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Abstract—Handling multimodal functions is a very important
and challenging task in evolutionary computation community,
since most of the real-world applications exhibit highly multi-
modal landscapes. Motivated by the dynamics and the proximity
characteristics of Differential Evolution’s mutation str ategies
tending to distribute the individuals of the population to the
vicinity of the problem’s minima, we introduce two new Differ-
ential Evolution mutation strategies. The new mutation strategies
incorporate spatial information about the neighborhood of each
potential solution and exhibit a niching formation, without
incorporating any additional parameter. Experimental results
on eight well known multimodal functions and comparisons
with some state-of-the-art algorithms indicate that the proposed
mutation strategies are competitive and very promising, since
they are able to reliably locate and maintain many global optima
throughout the evolution process.

I. I NTRODUCTION

Evolutionary Algorithms (EAs) are nature inspired stochas-
tic search methods. They are based on the common concept
of evolving a population of candidate solutions by simulating
the main processes involved in the evolution of the genetic
material of organism populations, such as natural selection
and biological evolution. EAs can be characterized as global
optimization algorithms and their population-based nature
provides them with the ability to avoid being trapped in a local
optimum; consequently a greater chance to find global optimal
solutions exists. In many cases, EAs tend to converge to a
single optimum solution, which drives the population to slowly
lose its diversity through the evolution stages. Nevertheless,
most hard real-world problems are considered to be highly
multimodal problems. They are likely to have several global
and/or local minima, and in many cases it is desirable to
accurately locate as many as possible.

To this end, EAs have been extended through the concept of
the niche formation. Niche formation is a common biological
phenomenon [1]. A niche can be characterized as a subspace in
the environment that can support different types of life. Niches
could aid the differentiation of the species and thus maintain
their diversity, by imposing reproduction restrictions. Many
natural environments can lead to niche formation, for example,
remote islands, high mountains and isolated valleys. Many
well-known EAs, characterized as Niching methods, have been
implemented to mimic the biological niche formation and take
advantage of its characteristics [1]. Niching methods tendto

maintain the diversity within their population and allow a
parallel convergence into multiple solutions. Several niching
techniques have been proposed and successfully applied to
different EAs, namely, crowding [2], [3], fitness sharing [3],
[4], clearing [5], clustering [6], stretching and deflation[7],
[8], parallelization [9], restricted tournament selection [10],
[11], and speciation [12].

In this paper, we study in particular the Differential Evolu-
tion (DE) algorithm proposed by Storn and Price [13]. This
method has been applied in a plethora of optimization prob-
lems with high success [13]–[16]. Without loss of generality,
we only consider minimization problems. In this case, the
objective is, given a multimodal function, to locate as many
global minimizers as possible. Several different DE variants
incorporate the aforementioned niching techniques and attempt
to handle multimodal problems. Thomsen extends DE with
both a crowding and a fitness sharing technique, namely
Crowding DE (CDE) and Sharing DE [17]. In the aforemen-
tioned work Thomsen showed that the CDE variant is a more
promising approach, since outperforms the Sharing DE in all
tested problems [17]. Generally, the crowding technique [2],
[3] changes the selection procedure and allows a competition
for limited resources among similar individuals. The similarity
of individuals is calculated by a distance measure between
their genotypes, i.e. Euclidean distance. Specifically, the tech-
nique compares an offspring with randomly chosen individuals
of the current population and if the offspring is fitter, replaces
the most similar one. Crowding technique generally maintains
a better population diversity and therefore prevents premature
convergence to an optimum.

Species-based DE (SDE) [18] incorporates the speciation
concept to handle multimodal functions. SDE locates multiple
global optima simultaneously through the adaptive formation
of multiple species. Each species is evolved by its own DE pro-
cess, which tries to successively improve itself. The algorithm
will eventually be able to locate multiple global optima. Al-
though SDE is computationally more efficient than the Crowd-
ing DE, it incorporates a user-specified and problem dependent
parameter calledspecies radius, which should be properly
chosen. Furthermore, DE using local selection (DELS) [19]
employs a new mutation strategy that divides the mutation
operation into the local and the global mutation stages. With a



pre-specified probability, it selects a different mutationstrategy
to perform either a global or a local mutation. The global
mutation helps the algorithm to explore the search space,
while the local mutation to efficiently search locally. DELShas
been further hybridized with a multi-start gradient-basedlocal
search, as well as with the crowding technique [20]. In [9],
an “island model” approach is incorporated to locate many
global optima in parallel, while in [11] a DE extension with
an ensemble of the restricted tournament selection (ERTS-
DE) has been proposed. Finally, several other evolutionary
computing methods have been proposed that attempt to deal
with multimodal fitness landscapes [8], [21]–[25].

Recent studies on the dynamics and the proximity capa-
bilities of the DE algorithm have shown that after a number
of steps the candidate solutions tend to gather around opti-
mizers of the objective function [6], [16], [26]. Exploiting
the aforementioned behavior may enhance the performance
of several DE variants [16]. In this respect, here we introduce
two new mutation strategies that are able to efficiently handle
multimodal functions. The new mutation strategies incorporate
information regarding the neighborhood of each potential
solution, which aids them to accurately locate and main-
tain many global optimizers, without the need of additional
parameters. The proposed mutation strategies are evaluated
on eight well-known and widely used multimodal problems,
and their performance is compared against some state-of-the-
art algorithms. Simulation results suggest that the proposed
strategies are very promising and exhibit competitive behavior.

The rest of the paper is structured as follows: Section II
briefly describes the behavior of different mutation operators,
motivating us to introduce the proposed mutation strategies. A
brief description of the Differential Evolution algorithmalong
with the new mutation strategies are presented in Section III.
Next, the outcomes of an extensive experimental analysis are
presented in Section IV and finally the paper concludes in
Section V with a discussion and some pointers for future work.

II. M OTIVATION

In recent works, the impact of the dynamics of different
DE mutation strategies on the population of individuals has
been investigated [6], [16], [26]. Experimental simulations
indicate that DE mutation strategies tend to distribute the
individuals of the population in the vicinity of the minima of
the objective function. Exploitative strategies rapidly gather all
the individuals to the basin of attraction of a single minimum,
while explorative strategies tend to spread the individuals
around many minima.

In [16], we showed that by exploiting the characteristics of
the aforementioned tendency and incorporating them into the
structure of the DE its performance is enhanced. To quantify
the aforementioned tendency and to properly study the behav-
ior of different DE mutation strategies we have incorporated a
clustering tendencystatistic, namely the H-measure [16], [27].
Clustering tendency is a well known concept in the cluster
analysis literature that deals with the problem of determining
the presence or absence of a clustering structure in a data

Fig. 1. H-measure of six classic DE mutation strategies on the Shifted Sphere
and on the Shifted Griewank

set. Large values of the H-measure indicate the presence of a
clustering structure in the dataset, while small values indicate
the presence of regularly spaced points. A value around0.5
indicates that the dataset contains randomly distributed vectors
over the search space.

Thereby, to investigate the behavior of six well known
DE mutation strategies [16], we have selected two qualita-
tively different functions; the Shifted Sphere and the Shifted
Griewank function. The former is a simple unimodal, while
the latter is a highly multimodal function. Figure 1, illustrates
mean values of the H-measure calculated at each generation
for the six DE mutation strategies. The mean values have
been obtained from 100 independent simulations for the
30-dimensional versions of the Shifted Sphere and Shifted
Griewank functions. Error bars around the mean depict the
standard deviation of the H-measure. All mutation strategies
exhibit large H-measure values within the first 100 generations,
indicating a strong clustering structure. Notice that DE/best/1
is the most exploitative strategy, while the least exploitatives
seem to be DE/rand/1 and DE/rand/2.

Inspired by these findings, we introduce two new mutation
strategies that incorporate population’s neighborhood informa-
tion and are able to efficiently locate and maintain multiple
global optima of a multimodal function.

III. D IFFERENTIAL EVOLUTION MUTATION STRATEGIES

FOR HANDLING MULTIMODAL FUNCTIONS

The DE algorithm [13] is a stochastic parallel direct search
method, which utilizes concepts borrowed from the broad
class of Evolutionary Algorithms (EAs). More specifically,
DE is a population–based stochastic algorithm that exploits
a population ofNP potential solutions,individuals, to effec-
tively probe the search space. Firstly, DE randomly initializes
the population in theD–dimensional optimization domain by
utilizing a uniform probability distribution. Individuals evolve
over successive iterations to explore the search space and
locate the minima of the objective function. Throughout the
evolution process, the user–defined population size,NP , is
fixed. At each iteration, calledgeneration, new vectors are
derived by the combination of randomly chosen vectors from
the current population. This operation in our context can be
referred to asmutation, while the outcoming vectors asmutant
individuals. Several mutation strategies have been proposed in
the DE literature, The most common and widely used can be
found in [13]–[16]. To continue, each mutant individual is then



mixed with another, predetermined, vector – thetarget vector
– through an operation calledrecombinationor crossover.
This operation yields the so–calledtrial vector. The most
well known and widely used variants of DE utilize two
main crossover schemes; theexponentialand thebinomial or
uniform crossover[13]–[15]. Finally, the trial vector undergoes
the selectionoperator, according to which it is accepted as a
member of the population of the next generation only if it
yields a reduction in the value of the objective functionf
relative to that of the target vector. Otherwise, target vector is
retained in the next generation. The search operators efficiently
shuffle information among the individuals, enabling the search
for an optimum to focus on the most promising regions of the
solution space. A more comprehensive description of the DE
can be found in [13]–[16].

In this work, we take advantage from the dynamics
and the clustering tendency of the classic DE/rand/1 and
DE/rand/2 mutation strategies, and incorporate into theirmu-
tation schemes local information from the current population.
To efficiently locate and maintain global optima, we evolve
each individual by applying as a base vector its nearest
neighbor individual, in an attempt to maintain the individual to
the vicinity of an optimum and simultaneously to effectively
explore the search space by incorporating random vectors into
the differences of the mutation scheme. More specifically,
for each individualxi

g, i = 1, 2, . . . , NP , where g denotes
the current generation, the mutant individualvig+1 can be
generated according to one of the following new proposed
equations:

1) “DE/nrand/1”

vig+1 = xNNi

g + F (xr1
g − xr2

g ), (1)

2) “DE/nrand/2”

vig+1 = xNNi

g + F (xr1
g − xr2

g ) + F (xr3
g − xr4

g ), (2)

wherexNNi

g is the nearest neighbor of the current individual
xi
g, r1, r2, r3, r4 ∈ {1, 2, . . . , NP} \ {i} are random integers

mutually different and not equal to the running indexi,
and F > 0 is a real parameter, calledmutation or scaling
factor. The mutation factorF , controls the amplification of
the difference between two individuals, and is used to prevent
the risk of stagnation of the search process. The computational
complexity of the proposed mutation strategies is determined
by the computational burden of the nearest neighbor compu-
tations. In the worst case the proposed strategies exhibit a
similar complexity with the Crowding DE method [17]. The
main goal of this work is to study if the incorporation of
the nearest neighbor concept in the mutation operator can
produce a “niching effect” without employing any additional
parameter. Thus, in a future work, we intend to further study
its complexity and efficiently determined the nearest neighbors
by utilizing properly computational geometry methods [28].
Finally, the rest of the DE steps remain the same as the classic
DE/rand/1/bin scheme [13], i.e. we employ the binomial
crossover operator and the simple elitist selection operator.

IV. EXPERIMENTAL RESULTS

In this section, we perform an experimental evaluation of the
proposed approaches and compare their performance with sev-
eral algorithms that can handle multimodal problems. To verify
the effectiveness of the proposed approaches we employ eight
well known and widely used multimodal benchmark functions
having different characteristics, such as multiple evenlyand
unevenly spaced global optima, multiple global optima in the
presence of multiple local optima and deceptiveness [20].
Table I shows the benchmark functions and some of their
characteristics. More specifically, functionsF1 and F2 have
a low number of irregularly spaced global minima and no
local minima. FunctionF3 has 18 global minima and a high
number (742) of local minima, with the global minima situated
in two groups of nine regularly spaced minima in a three times
three square shape. FunctionF5 has6D global minima without
local minima and is partially irregular, resembling a Bezier
stretched function of the cosine family, with the differences
between minima to increase along the value ofy. Function
F6 contains5D evenly spaced global minima and does not
have any local minima. Similarly, functionF7 has the same
number of minima, but the distances between each global
minimum decrease towards the origin. Finally, functionF8

is the modified version of the well–known Rastrigin function,
having 4 evenly spaced global minima and 96 local minima.

To demonstrate the efficiency of the proposed approaches,
we compare them with five methods, i.e. the two classic
DE/rand/1/bin and DE/rand/2/bin algorithms and three meth-
ods that have been designed to handle multimodal problems,
namely the FERPSO [22], the Crowding DE [17], and the
DELS [19]. Throughout this section, all the reported results are
averaged over 100 independent simulations. For each simula-
tion and each method we have initialized the populations using
a uniform random number distribution with the same random
seeds. Furthermore, all methods have been implemented with
the default parameters settings as have been proposed in the
literature. Regarding the DE control parameters, the common
setting of F = 0.5 and CR = 0.9 were used for all DE
variants [14], [15]. Regarding the FERPSO parameters, the
proposed setting ofφmax = 4.1 and χ = 0.729 has been
utilized [22]. The population size has been kept fixed to
NP = 100 individuals and for each simulation, a budget of
maxNFEs = 105 function evaluations has been employed.

To verify the effectiveness and the ability of the proposed
approaches to accurately locate the global minima, we first
specify a level of accuracy, ε ∈ (0, 1]. The level of accu-
racy depicts the tolerance level of a computed solution to
considered as a global optimum. Specifically, if the Euclidean
distance of a computed solution to a known global optimum
is less than the pre-specified level of accuracyε, then we
consider the solution to be a global optimum. Furthermore,
since in the current benchmark functions the number and the
location of optima to be found is knowna priori, we can
use it as a performance metric. Thus, based on the aforemen-
tioned metric, to compare the performance of the implemented



TABLE I
EIGHT MULTIMODAL BENCHMARK FUNCTIONS [20]

Function Mathematical formula Optimization box D # global # local
minima minima

Branin F1(~y) =
(

y2 −
5.1

4π2
y2
1
+ 5

π
y1 − 6

)

2

+ 10
(

1−
1

8π

)

cos(y1) + 10 y1 ∈ [−5, 10], y2 ∈ [0, 15] 2 3 –

Himmelblau F2(~y) = (y2
1
+ y2 − 11)2 + (y1 + y2

2
− 7)2 ~y ∈ [−6, 6]2 2 4 –

Shubert F3(~y) =
∑

5

i=1
i cos((i + 1)y1 + i) ·

∑

5

i=1
i cos((i + 1)y2 + i) ~y ∈ [−10, 10]2 2 18 742

Six-hump camel back F4(~y) =

(

4− 2.1y2
1
+

y4

1

3

)

y2
1
+ y1y2 + (−4− 4y2

2
)y2

2
y1 ∈ [−1.9, 1.9], 2 2 4
y2 ∈ [−1.1, 1.1]

Vincent F5(~y) = −
1

D

∑D
i=1

sin(10 · log(yi)) ~y ∈ [0.25, 10]D 2 6D –
Deb 1 F6(~y) = −

1

D

∑D
i=1

sin6(5πyi) ~y ∈ [0, 1]D 2 5D –

Deb 3 F7(~y) = −
1

D

∑D
i=1

sin6(5π(y
3

4

i − 0.05) ~y ∈ [0, 1]D 2 5D –
Modified Rastrigin F8(~y) = 20 +

∑

2

i=1

(

y2i + 10 cos(2πyi)
)

~y ∈ [−5.12, 5.12]2 2 4 96

TABLE II
SUCCESSRATIO AND PEAK RATIO MEASURES FOR THE MULTIMODAL FUNCTIONSF1–F4

FunctionF1 FERPSO DE/rand/1 DE/rand/2 DE/nrand/1 DE/nrand/2 Crowding DE DELS
Accuracy levelε SR PR SR PR SR PR SR PR SR PR SR PR SR PR

1.0e-03 0.00 0.103 0.00 0.333 0.00 0.570 1.00 1.000 1.00 1.000 1.00 1.000 1.00 1.000
1.0e-04 0.00 0.113 0.00 0.333 0.00 0.577 1.00 1.000 0.99 0.997 1.00 1.000 1.00 1.000
1.0e-05 0.00 0.107 0.00 0.333 0.00 0.547 1.00 1.000 0.99 0.997 1.00 1.000 1.00 1.000
1.0e-06 0.00 0.113 0.00 0.333 0.00 0.587 1.00 1.000 1.00 1.000 0.91 0.970 1.00 1.000
1.0e-07 0.00 0.150 0.00 0.333 0.00 0.563 1.00 1.000 1.00 1.000 0.12 0.493 1.00 1.000
1.0e-08 0.00 0.100 0.00 0.333 0.00 0.570 1.00 1.000 1.00 1.000 0.00 0.067 1.00 1.000
1.0e-09 0.00 0.133 0.00 0.333 0.00 0.570 1.00 1.000 0.99 0.997 0.00 0.010 1.00 1.000

FunctionF2 FERPSO DE/rand/1 DE/rand/2 DE/nrand/1 DE/nrand/2 Crowding DE DELS
Accuracy levelε SR PR SR PR SR PR SR PR SR PR SR PR SR PR

1.0e-03 0.00 0.333 0.00 0.250 0.00 0.250 1.00 1.000 1.00 1.000 1.00 1.000 1.00 1.000
1.0e-04 0.00 0.333 0.00 0.250 0.00 0.250 1.00 1.000 1.00 1.000 1.00 1.000 1.00 1.000
1.0e-05 0.00 0.347 0.00 0.250 0.00 0.250 1.00 1.000 1.00 1.000 1.00 1.000 1.00 1.000
1.0e-06 0.00 0.320 0.00 0.250 0.00 0.250 1.00 1.000 1.00 1.000 1.00 1.000 1.00 1.000
1.0e-07 0.01 0.317 0.00 0.250 0.00 0.250 1.00 1.000 1.00 1.000 0.96 0.990 1.00 1.000
1.0e-08 0.00 0.292 0.00 0.250 0.00 0.250 1.00 1.000 1.00 1.000 0.11 0.522 1.00 1.000
1.0e-09 0.00 0.335 0.00 0.250 0.00 0.250 1.00 1.000 1.00 1.000 0.00 0.083 1.00 1.000

FunctionF3 FERPSO DE/rand/1 DE/rand/2 DE/nrand/1 DE/nrand/2 Crowding DE DELS
Accuracy levelε SR PR SR PR SR PR SR PR SR PR SR PR SR PR

1.0e-03 0.00 0.465 0.00 0.118 0.47 0.918 0.01 0.743 0.92 0.996 0.00 0.047 0.00 0.674
1.0e-04 0.00 0.437 0.00 0.112 0.45 0.872 0.01 0.717 0.89 0.994 0.00 0.003 0.00 0.148
1.0e-05 0.00 0.419 0.00 0.112 0.53 0.923 0.00 0.736 0.95 0.997 0.00 0.000 0.00 0.015
1.0e-06 0.00 0.411 0.00 0.118 0.51 0.858 0.01 0.727 0.97 0.998 0.00 0.000 0.00 0.003
1.0e-07 0.00 0.375 0.00 0.114 0.49 0.902 0.00 0.748 0.97 0.998 0.00 0.000 0.00 0.000
1.0e-08 0.00 0.356 0.00 0.106 0.42 0.854 0.01 0.729 0.92 0.996 0.00 0.000 0.00 0.000
1.0e-09 0.00 0.322 0.00 0.114 0.44 0.873 0.02 0.751 0.91 0.995 0.00 0.000 0.00 0.000

FunctionF4 FERPSO DE/rand/1 DE/rand/2 DE/nrand/1 DE/nrand/2 Crowding DE DELS
Accuracy levelε SR PR SR PR SR PR SR PR SR PR SR PR SR PR

1.0e-03 0.01 0.095 0.00 0.500 0.89 0.945 1.00 1.000 1.00 1.000 1.00 1.000 1.00 1.000
1.0e-04 0.00 0.020 0.00 0.500 0.91 0.955 1.00 1.000 1.00 1.000 1.00 1.000 1.00 1.000
1.0e-05 0.00 0.005 0.00 0.500 0.90 0.950 1.00 1.000 1.00 1.000 1.00 1.000 1.00 1.000
1.0e-06 0.00 0.005 0.00 0.500 0.89 0.945 1.00 1.000 1.00 1.000 1.00 1.000 1.00 1.000
1.0e-07 0.00 0.000 0.00 0.500 0.91 0.955 1.00 1.000 1.00 1.000 1.00 1.000 1.00 1.000
1.0e-08 0.00 0.005 0.00 0.500 0.94 0.970 1.00 1.000 1.00 1.000 1.00 1.000 1.00 1.000
1.0e-09 0.00 0.005 0.00 0.500 0.89 0.945 1.00 1.000 1.00 1.000 1.00 1.000 1.00 1.000

algorithms, we adopt the following two measures: thepeak
ratio and thesuccess rate[17]. Strictly speaking, for a pre-
specified budget of function evaluations (maxNFEs) and an
accuracy levelε, thepeak ratio(PR) measures the percentage
of global optima (i.e. peaks) located over the total number
of known global optima. Thus, for one simulation thepeak
ratio can be defined as: PR= number of peaks found

number of total peaks. It should be
noticed that the PR reported values are average values over 100
independent simulations. Additionally, thesuccess rate(SR)
measures the percentage of simulations in whichall global

optima have been successfully located.

The first task that we want to tackle is to find out if the
implemented methods can accurately locate the global minima
in different levels of accuracy. Thereby, Table II, Table III as
well as Figure 2 exhibit extensive experimental results of all
algorithms over all benchmark functions considered in this
work. We evaluate the algorithms for seven different accuracy
levels, namelyε ∈ {10−3, 10−4, . . . , 10−9}. This is a very
challenging task, since when the accuracy level decreases the
accuracy of the computed global minima increases. As it is



TABLE III
SUCCESSRATIO AND PEAK RATIO MEASURES FOR THE MULTIMODAL FUNCTIONSF5–F8

FunctionF5 FERPSO DE/rand/1 DE/rand/2 DE/nrand/1 DE/nrand/2 Crowding DE DELS
Accuracy levelε SR PR SR PR SR PR SR PR SR PR SR PR SR PR

1.0e-03 0.00 0.161 0.00 0.028 0.00 0.028 0.00 0.401 0.00 0.391 0.00 0.718 0.00 0.493
1.0e-04 0.00 0.155 0.00 0.028 0.00 0.028 0.00 0.400 0.00 0.389 0.00 0.707 0.00 0.486
1.0e-05 0.00 0.136 0.00 0.028 0.00 0.028 0.00 0.394 0.00 0.374 0.00 0.621 0.00 0.474
1.0e-06 0.00 0.131 0.00 0.028 0.00 0.028 0.00 0.371 0.00 0.351 0.00 0.342 0.00 0.437
1.0e-07 0.00 0.121 0.00 0.028 0.00 0.028 0.00 0.367 0.00 0.294 0.00 0.127 0.00 0.402
1.0e-08 0.00 0.107 0.00 0.028 0.00 0.028 0.00 0.362 0.00 0.213 0.00 0.016 0.00 0.350
1.0e-09 0.00 0.097 0.00 0.028 0.00 0.028 0.00 0.339 0.00 0.100 0.00 0.003 0.00 0.268

FunctionF6 FERPSO DE/rand/1 DE/rand/2 DE/nrand/1 DE/nrand/2 Crowding DE DELS
Accuracy levelε SR PR SR PR SR PR SR PR SR PR SR PR SR PR

1.0e-03 0.00 0.396 0.08 0.886 0.14 0.921 0.68 0.985 0.62 0.983 1.00 1.000 0.61 0.982
1.0e-04 0.00 0.389 0.04 0.885 0.14 0.917 0.67 0.984 0.62 0.981 1.00 1.000 0.61 0.980
1.0e-05 0.00 0.352 0.09 0.868 0.11 0.919 0.59 0.978 0.68 0.986 1.00 1.000 0.40 0.967
1.0e-06 0.00 0.313 0.11 0.870 0.16 0.923 0.54 0.976 0.64 0.983 1.00 1.000 0.01 0.602
1.0e-07 0.00 0.301 0.09 0.888 0.19 0.934 0.57 0.978 0.63 0.983 1.00 1.000 0.00 0.122
1.0e-08 0.00 0.270 0.07 0.878 0.18 0.930 0.69 0.985 0.64 0.982 1.00 1.000 0.00 0.016
1.0e-09 0.00 0.242 0.12 0.890 0.13 0.923 0.66 0.984 0.62 0.982 0.99 1.000 0.00 0.000

FunctionF7 FERPSO DE/rand/1 DE/rand/2 DE/nrand/1 DE/nrand/2 Crowding DE DELS
Accuracy levelε SR PR SR PR SR PR SR PR SR PR SR PR SR PR

1.0e-03 0.00 0.333 0.00 0.040 0.00 0.200 0.00 0.816 0.02 0.868 1.00 1.000 0.29 0.958
1.0e-04 0.00 0.305 0.00 0.040 0.00 0.212 0.00 0.796 0.01 0.831 0.99 1.000 0.20 0.952
1.0e-05 0.00 0.277 0.00 0.040 0.00 0.211 0.00 0.779 0.00 0.614 0.09 0.864 0.03 0.881
1.0e-06 0.00 0.254 0.00 0.040 0.00 0.200 0.00 0.747 0.00 0.204 0.00 0.236 0.00 0.483
1.0e-07 0.00 0.224 0.00 0.040 0.00 0.177 0.00 0.696 0.00 0.029 0.00 0.028 0.00 0.085
1.0e-08 0.00 0.197 0.00 0.040 0.00 0.199 0.00 0.651 0.00 0.003 0.00 0.002 0.00 0.010
1.0e-09 0.00 0.162 0.00 0.040 0.00 0.182 0.00 0.561 0.00 0.000 0.00 0.000 0.00 0.000

FunctionF8 FERPSO DE/rand/1 DE/rand/2 DE/nrand/1 DE/nrand/2 Crowding DE DELS
Accuracy levelε SR PR SR PR SR PR SR PR SR PR SR PR SR PR

1.0e-03 0.01 0.398 0.12 0.447 0.90 0.950 1.00 1.000 1.00 1.000 1.00 1.000 1.00 1.000
1.0e-04 0.01 0.357 0.03 0.373 0.90 0.950 1.00 1.000 1.00 1.000 1.00 1.000 1.00 1.000
1.0e-05 0.00 0.350 0.12 0.440 0.91 0.955 1.00 1.000 1.00 1.000 1.00 1.000 1.00 1.000
1.0e-06 0.01 0.355 0.11 0.438 0.90 0.952 1.00 1.000 1.00 1.000 1.00 1.000 1.00 1.000
1.0e-07 0.01 0.355 0.05 0.393 0.94 0.970 1.00 1.000 1.00 1.000 1.00 1.000 1.00 1.000
1.0e-08 0.00 0.363 0.01 0.373 0.94 0.970 1.00 1.000 1.00 1.000 1.00 1.000 1.00 1.000
1.0e-09 0.01 0.343 0.09 0.417 0.86 0.935 1.00 1.000 1.00 1.000 1.00 1.000 1.00 1.000

expected, both the SR and the PR vary with respect to different
levels of accuracy and, in general, the algorithms tend to
produce smaller values of both peak ratio and success rates
as the accuracy levels decrease.

In more detail, FERPSO exhibits poor performance on this
benchmark set with the considered parameter settings. It can
locate a low number of minima in almost all the considered
functions, irrespective of the accuracy level. We speculate
that FERPSO needs a higher swarm size to accurately locate
all global minima on the given budget of function evalua-
tions. Although the classic mutation strategies DE/rand/1and
DE/rand/2 have not be designed to tackle multimodal func-
tions, in many cases, they exhibit good SR and PR values (e.g.
functionsF3, F4, F6, and F8). More specifically, DE/rand/1
always finds one global minimum, but does not maintain
individuals on many global minima. On the other hand,
DE/rand/2 exhibits a better “niching effect” on the population,
resulting in good performance (e.g. functionsF3, F4, F6, and
F8). Crowding DE is one of the most promising approaches
implemented in this work. It exhibits a very good performance
(e.g. functionsF4, F6, andF8), but when the accuracy level
decreases it can not maintain the population on many global
minima (e.g. functionsF1−F3, F5, andF7). Thus, as depicted
in Tables II and III, for the aforementioned functions, bothSR

and PR measures decrease with the level accuracy. A similar
behavior can be observed for the DELS method, i.e. although it
performs very good in functionsF1, F2, F4 andF8, in the most
challenging functions with many global minima (e.g. functions
F3, F5, F6, andF7) its performance slowly decreases as the
accuracy level decrease.

Finally, both the proposed DE/nrand/1 and DE/nrand/2
algorithms, exhibit good performance, in terms of SR and
PR measures, for the majority of the considered functions
(e.g. functionsF1, F2, F3, F4, F6, F7, andF8). Generally, they
exhibit either equal or better performance when compared
against the other utilized methods, especially when the ac-
curacy level decreases (e.g. functionsF1, F2, F3, F4, andF8).
More specifically, in most difficult problems (e.g. functions
F3, F5, F6, and F7) DE/nrand/1 locates either all or a high
number of global minima, irrespectively of the accuracy level.
In the cases where the performance of Crowding DE and
DELS is not good, DE/nrand/1 performs better in terms of PR
and SR, e.g. inF3, and the high accuracy levels ofF5 andF7.

DE/nrand/2 performs similarly in most of the functions and
in the challengingF3 function exhibits the best performance
in comparison with all the other methods. Comparing the
DE/nrand/1 with the DE/nrand/2 approach, the performance
of the first approach is most robust in functionsF5 andF7.



Fig. 2. Number of distinct global minima found by the implemented methods versus different levels of accuracyε.

DE/nrand/1 can maintain a high number of global minima
as the accuracy level decreases, while the performance of
DE/nrand/2 tends to slowly decrease. Based on the aforemen-
tioned observations we believe that both proposed approaches
exhibit a great potential for accurately locating many global
minima and thus successfully tackling multimodal functions.

A. Convergence speed

In this section, we present experimental results for all
utilized methods in terms of convergence speed. To measure
the convergence speed of a method at a pre-specified level
of accuracy, we calculate the required number of function
evaluations in which it can accurately locate all global minima
of the problem at hand. More specifically, for each problem
and each algorithm we have conducted 100 simulations (ε =
10−4, NP = 100, andmaxNFE = 105). Table IV exhibits
the mean number of function evaluations (Mean), its standard
deviation (St.D.), the SR measure and the mean value of the
PR measure over theF1, F2, F4 andF8 functions.

One can clearly observe that the algorithms DE/nrand/1 and
DE/nrand/2 exhibit better performance (lower mean values in
terms of function evaluations), with the DE/nrand/1 to be
the best performing algorithm in all four cases considered
here. On the other hand, in most of the cases FERPSO,
DE/rand/1 and DE/rand/2, did not succeed to reach 100%
success rate. DELS comes third in terms of mean number
of function evaluations, closely following the performance of
the DE/nrand/2 algorithm. Crowding DE, in three out of four
functions (e.g. functionsF1, F2, andF4), requires the highest
number of function evaluations to locate all minima.

Additionally, in Figure 3, we illustrate the behavior of the
methods during the simulations. More specifically, we perform
100 independent simulations and for a given accuracy level
(ε = 10−4), we record the number of global minima the
method can locate throughout the simulation. It is obvious that,
in most of the cases, the proposed DE/nrand/1 and DE/nrand/2
algorithms efficiently and accurately locate a high number
of global minima and maintain them until the end of the
simulation. DELS and Crowding DE exhibit similar behavior,

TABLE IV
CONVERGENCE SPEED(ACCURACY LEVEL ε = 10−4)

FunctionF1 Mean St.D. SR Mean PR
FERPSO N/A N/A 0.00 0.113
DE/rand/1 N/A N/A 0.00 0.333
DE/rand/2 N/A N/A 0.00 0.577
DE/nrand/1 6982.00 989.37 1.00 1.000
DE/nrand/2 10920.20 1380.99 0.99 0.997

Crowding DE 40137.00 5951.48 1.00 1.000
DELS 13361.00 1625.48 1.00 1.000

FunctionF2 Mean St.D. SR Mean PR
FERPSO N/A N/A 0.00 0.333
DE/rand/1 N/A N/A 0.00 0.250
DE/rand/2 N/A N/A 0.00 0.250
DE/nrand/1 13504.00 1521.96 1.00 1.000
DE/nrand/2 25400.00 2817.91 1.00 1.000

Crowding DE 48691.00 4498.40 1.00 1.000
DELS 22122.00 2345.02 1.00 1.000

FunctionF4 Mean St.D. SR Mean PR
FERPSO N/A N/A 0.00 0.020
DE/rand/1 N/A N/A 0.00 0.500
DE/rand/2 2979.12 426.48 0.91 0.955
DE/nrand/1 4151.00 915.24 1.00 1.000
DE/nrand/2 5109.00 942.28 1.00 1.000

Crowding DE 14793.00 3393.50 1.00 1.000
DELS 6030.00 1205.33 1.00 1.000

FunctionF8 Mean St.D. SR Mean PR
FERPSO 7800.00 N/A 0.01 0.357
DE/rand/1 6400.00 700.00 0.03 0.373
DE/rand/2 8961.11 873.02 0.90 0.950
DE/nrand/1 8222.00 910.72 1.00 1.000
DE/nrand/2 11037.00 1021.45 1.00 1.000

Crowding DE 11995.00 1453.90 1.00 1.000
DELS 14975.00 1328.43 1.00 1.000

but they tend to locate the global minima slowly. On the
other hand, in many cases FERPSO, DE/rand/1, DE/rand/2
although they exhibit a good niching effect and succeed to
locate several minima, they can not maintain them until the
end of the simulation. This behavior tends to be more visible
as the accuracy level decreases and can be captured by the
PR measure. In Tables II and III, we observe that in the
most challenging functions (e.g. functionsF3, F5, andF7) the
proposed DE/nrand/1 approach locates and maintains many



Fig. 3. Mean number of global minima found during 100 independent simulations of all methods overF1–F8 (ε = 10−4)

global minima as the accuracy level decreases, while Crowding
DE and DELS do not (DE/nrand/1 exhibits higher values of
the PR measure).
B. Population size effect

In this section, we study the effect of the population size
of all implemented methods on the functions having many
global minima (e.g. functionsF3, F5, F6, andF7). For several
different population sizes, we measure their performance by
calculating the number of global minima found at the accuracy
level ε = 10−4 and within a budget ofmaxNFEs = 105

function evaluations. Figure 4 illustrates the performance of
the methods as the population size increases from 40 to 300
individuals. Generally, in each function there exist population
size values where most of the algorithms can locate a high
number of global minima. As expected, this behavior depends
on the structure of the problem at hand and the characteristics
of the applied method. In functionF6, as the population
size increase, almost all algorithms can locate more global
minima. In functionsF5 andF7, as the population increases
DE/nrand/1, DE/nrand/2, FERPSO, Crowding DE and DELS
manage to locate an increased number of global minima. Nev-
ertheless, when the population size reaches 150–200 individu-
als the performance of DE/nrand/2, Crowding DE and DELS
tends to rapidly decrease. Finally, in functionF3, Crowding
DE and DELS can locate many minima with population
sizes ranging from 40 to 50 individuals. When the population
size increases their performance decrease rapidly, while their
performance becomes marginal when the population size is
larger than 100 individuals. On the contrary, DE/nrand/2,
DE/nrand/1 and DE/rand/2 produce the best performance when
the population size is between 100 and 150 individuals, and
then as the population increases their performance decreases.
Finally, DE/rand/1 and FERPSO exhibit a stable increasing
performance as the population size increases, but in general
their performance is worse than that of the other methods.

The most promising approaches in all considered functions
are DE/nrand/1, DE/nrand/2, Crowding DE and DELS. The

Fig. 4. Population size effect on theF3, F5, F6 andF7 functions

proposed DE/nrand/1 and DE/nrand/2 algorithms exhibit either
better or equal performance in comparison with the other
methods. DE/nrand/1 exhibits a more robust performance as
the population size increases and in functionsF5 and F7

outperforms the other methods, when the population size is
from 250 or 300 individuals. DE/rand/2 can accurately locate
many global minima, but when the population increases its
performance tends to decrease. Crowding DE exhibited the
best performance inF5 andF6 functions. Crowding DE and
DELS exhibited good performance in some of the considered
test functions (e.g. functionsF5 andF6), but when the popula-
tion size increases the performance of both methods decrease.
Additionally, in the F3 function, they exhibited a marginal
performance for the majority of the population size values.
FERPSO did not succeed to locate many global optima in
the four functions considered in this section, but as discussed
in [22] FERPSO may be capable of finding more global optima
when a larger population size is employed. Thus, as one can



observe it exhibits its best results when the population size is
equal to 300 individuals.

Finally, DE/rand/1 in general, locates a small number of
global optima, but it is interesting to observe that in functions
F3 andF6 as the population increases the algorithm exhibits
good niching performance. DE/rand/2 exhibits a better niching
effect than DE/rand/1, while as the population size increases
DE/rand/2 is capable to compute an increased number of
global minima.

V. CONCLUSIONS

It has been recognized that throughout the evolutionary
process of the Differential Evolution (DE) algorithm a clus-
tering structure of the population of individuals can arise. In
this study, we take advantage of the aforementioned behavior
and attempt to improve DE’s ability to accurately locate and
maintain many global optima. To this end, we introduce two
new mutation strategies that are based to the classic DE/rand/1
and DE/rand/2 strategies and incorporate into their schemes
spatial information of the population. To evolve an individual,
we apply as a base vector its nearest neighbor. Thus, the
individuals effectively explore their neighborhoods.

Experimental results on eight well known multimodal func-
tions with different characteristics and comparisons against
two classic DE mutation strategies as well as three state-
of-the-art algorithms, demonstrate that the proposed mutation
strategies are competitive and very promising. Specifically,
they can accurately locate many global optima and main-
tain them though the evolution process. In the four most
challenging functions, they exhibit high peak ratio values
and in most cases outperform the other algorithms. In terms
of convergence speed, they can accurately locate all global
minima in less function evaluations than the other algorithms.
Finally, experiments regarding the effect of the population size
show that, in most of the cases, the behavior of the proposed
algorithms is robust.

In a future work, we will extensively study their perfor-
mance and complexity on more multimodal function families,
with higher dimensions and different characteristics.
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[1] T. Bäck, D. B. Fogel, and Z. Michalewicz, Eds.,Handbook of Evolu-
tionary Computation. Oxford University Press, 1997.

[2] K. A. De Jong, “An analysis of the behavior of a class of genetic adaptive
systems.” Ph.D. dissertation, University of Michigan, USA, 1975.

[3] S. W. Mahfoud, “Niching methods for genetic algorithms,” Ph.D.
dissertation, University of Illinois at Urbana-Champaign, Champaign,
IL, USA, 1995, uMI Order No. GAX95-43663.

[4] D. E. Goldberg and J. Richardson, “Genetic algorithms with sharing
for multimodal function optimization,” inProceedings of the Second
International Conference on Genetic Algorithms on Geneticalgorithms
and their application, Hillsdale, NJ, USA, 1987, pp. 41–49.

[5] A. Pétrowski, “A clearing procedure as a niching methodfor genetic
algorithms,” inIEEE International Conference on Evolutionary Compu-
tation, 1996, pp. 798–803.

[6] D. Tasoulis, V. Plagianakos, and M. Vrahatis, “Clustering in evolution-
ary algorithms to efficiently compute simultaneously localand global
minima,” in IEEE Congress on Evolutionary Computation, vol. 2, 2005,
pp. 1847–1854.

[7] K. E. Parsopoulos, V. P. Plagianakos, G. D. Magoulas, andM. N.
Vrahatis, “Objective function ”stretching” to alleviate convergence to
local minima,”Nonlinear Analysis, vol. 47, no. 5, pp. 3419–3424, 2001.

[8] K. E. Parsopoulos and M. N. Vrahatis, “On the computationof all global
minimizers through particle swarm optimization,”IEEE Transactions on
Evolutionary Computation, vol. 8, no. 3, pp. 211–224, 2004.

[9] D. Zaharie, “Extensions of differential evolution algorithms for multi-
modal optimization,” in6th International Symposium of Symbolic and
Numeric Algorithms for Scientific Computing, 2004, pp. 523–534.

[10] G. R. Harik, “Finding multimodal solutions using restricted tournament
selection,” inProceedings of the 6th International Conference on Ge-
netic Algorithms, San Francisco, CA, USA, 1995, pp. 24–31.

[11] B.-Y. Qu and P. Suganthan, “Novel multimodal problems and differential
evolution with ensemble of restricted tournament selection,” in IEEE
Congress on Evolutionary Computation, 2010, pp. 1–7.

[12] J. Li, M. E. Balazs, G. T. Parks, and P. J. Clarkson, “A species conserving
genetic algorithm for multimodal function optimization,”Evolutionary
Computation, vol. 10, no. 3, pp. 207–234, 2002.

[13] R. Storn and K. Price, “Differential evolution – a simple and efficient
adaptive scheme for global optimization over continuous spaces,”Jour-
nal of Global Optimization, vol. 11, pp. 341–359, 1997.

[14] K. Price, R. M. Storn, and J. A. Lampinen,Differential Evolution: A
Practical Approach to Global Optimization (Natural Computing Series).
Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2005.

[15] S. Das and P. N. Suganthan, “Differential evolution: A survey of
the state-of-the-art,”IEEE Transactions on Evolutionary Computation,
2010, 10.1109/TEVC.2010.2059031.

[16] M. G. Epitropakis, D. K. Tasoulis, N. G. Pavlidis, V. P. Plagianakos, and
M. N. Vrahatis, “Enhancing differential evolution utilizing proximity-
based mutation operators,”IEEE Transactions on Evolutionary Compu-
tation, 2010, 10.1109/TEVC.2010.2083670.

[17] R. Thomsen, “Multimodal optimization using crowding-based differen-
tial evolution,” in IEEE Congress on Evolutionary Computation, vol. 2,
2004, pp. 1382–1389.

[18] X. Li, “Efficient differential evolution using speciation for multimodal
function optimization,” inProceedings of the 2005 conference on genetic
and evolutionary computation. ACM, 2005, pp. 873–880.

[19] J. I. Rönkkönen and J. Lampinen, “An extended mutation concept for the
local selection based differential evolution algorithm,”in Proceedings
of the 9th annual conference on genetic and evolutionary computation.
London, England: ACM, 2007, pp. 689–696.

[20] J. Rönkkönen, X. Li, V. Kyrki, and J. Lampinen, “A framework for
generating tunable test functions for multimodal optimization,” Soft
Computing - A Fusion of Foundations, Methodologies and Applications,
pp. 1–18, 2010.

[21] R. Brits, A. P. Engelbrecht, and F. V. D. Bergh, “A niching particle
swarm optimizer,” in Proceedings of the Conference on Simulated
Evolution And Learning, 2002, pp. 692–696.

[22] X. Li, “A multimodal particle swarm optimizer based on fitness
euclidean-distance ratio,” inProceedings of the 9th annual conference
on genetic and evolutionary computation. ACM, 2007, pp. 78–85.

[23] K. Deb and A. Saha, “Finding multiple solutions for multimodal
optimization problems using a multi-objective evolutionary approach,” in
Proceedings of the 12th annual conference on genetic and evolutionary
computation. Portland, Oregon, USA: ACM, 2010, pp. 447–454.

[24] X. Li, “Niching without niching parameters: Particle swarm optimization
using a ring topology,”IEEE Transactions on Evolutionary Computation,
vol. 14, no. 1, pp. 150–169, 2010.

[25] E. L. Yu and P. N. Suganthan, “Ensemble of niching algorithms,”
Information Sciences, vol. 180, pp. 2815–2833, August 2010.

[26] M. G. Epitropakis, V. P. Plagianakos, and M. N. Vrahatis, “Balancing
the exploration and exploitation capabilities of the differential evolution
algorithm,” in IEEE Congress on Evolutionary Computation, 2008, pp.
2686–2693.

[27] B. Hopkins and J. G. Skellam, “A new method for determining the type
of distribution of plant individuals,”Annals of Botany, vol. 18, no. 2,
pp. 213–227, 1954.

[28] M. N. Vrahatis, B. Boutsinas, P. Alevizos, and G. Pavlides, “The new
k-windows algorithm for improving thek-means clustering algorithm,”
Journal of Complexity, vol. 18, pp. 375–391, March 2002.


