∗

4 (0, . . . , 0) � 30 ·E[η] = 15, where E[η]
is the expectation of η.

5) Shekel’s Foxholes:

f5(x) =
1

0.002 + ψ1(x)
, xj ∈ [−65.536, 65.536], (14)

where, ψ1(x) =
∑24

i=0
1

1+i+
P2

j=1(xj−aij)6
. The parameters

for this function are:

ai1 = {−32,−16, 0, 16, 32}, where

i = {0, 1, 2, 3, 4} and ai1 = aimod 5,1

ai2 = {−32,−16, 0, 16, 32},where

i = {0, 5, 10, 15, 20} and

ai2 = ai+k,2, k = {1, 2, 3, 4}.
The global minimum of f∗

5 (−32,−32) = 0.998004.
6) Corana Parabola:

f6(x) =
4∑

j=1

{
ψ2(xj), if |xj − zj | < 0.05,
ψ3(xj), otherwise.

(15)

where ψ2(xj) = 0.15 (zj − 0.05sign(zj))
2
dj , ψ3(xj) =

djx
2
j , zj = �5|xj | + 0.49999�sign(xj)0.2 and dj =

{1, 1000, 10, 100}. The function is characterized by a mul-
titude of local minima, increasing in depth as one moves
closer to the origin. The global minimum of the function is
f∗
6 (x) = 0, for x∗j ∈ (−0.05, 0.05).

7) Griewangk’s Function:

f7(x) =
10∑

j=1

x2
j

4000
−

10∏
j=1

cos
(
xj√
j

)
+ 1, (16)

xj ∈ [−400, 400].

This test function is riddled with local minima. The global
minimum of the function is f∗

7 (0, . . . , 0) = 0.
8) Levy No.5 Function:

f8(x) = σ1σ2 + (x1 + 1.42513)2 + (x2 + 0.80032)2, (17)

where xi ∈ [−10, 10], i = 1, 2, and σ1 and σ2 are given by:

σ1 =
5∑

i=1

[
i cos

(
(i− 1)x1 + i

)]
,

σ2 =
5∑

j=1

[
j cos

(
(j + 1)x2 + j

)]
.

There exist about 760 local minima and one global mini-
mum with function value f∗

8 (x) = −176.1375, located at
x∗ = (1.3068, 1.4248). The large number of local optimiz-
ers makes it difficult for any method to locate the global
minimizer.

B. Presentation of the Results

We have conducted two independent sets of experiments.
During the first set we tested the hybrid mutation operators.
Next, the self-balancing scheme was extensively studied.

To test the proposed hybrid mutation operator two different
classes of methods were studied. More specifically, we used
DE2 as the explorative and DE1 as the exploitive component

(vi
a,g+1 and vi

b,g+1, respectively) of the new hybrid mutation
operator. We call this class of DE algorithms DE2,1 and we
conducted extensive experiments for different values of ξ.
Similarly, we define as DE5,4 the hybrid mutation operator
that incorporates DE5 and DE4.

Mutation Total
Strategy ξ Min Mean Max St.D. Success Generations EFE
DE1 - 48 74.65 184 14.92 61.3 819760 18.27
DE2 - 81 139.57 194 13.83 98.8 161899 21.19
DE3 - 83 119.62 286 15.93 95.3 207996 18.83
DE4 - 85 120.61 172 12.54 96.5 186388 18.75
DE5 - 142 197.89 262 18.61 100 197891 29.68

1.0 85 138.59 228 13.99 99.6 146036 20.87
0.9 71 114.67 242 12.91 97.9 154262 17.57
0.8 67 96.11 170 11.29 91.1 265557 15.83
0.7 54 82.15 146 10.83 68.8 680518 17.91
0.6 46 70.94 170 10.93 44.9 1133853 23.7

DE2,1 0.5 43 64.33 132 11.76 28.9 1440590 33.39
0.4 45 63.02 235 18.81 19.7 1618414 47.98
0.3 40 60.48 195 15.45 21 1592700 43.2
0.2 42 65.82 221 19.54 29.7 1425548 33.24
0.1 42 70.32 186 17.48 48.8 1058316 21.61
0.0 46 74.15 148 13.65 67.1 707753 16.58
1.0 141 197.34 306 19.44 100 197342 29.6
0.9 101 160.52 208 15.37 99.8 164194 24.13
0.8 91 131.07 167 12.17 99.6 138547 19.74
0.7 74 108.93 312 13.39 99.3 122170 16.46
0.6 67 94.93 164 10.95 96 171130 14.83

DE5,4 0.5 57 86 236 11.86 91.6 246775 14.08
0.4 52 83.23 197 13.41 86.9 334331 14.37
0.3 57 83.84 212 11.72 89.6 283118 14.04
0.2 58 89.2 150 10.61 90.3 274545 14.82
0.1 61 100.63 158 11.81 95.2 191802 15.86
0.0 79 120.59 191 13.35 97 176970 18.65

TABLE II

COMPARATIVE RESULTS FOR THE CORANA TEST FUNCTION, FOR

DIFFERENT VALUES OF ξ

We performed 1000 independent runs for each algorithm
and each problem. Here, due to space limitations we report
results from three test problems. Tables II, III, and IV exhibit
the results for the DE2,1 and DE5,4 algorithms on the
Corana, Quartic, and Levy No.5 test functions respectively.
The following notation is used in the Tables: Min indicates
the minimum number of generations for the experiments that
reached a solution; Max is the maximum number of genera-
tions; Mean is the average generation number and St.D. is
the standard deviation; Success is percentage of experiments
that reached a solution. Next, TotalGenerations indicates
the total number of generation for all 1000 experiments,
including the generations when an algorithm fails to locate
an optimum of the objective function. Note that this number
depends on the maximum number of generations allowed
for each experiment. Finally, the last column, presents the
expected number of function evaluations (EFE) [23], which
is defined as:

EFE =
(NP) · (Mean)

(Success)
.

The experimental results on the 8 test functions indicate
that the hybrid mutation operators outperform the other DE

Mutation Total
Strategy ξ Min Mean Max St.D. Success Generations EFE
DE1 - 42 75.48 124 10.59 100 75481 75.48
DE2 - 71 126.68 182 17.88 100 126678 126.68
DE3 - 35 73.43 106 10.12 100 73430 73.43
DE4 - 69 125.01 198 19.07 100 125005 125.01
DE5 - 94 178.78 274 26.45 100 178779 178.78

1.0 65 127.3 185 17.85 100 127297 127.3
0.9 56 94.53 136 12.58 100 94526 94.53
0.8 41 72.25 99 8.94 100 72246 72.25
0.7 28 57.08 78 7.07 100 57079 57.08
0.6 23 47.36 64 5.98 100 47355 47.36

DE2,1 0.5 23 42.21 60 5.61 100 42205 42.21
0.4 22 41.07 58 5.58 100 41066 41.07
0.3 25 42.78 61 6.02 100 42776 42.78
0.2 29 48.94 68 6.73 100 48943 48.94
0.1 30 58.47 83 8.13 100 58474 58.47
0.0 36 74.71 109 10.42 100 74714 74.71
1.0 93 179.82 261 26.26 100 179822 179.82
0.9 73 136.31 196 19.05 100 136308 136.31
0.8 61 103.39 146 13.59 100 103391 103.39
0.7 47 80.82 111 10.17 100 80819 80.82
0.6 40 67.49 99 8.51 100 67490 67.49

DE5,4 0.5 32 60.4 91 7.8 100 60400 60.4
0.4 38 59.81 84 7.41 100 59809 59.81
0.3 34 64.84 94 9.05 100 64835 64.84
0.2 41 76.5 111 10.63 100 76495 76.5
0.1 55 95.25 136 13.43 100 95249 95.25
0.0 64 125 192 18.41 100 125003 125

TABLE III

COMPARATIVE RESULTS FOR THE QUARTIC TEST FUNCTION, FOR

DIFFERENT VALUES OF ξ

mutation operators for some values of ξ (in bold). However,
these values may differ for each optimization problem.

During the second set of experiments we studied the self-
balancing schemes. To this end, 1000 independent runs were
performed for each scheme and each problem. Tables V–
XII summarize the results (in bold are the best performing
algorithms). We denote DE2,1,ξ1 , DE2,1,ξ2 , and DE2,1,ξ3 the
hybrid algorithm that uses the ξ1, ξ2, and ξ3 self-balancing
schemes, respectively. Similarly we define the DE5,4,ξ1 ,
DE5,4,ξ2 , and DE5,4,ξ3 algorithms. It is evident that the
proposed self-balancing schemes exhibit excellent success
rates and, in general, are among the most efficient algorithms
of this study. The most promising self-balancing schemes are
ξ1 and ξ3. To this end, for an unknown optimization problem
the application of the self-balancing mutation schemes is
highly recommended.

VII. CONCLUSIONS

In this study we proposed a hybrid Differential Evolution
mutation operator that is a linear combination of two other
mutation operators (an explorative and an exploitive operator)
in an attempt to balance their effects. The new operator
depends on the user-defined parameter ξ. To alleviate the
problem of selecting a proper value of ξ for each problem,
we proposed a self-balancing mutation scheme. This scheme
favors the exploration of the search space during the first
phase of the optimization, while later, opts for the exploita-
tion to aid convergence to the optimum.

Mutation Total
Strategy ξ Min Mean Max St.D. Success Generations EFE
DE1 - 18 33.07 56 5.4 57.5 444018 23.01
DE2 - 38 75.05 110 9.68 99.8 76900 30.08
DE3 - 46 82.67 579 31.79 96.9 111105 34.12
DE4 - 43 69.1 148 16.32 91.3 150084 30.27
DE5 - 73 119.32 207 19.65 100 119319 47.73

1.0 48 76.38 110 9.76 100 76375 30.55
0.9 41 65.28 106 8.62 99.9 66214 26.14
0.8 38 56.42 101 7.7 99.9 57359 22.59
0.7 30 49.92 109 8.66 99.7 52771 20.03
0.6 27 44.7 108 9.47 95 92469 18.82

DE2,1 0.5 24 39.67 142 10.27 86.7 167394 18.3
0.4 20 36.86 128 10.35 76.1 267047 19.37
0.3 21 33.95 107 9.13 66.4 358540 20.45
0.2 17 32.47 93 8.72 61.7 403036 21.05
0.1 20 31.85 74 7.16 58.9 429758 21.63
0.0 20 33.02 54 5.16 58.5 434318 22.58
1.0 70 119.36 188 19.12 100 119362 47.74
0.9 63 101.6 186 17.61 100 101596 40.64
0.8 50 84.17 219 14.42 100 84169 33.67
0.7 45 71.58 162 12.96 100 71583 28.63
0.6 38 64.62 222 14.02 99.9 65553 25.87

DE5,4 0.5 35 60.4 214 18.3 96.7 91403 24.98
0.4 34 58.23 201 19.15 92.1 132634 25.29
0.3 33 57.43 246 19.79 87.8 172424 26.16
0.2 33 59.05 335 23.55 85.7 193610 27.56
0.1 32 65.17 241 22.02 87.9 178288 29.66
0.0 42 69.17 176 17 89.9 163182 30.78

TABLE IV

COMPARATIVE RESULTS FOR THE LEVY NO.5 TEST FUNCTION, FOR

DIFFERENT VALUES OF ξ

Extensive experimental results indicate that the proposed
approaches enhance DE’s ability to accurately locate so-
lutions in the search space. The use of the self-balancing
mutation scheme can lead to reliable optimization of un-
known objective function, since it alleviates problems gener-
ated by poor selection of the user–defined parameters, such
as decreased rate of convergence, or even divergence and
premature saturation. Thus, with the application of the self-
balancing mutation scheme locating optima becomes feasible
on a first–time basis for a given unknown problem.

However, exhaustive experimental results and comparisons
are needed. In a future communication we intend to study
more hybrid mutation operators that are combinations of
different (original and recently proposed) DE operators.
Additionally, we will investigate the parallel implementation
of the proposed approaches, as well as their performance
on difficult high–dimensional real–life problems encountered
in bioinformatics, medical applications and neural network
training.

REFERENCES

[1] T. Baeck, D. B. Fogel, and Z. Michalewicz, Eds., Handbook of
Evolutionary Computation. Oxford University Press, 1997.

[2] R. Storn and K. Price, “Differential evolution – a simple and efficient
adaptive scheme for global optimization over continuous spaces,”
Journal of Global Optimization, vol. 11, pp. 341–359, 1997.

[3] K. Price, R. M. Storn, and J. A. Lampinen, Differential Evolution:
A Practical Approach to Global Optimization (Natural Computing
Series). Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2005.

Mutation Total
Strategy Min Mean Max St.D. Success Generations EFE
DE1 18 33.07 56 5.4 57.5 444018 23.01
DE2 38 75.05 110 9.68 99.8 76900 30.08
DE3 46 82.67 579 31.79 96.9 111105 34.12
DE4 43 69.1 148 16.32 91.3 150084 30.27
DE5 73 119.32 207 19.65 100 119319 47.73

DE2,1,ξ1 60 81.64 121 8.83 100 81636 32.65
DE2,1,ξ2 25 40.84 106 9.35 92 117569 17.75
DE2,1,ξ3 37 54.84 114 7.21 100 54835 21.93
DE5,4,ξ1 78 119.28 199 18.97 100 119279 47.71
DE5,4,ξ2 22 63.16 155 14.95 99.4 68781 25.42
DE5,4,ξ3 43 78.55 146 11.67 100 78546 31.42

TABLE V

COMPARATIVE RESULTS FOR THE LEVY NO.5 TEST FUNCTION, FOR ξ1 ,

ξ2 , AND ξ3 SELF-BALANCING SCHEMES

Mutation Total
Strategy Min Mean Max St.D. Success Generations EFE
DE1 42 75.48 124 10.59 100 75481 75.48
DE2 71 126.68 182 17.88 100 126678 126.68
DE3 35 73.43 106 10.12 100 73430 73.43
DE4 69 125.01 198 19.07 100 125005 125.01
DE5 94 178.78 274 26.45 100 178779 178.78

DE2,1,ξ1 84 130.75 159 11.26 100 130745 130.75
DE2,1,ξ2 34 51.71 71 6.54 100 51713 51.71
DE2,1,ξ3 43 71.71 94 8.36 100 71712 71.71
DE5,4,ξ1 78 160.28 196 13.51 100 160278 160.28
DE5,4,ξ2 34 75.51 105 9.99 100 75514 75.51
DE5,4,ξ3 55 96.13 128 10.52 100 96126 96.13

TABLE VI

COMPARATIVE RESULTS FOR THE QUARTIC TEST FUNCTION, FOR ξ1 , ξ2 ,

AND ξ3 SELF-BALANCING SCHEMES

Mutation Total
Strategy Min Mean Max St.D. Success Generations EFE
DE1 207 363.2 592 83.94 7.5 9277240 2421.33
DE2 566 835.95 1140 97.3 100 835950 417.98
DE3 486 1087.56 5673 400.07 91.6 1836208 593.65
DE4 594 1044.77 1520 145.61 91.8 1779100 569.05
DE5 1190 1713.58 2165 149.06 100 1713577 856.79

DE2,1,ξ1 869 1692.45 2788 309.47 99.9 1700756 847.07
DE2,1,ξ2 193 519.17 1313 196 25.3 7601350 1026.03
DE2,1,ξ3 359 870.22 2043 244.27 97.9 1061942 444.44
DE5,4,ξ1 2880 4315.46 5138 306.76 100 4315461 2157.73
DE5,4,ξ2 541 1763.28 2839 383.48 94.7 2199830 930.98
DE5,4,ξ3 1300 3156.25 4482 557.73 100 3156247 1578.12

TABLE VII

COMPARATIVE RESULTS FOR THE GRIEWANGK TEST FUNCTION, FOR ξ1 ,

ξ2 , AND ξ3 SELF-BALANCING SCHEMES

Mutation Total
Strategy Min Mean Max St.D. Success Generations EFE
DE1 48 74.65 184 14.92 61.3 819760 18.27
DE2 81 139.57 194 13.83 98.8 161899 21.19
DE3 83 119.62 286 15.93 95.3 207996 18.83
DE4 85 120.61 172 12.54 96.5 186388 18.75
DE5 142 197.89 262 18.61 100 197891 29.68

DE2,1,ξ1 111 143.17 188 9.75 98.3 174733 21.85
DE2,1,ξ2 41 70.41 176 14.49 54 958024 19.56
DE2,1,ξ3 66 92.65 561 18.2 86.5 350138 16.07
DE5,4,ξ1 142 179.01 222 11.15 99.9 180827 26.88
DE5,4,ξ2 63 95.34 185 10.31 96.5 162006 14.82
DE5,4,ξ3 85 119.5 149 9.41 98.7 143946 18.16

TABLE VIII

COMPARATIVE RESULTS FOR THE CORANA TEST FUNCTION, FOR ξ1 , ξ2 ,

AND ξ3 SELF-BALANCING SCHEMES

Mutation Total
Strategy Min Mean Max St.D. Success Generations EFE
DE1 5 22.77 43 5.4 63.6 378481 10.74
DE2 6 62.07 99 11.01 98.8 73329 18.85
DE3 5 40.16 431 15.71 91.6 120790 13.15
DE4 8 48.46 87 9.69 99.1 57021 14.67
DE5 3 88.74 129 15.11 100 88740 26.62

DE2,1,ξ1 4 99 163 19.85 99.2 106210 29.94
DE2,1,ξ2 9 50.18 111 16.3 56.4 464301 26.69
DE2,1,ξ3 16 82.08 138 17.55 84.3 226190 29.21
DE5,4,ξ1 11 143.83 227 27 100 143831 43.15
DE5,4,ξ2 26 86.75 154 20.73 97.5 109582 26.69
DE5,4,ξ3 1 116.59 197 24.65 99.4 121894 35.19

TABLE IX

COMPARATIVE RESULTS FOR THE SHEKEL TEST FUNCTION, FOR ξ1 , ξ2 ,

AND ξ3 SELF-BALANCING SCHEMES

Mutation Total
Strategy Min Mean Max St.D. Success Generations EFE
DE1 0 6.56 27 3.28 94.1 65171 1.39
DE2 6 21.89 105 6.72 100 21885 4.38
DE3 1 24 119 11.49 65.4 361697 7.34
DE4 0 6.14 22 3.33 99.8 8124 1.23
DE5 2 18.81 41 6.16 100 18814 3.76

DE2,1,ξ1 2 19.49 43 6.12 100 19493 3.9
DE2,1,ξ2 1 15.16 35 5.91 46.2 545003 6.56
DE2,1,ξ3 3 23.61 54 7.07 88.6 134919 5.33
DE5,4,ξ1 1 17.5 39 6.12 100 17503 3.5
DE5,4,ξ2 0 14.44 36 5.95 96.4 49918 3
DE5,4,ξ3 3 19.63 44 6.51 99.9 20614 3.93

TABLE X

COMPARATIVE RESULTS FOR THE STEP TEST FUNCTION, FOR ξ1 , ξ2 ,

AND ξ3 SELF-BALANCING SCHEMES

Mutation Total
Strategy Min Mean Max St.D. Success Generations EFE
DE1 9 25.55 54 3.81 100 25546 7.66
DE2 27 63.51 243 16.58 98.4 78489 19.36
DE3 27 57.13 127 10.36 100 57128 17.14
DE4 9 45.85 75 6 100 45850 13.76
DE5 51 87.53 127 12.05 100 87532 26.26

DE2,1,ξ1 41 72.4 431 39.36 100 72403 21.72
DE2,1,ξ2 18 31.68 73 7.13 100 31679 9.5
DE2,1,ξ3 28 63.99 409 66.3 100 63994 19.2
DE5,4,ξ1 42 86.88 115 8.62 100 86883 26.06
DE5,4,ξ2 24 43.35 69 5.88 100 43347 13
DE5,4,ξ3 33 58.46 89 7.37 100 58462 17.54

TABLE XI

COMPARATIVE RESULTS FOR THE ROSENBROCK TEST FUNCTION, FOR

ξ1 , ξ2 , AND ξ3 SELF-BALANCING SCHEMES

[4] R. Storn, “System design by constraint adaptation and differential
evolution,” IEEE Transactions on Evolutionary Computation, vol. 3,
pp. 22–34, 1999.

[5] V. P. Plagianakos and M. N. Vrahatis, “Neural network training
with constrained integer weights,” in IEEE Congress of Evolutionary
Computation (CEC’99), P. Angeline, Z. Michalewicz, M. Schoenauer,
X. Yao, and A. Zalzala, Eds. Washington D.C., U.S.A.: IEEE Press,
1999, pp. 2007–2013.

[6] ——, “Parallel evolutionary training algorithms for ‘hardware–
friendly’ neural networks,” Natural Computing, vol. 1, pp. 307–322,
2002.

[7] J. Vesterstrom and R. Thomsen, “A comparative study of differential
evolution, particle swarm optimization, and evolutionary algorithms on
numerical benchmark problems,” in IEEE Congress on Evolutionary
Computation (CEC 2004), vol. 2, 2004, pp. 1980–1987.

[8] H. Y. Fan and J. Lampinen, “A trigonometric mutation operation to
differential evolution,” Journal of Global Optimization, vol. 27, pp.
105–129, 2003.

[9] N. G. Pavlidis, D. K. Tasoulis, V. P. Plagianakos, and M. N. Vrahatis,
“Human designed vs. genetically programmed differential evolution
operators,” in IEEE Congress on Evolutionary Computation (CEC
2006), 2006, pp. 1880–1886.

[10] D. K. Tasoulis, V. P. Plagianakos, and M. N. Vrahatis, “Clustering
in evolutionary algorithms to efficiently compute simultaneously local
and global minima,” in IEEE Congress on Evolutionary Computation
(CEC 2005), vol. 2, Sept 2005, pp. 1847–1854.

[11] K. E. Parsopoulos and M. N. Vrahatis, “UPSO: A unified particle
swarm optimization scheme,” in Lecture Series on Computer and
Computational Sciences, Proceedings of the International Conference
of ”Computational Methods in Sciences and Engineering” (ICCMSE
2004), vol. 1, 2004, pp. 868–873.

Mutation Total
Strategy Min Mean Max St.D. Success Generations EFE
DE1 41 51.9 64 3.54 100 51902 15.57
DE2 88 115.68 138 7 100 115680 34.7
DE3 61 75.77 87 4.17 100 75770 22.73
DE4 71 90.11 106 5.38 100 90114 27.03
DE5 107 156.28 186 9.22 100 156282 46.88

DE2,1,ξ1 84 99.47 112 3.88 100 99470 29.84
DE2,1,ξ2 40 50.6 60 3.29 100 50598 15.18
DE2,1,ξ3 56 68.07 101 3.8 100 68072 20.42
DE5,4,ξ1 106 119.12 133 4.42 100 119120 35.74
DE5,4,ξ2 54 71.61 83 4.31 100 71612 21.48
DE5,4,ξ3 72 85.69 98 4.28 100 85694 25.71

TABLE XII

COMPARATIVE RESULTS FOR THE SPHERE TEST FUNCTION, FOR ξ1 , ξ2 ,

AND ξ3 SELF-BALANCING SCHEMES

[12] ——, “Unified particle swarm optimization for tackling operations
research problems,” in IEEE 2005 Swarm Intelligence Symposium (SIS
2005), Pasadena (CA), USA, 2005, pp. 53–59.

[13] ——, “Unified particle swarm optimization in dynamic environments,”
Lecture Notes in Computer Science (LNCS), vol. 3449, pp. 590–599,
2005.

[14] ——, “Parameter selection and adaptation in unified particle swarm
optimization,” Mathematical and Computer Modelling, vol. 46, no.
1-2, pp. 198–213, 2007.

[15] U. K. Chakraborty, S. Das, and A. Konar, “Differential evolution with
local neighborhood,” in IEEE Congress on Evolutionary Computation
(CEC 2006), 2006, pp. 2042–2049.

[16] S. Kirkpatrick, C. D. G. Jr., and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, pp. 671–680, 1983.

[17] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and
E. Teller, “Equation of state calculations by fast computing machines,”
The Journal of Chemical Physics, vol. 21, no. 6, pp. 1087–1092, 1953.

[18] A. Corana, M. Marchesi, C. Martini, and S. Ridella, “Minimizing
multimodal functions of continuous variables with the “simulated
annealing” algorithm,” ACM Transactions Mathematical Software,
vol. 13, no. 3, pp. 262–280, 1987.

[19] K. D. Jong, “An analysis of the behavior of a class of genetic adaptive
systems,” Ph.D. dissertation, University of Michigan, 1975.

[20] A. O. Griewank, “Generalized descent for global optimization,” Jour-
nal of optimization theory and applications, vol. 34, no. 1, pp. 11–39,
1981.

[21] A. Levy, A. Montalvo, S. Gomez, and A. Galderon, Topics in Global
Optimization. Springer-Verlag, New York, 1981.

[22] D. K. Tasoulis, N. G. Pavlidis, V. P. Plagianakos, and M. N. Vrahatis,
“Parallel differential evolution,” in IEEE Congress on Evolutionary
Computation (CEC 2004), vol. 2, June 2004, pp. 2023–2029.

[23] I. C. Trelea, “The particle swarm optimization algorithm: convergence
analysis and parameter selection,” Information Processing Letters,
vol. 85, no. 6, pp. 317–325, 2003.

