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ABSTRACT
Music composition with algorithms inspired by nature has
led to the creation of systems that compose music with
rich characteristics. Nevertheless, the complexity imposed
by unsupervised algorithms may arguably be considered as
undesired, especially when considering the composition of
rhythms. This work examines the composition of rhythms
through L and Finite L–systems (FL–systems) and presents
an interpretation from grammatical to rhythmic entities that
expresses the repetitiveness and diversity of the output of
these systems. Furthermore, we utilize a supervised train-
ing scheme that uses Genetic Algorithms (GA) to evolve
the rules of L and FL–systems, so that they may compose
rhythms with certain characteristics. Simple rhythmic in-
dicators are introduced that describe the density, pauses,
self similarity, symmetry and syncopation of rhythms. With
fitness evaluations based on these indicators we assess the
performance of L and FL–systems and present results that
indicate the superiority of the FL–system in terms of adapt-
ability to certain rhythmic tasks.

Categories and Subject Descriptors
F.4.2 [Grammars and Other Rewriting Systems]: Par-
allel rewriting systems; H.5.5 [Sound and Music Com-
puting]: Modeling

General Terms
Grammars, Genetic Evolution

Keywords
L–systems, FL–systems, Genetic Algorithms, rhythm, rhyth-
mic indicators

1. INTRODUCTION
Natural phenomena have inspired the formulation of al-

gorithms that are expressed by simple rules but their out-
put presents rich geometric and dynamical properties. The
diversity and complexity presented by the outcome of bio–
inspired algorithms has urged many researchers to use these
algorithms for music composition. On the other hand, in-
telligent algorithms allow the effective optimization of re-
sults towards a provided target. Two approaches for music
composition with the utilization of the aforementioned al-
gorithms are distinctive: unsupervised and supervised. The
first category uses an initiated set of rules which unfold into
a diverse output that is translated into music [3, 4]. Su-
pervised algorithms compose music which moves towards a
target which is either bounded by music theory [6], by simi-
larity to existing pieces [1, 18], or subjectively driven by the
user [2, 13].

In algorithmic music composition systems the rhythmic
part plays an important role for the contingency of the com-
position. In the paper at hand, we examine the composition
of rhythms by two unsupervised intelligent methodologies,
the L–systems and the Finite L–systems (FL–systems). We
propose and utilize an evolutionary scheme to evolve L and
FL–systems towards targeted rhythmical tasks, a procedure
that provides a supervised “track” for these unsupervised
methodologies. In contrast to the majority of previous ap-
proaches that examine music composition systems, the re-
sults obtained in the present work provide a large scale evalu-
ation procedure with additional pointers to objective criteria
that concern the complexity of the composed rhythms.

461

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
GECCO’12 Companion, July 7–11, 2012, Philadelphia, PA, USA. 
Copyright 2012 ACM  978-1-4503-1178-6/12/07...$10.00. 



The evolution of grammars with genetic algorithms has
been used for various tasks like the description of the retina
[16], the creation of virtual creatures [12] and the model-
ing of leaf shapes [22] among others. The utilization of L–
systems for music composition has been examined with the
production of music score directly from curves [20] and by in-
terpreting the L–systems directly to music [28]. A thorough
review and presentation of more approaches can be found
in [19]. Furthermore, music composition from L–systems has
been embodied into a Genetic Algorithm (GA) context [5,
17].

The FL–systems [14] utilize a recursive scheme and evolve
a set of initial axioms, a procedure that generates orbits of
string sequences that are directly interpreted to rhythmic
patterns. The produced rhythmic sequences were demon-
strated to cover a wider range of complexity compared to
the ones created by L–systems in an experimental setup that
incorporated the use of random rules. The utilization of GA
in this work amplifies these findings and expose the lack of
flexibility that the L–systems present, on contrast to the
FL–systems. We thus present indications that the combina-
tion of FL–systems with GA can produce a flexible super-
vised rhythm composition scheme with the ability to create
a wide range of rhythms, from diversified and complicated
to harnessed and repetitive.

The paper at hand is organized as follows: In Section 2 we
provide a brief description of the Deterministic Context–free
L–systems, the FL–systems and the proposed interpretation
of strings to rhythmic sequences. Section 3 describes the
examined methodology for producing a compound of GA
and the aforementioned rules in order to create rhythmic
sequences with desired properties. This Section also intro-
duces the rhythm indicators considered as descriptors of the
desired properties that lead to the realization of fitness eval-
uations. In Section 4, the experimental setup is thoroughly
described and an overview of the results is presented. Fi-
nally, Section 5 provides conclusions and pointers to future
work.

2. CONSTRUCTION OF RHYTHMIC SE-
QUENCES WITH L AND FL–SYSTEMS

This Section first presents the approach that we follow
to construct rhythmic sequences from symbolic string se-
quences and then describes the L and FL–systems. This
string–to–rhythm interpretation projects the repetitiveness
of characters into the strings produced by the L and FL–
systems to musical events. Thus string sequences with more
repeating patterns lead to repetitive rhythms and vice versa.

2.1 Modeling rhythmic sequences
In the rest of the paper we will be referring to two different

representations of rhythmic sequences: the binary and the
interval vector [26] representation. We may also employ the
term quasi–binary representation to include more musical
information as described later. With the binary represen-
tation, a sequence of digits represents the rhythmic actions
that occur during equally spaced time intervals. Considering
the division of a 4/4 measure of a music piece in sixteenths,
for example, we may represent this measure with 16 digits.
Digit 1 signals an onset event while digit 0 marks the contin-
uation of the previous event. By utilizing more digits than
1 and 0 we may incorporate further rhythmical information.

In the experiments described in Section 4 for example, we
have utilized the digit (−1) as a signal for a pause event.

By grouping the cumulative duration of rhythmic events
according to the considered time resolution we obtain the
interval vector representation. With the interval vector rep-
resentation, each rhythmic sequence is described as a series
of numbers in the form of a vector. Each number denotes
the consecutive time subdivisions that correspond to a sin-
gle rhythmic event. The sum of all the numerical values of
the interval vector representation within a measure should
add up to the total number of subdivisions of this measure
in respect to the considered time resolution. For example, if
we consider the division of a 4/4 measure in 32nds, then the
sum of all the arithmetic values that describe this measure
is 32. An example of a quasi–binary string and its interval
vector representation is demonstrated in Table 1.

The L and FL–systems produce a series of symbols, or
a word in an alphabet. Suppose that we have an alpha-
bet with n letters, V = {X1, X2, . . . , Xn} and a nonempty
word in this alphabet λ ∈ V +. We denote a series of k
consecutive instances of a letter Xi as Xk

i and rewrite the
word λ using this denotation, e.g. if λ = AAABBA, then
we have λ = A3B2A1. We call this word representation
cumulative representation. With the cumulative representa-
tion we proceed to the rhythmic interval vector representa-
tion by simply concatenating the exponents, i.e. the word
{Xk1

i1
, Xk2

i2
, . . . , Xkm

im
} is the rhythm k1k2 . . . km. Table 1

also shows the transformation of a string into rhythm, with
each symbol of the string describing different events.

Table 1: Example transformation of a string se-
quence to its interval vector and quasi–binary rep-
resentation.

V : {A,B, P}
A,B : onset event

P : pause

ω : AAAABBAAPPBBBBPP

cumulative: A4B2A2P 2B4P 2

interval vector: 422242

quasi–binary: 10001010(-1)01000(-1)0

2.2 Deterministic Context–free L-systems
The L–systems are parallel generative grammars [21] with

some variations that allow the production of interesting pat-
terns that resemble plant–like forms and fractals. In the
paper at hand we use the L–systems belonging to the sim-
plest form which are called Deterministic Context–free, with
the acronym DOL–systems. In these systems an alphabet
denoted by V is defined. This alphabet is a set of sym-
bols V = {X1, X2, . . . , Xn} which allows the creation of
words. The set of non–empty words of an alphabet V is de-
noted as V +. Each symbol Xi is associated with a rewriting
rule, denoted as RXi , with the set of rules being denoted as
P = {RXi}i∈[1,2,...,n]. The rules P are then serially applied
to each letter of a nonempty word in the above mentioned
alphabet, ω ∈ V +, creating a new word. A DOL–system
can thus be described as a triplet G = 〈V, ω, P 〉. We use
the resulting words of the DOL–systems for the construc-
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tion of rhythmic sequences with the methodology described
earlier. Therefore, the rewriting procedure is applied recur-
sively, until the length of the resulting word creates a rhyth-
mic sequence with the desired length. An example of an
L–system with the above form is demonstrated in Table 2.

Table 2: Example simulation of a DOL–system for
3 iterations.

V : {A,B}
ω : AB

P : RA = A → AB

RB = B → A

0) AB

1) ABA

2) ABAAB

3) ABAABABA

The rich structure that emerges from L–systems, even of
the simplest form of the DOL–systems, reveals the compo-
sition of music that abounds in interesting tonal variability
but this diversity results to unstable rhythm, exposing its
non–human origin. For example, the L–system examined
in [29] was reported to produce notes that “do not fit well
into 4/4 score notation, because many of the notes are off-
beat”. To overcome this problem, some works have exam-
ined the utilization a constrained set of rhythmic values [7],
but the resulting rhythm was repetitive and uninteresting.
Similar effects have been noted for several variations of L–
systems, with the utilization of various methods for the tran-
sition from symbols to music, providing several rhythmic
interpretations [19].

2.3 Finite L–systems
We define an FL–system [14] as a triplet G = 〈V,Ω, P 〉,

where V = {X1, X2, . . . , Xn} is an alphabet, Ω is a set of
continuously updating axioms ωi, i ∈ {1, 2, . . . ,m}, and P =
{RXi}i∈[1,2,...,n] is a set of rules. The strings that constitute
the set of rules, P , and the axioms, Ω, are nonempty words of
V +. In contrast to the L–systems, the FL–systems have no
fixed axiom, but instead, the axioms are being updated when
an orbit is reached. The number of updates (m), depends
on the length of the piece and the length of the orbit of each
axiom. In each iteration the L-systems produce a word of
variable size which depends on the substitution rules. The
FL–systems on the other hand, produce sequences of words
with fixed length which depends on the time analysis of the
applied measure. Specifically, the length of the initial axioms
ωi and the word produced by an FL–system in each iteration
is the number of symbols needed to fill the current measure.
This length is denoted by α. Each word produced by an FL–
system represents the rhythm in a measure and each axiom
produces a set of words that we call orbit and describe later.

For the construction of rhythmic sequence with an FL–
system we consider an FL–system G = 〈V,Ω, P 〉. We begin
with the application of the set of rules P on the axiom ω1 ∈
Ω, denoting the resulting word with λ1(ω1). The length
of the word |λ1(ω1)| may vary, depending on the length of
the strings that constitutes the substitution rules. If this
length is different than the length needed for the desired

time analysis, α, we perform the trimming procedure which
comprises of following two actions in the respective cases:

1. if this length is smaller than α, i.e. |λ1(ω1)| < α, then
we substitute λ1(ω1) with concatenation of λ1(ω1) with
itself (λ1(ω1) = [λ1(ω1)λ1(ω1)]) until |λ1(ω1)| � α and
then apply the next step, or

2. if |λ1(ω1)| > α, then we substitute λ1(ω1) with the
string that includes its first α symbols.

This procedure “trims” each word to the required size. More
clearly, the first case may happen only if P contains a suf-
ficient number of empty rules, i.e. rules that substitute a
symbol with an empty word. We then obtain the next word
of the sequence, λn+1(ω1) by applying the rules P on λn(ω1)
and then trimming λn+1(ω1).

By recursively following this procedure, we find a pair
of integers ρ and τ , so that for each index i > ρ we have
λi(ω1) = λi+τ (ω1). The application of rules P on each
λi(ω1) for i > ρ, provides a sequence of repeating words
with period τ . We call the first occurrence of repeating
words the orbit of axiom ω1 within the rules P . This or-
bit of τ words creates the rhythmic sequence obtained by
the axiom ω1. We continue by updating axiom ω1 and pro-
ducing the orbits and rhythms of the axiom ω2, ω3, . . . , ωm,
until the necessary number of measures is covered.

Table 3: Example simulation of the first axiom ω1 of
an FL–system.

V : {A,B}
A,B : onset event

P : RA = A → BAA

RB = B → AAB

ω1 : AAAABBBABAAABBAA

iterations: λ1(ω1): AAAABBBABAAABBAA

λ2(ω1): BAABAABAABAAAABA

ρ = 3 λ3(ω1): AABBAABAAAABBAAB

λ4(ω1): BAABAAAABAABBAAB

τ = 2 λ5(ω1): AABBAABAAAABBAAB

λ6(ω1): BAABAAAABAABBAAB

orbit: AABBAABAAAABBAAB

BAABAAAABAABBAAB

rhythm: 1010101100010101

0101100011010101

Table 3 shows the procedure described above to produce
the rhythmic sequence from the first axiom ω1 of an FL–
system. It has to be noted that both words in the orbit
string, are considered adjusted, i.e. the beginning B symbol
of the second word is continuing the concluding B symbol
of the first word. The orbit string may also be considered
cyclic, i.e. the first symbol of the first word may be consid-
ered as the extension of the last symbol of the last word.

3. GENETIC EVOLUTION AND FITNESS
EVALUATION

The methodology described above allows the production
of rhythmic sequences given an L or an FL–system. In or-
der to constitute the utilization of Genetic Algorithms (GA)
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applicable on the grammars under discussion, we consider
a chromosome representation of the substitution rules that
describes these grammars. Furthermore, we discuss a set
of rhythmic features that capture several characteristics of
a rhythmic sequence and use them as fitness evaluators for
the rhythms produced by the systems under examination.

3.1 The chromosome of rules
The output of an L or an FL–system depends mainly on

the set of substitution rules that are applied on the axioms.
These substitution rules are as much as the symbols of the
alphabet, since each symbol on the axiom is substituted by
a string provided by the rule. If a symbol appears to have
no substitution rule we consider that this rule is the empty
string. Given an alphabet V = {X1, X2, . . . , Xn} we may
formally express the set of rules P = {RX1 , RX2 , . . . , RXn},
where each RXi is a string that substitutes the letter Xi in
the axiom strings. The length of the rule string, denoted as
|RXi |, is not fixed and may even be zero if this rule is the
empty string (no substitution rule).

As a first step towards constructing a rule chromosome,
we consider a maximum rule length that we denote by M,
thus ∀ i ∈ 1, 2, . . . , n we have that |RXi | � M. Then we
consider a void character, denoted by *, which is not inter-
preted to any symbol into the final string and is only used
for equalizing the length of all rules. This character is added
at the end of every rule string as many times need so that
the length of each rule becomes M. For example, if we have
M = 4 and RXk = AB, with |RXk | = 2, then we transform
this rule to R*

Xk
= AB**. The transformed version R*

Xi
of

a rule RXi is called the augmented version. In this context,
the empty string rule can be expressed as R*

Xj
= ****. With

this process each rule has a predefined fixed length, M, and
the genuine length of a rule is computed as the number of
the non–* characters.

This formulation allows the representation of a chromo-
some through a single string, denoted with γ, with length
nM, where n is the number of rules and M is the maximum
length of the rule strings. The chromosome string γ is con-
stituted of n M–tuples representing the augmented version
of the respective rule, i.e. the i–thM–tuple is the augmented
version R*

Xi
of RXi . Table 4 demonstrates the transforma-

tion procedure from a set of rules to a rule chromosome and
Table 5 the reverse procedure, from a rule chromosome to a
set of rules.

Genetic operators can be applied to the rule chromosomes
of L and FL–system populations and create novel rule sets,
enabling the application of the standard GA methodology
[11]. To this end, provided a fitness evaluation methodology
(discussed later) on the phenotype (rhythms) of the afore-
mentioned chromosomes, the genetic procedure may con-
verge to rhythms with certain desired attributes. In this
context, a population of L or FL–systems is created with
different rules and this population is evolved into a new gen-
eration. The preservation of the desired characteristics can
be accomplished by garnering a portion of the individuals in
each generation using a selection scheme and create a new
generation by applying to them a set of genetic operators.

3.2 Rhythmic indicators as fitness evaluators
The formulation of efficient rhythmic features has been a

subject of intense research effort, yielding results for features
that indicate rhythm similarity [27] and complexity [25].

The aim of these approaches is to create a set of rules that is
applicable on the comparison and categorization of rhythms.
In this work however, we do not need a “global” set of fea-
tures, but we rather need a set of indicators that describe
general characteristics of a rhythmic sequence. These in-
dicators may then be used as fitness indicators for the ap-
plication of GA. An example rhythm and the values of its
indicators, as described below, is demonstrated in Table 6.

1. Density: This indicator describes the number of events
within a rhythmic sequence. It is calculated from the
quasi–binary rhythm representation by dividing the
number of the non–zero elements of the rhythm with
the total length of the sequence. The density of a
rhythmic sequence is a number between 0 and 1.

2. Pauses: This indicator gives the percentage of pauses
in the rhythmic sequence. It is calculated be divid-
ing the number of the −1 digits of the quasi–binary
representation with the length of the sequence. This
feature’s value is between 0 and 0.5.

3. Self Similarity: Self similarity measures the simi-
larity of the rhythmic sequences in different bars. A
rhythm with extreme self similarity would be consti-
tuted of the same rhythmic sequence in every bar. We
measure the similarity of a rhythmic sequence by con-
sidering the mean value of the linear correlation among
every pair of the rhythms in each bar. This feature
may have a value between −1 and 1.

4. Symmetry: The symmetry of a rhythm can be de-
scribed as the repetitiveness of the distances of con-
secutive onset events. For example, an extremely sym-
metric rhythm would have equally spaced inner–onset
intervals, which means that its interval vector repre-
sentation would have repetitions of an integer. We
measure the symmetry of a rhythmic sequence by di-
viding the standard deviation with the mean value of
the values in its interval vector representation.

5. Syncopation: The syncopation of a rhythms has been
thoroughly studied with complex theoretic models [9]
and cognitive subjective studies [15] among others. A
general outcome of all these approaches is that synco-
pated rhythms are characterized by increased offbeat
onsets, i.e. increased ratio of onsets on the even beats
to onsets on odd beats. We consider a rather naive
measurement of syncopation that is not completely
accurate but it is descriptive: the syncopation of a
rhythmic sequence is considered as the ratio of even
onset events divided with the odd onset events. In the
case where we have no odd onset events we consider
an arbitrary high penalty value.

All five rhythmic indicators are combined linearly to form
a single fitness evaluation. Each indicator value is normal-
ized with the inverse of its range, and the final fitness value is
assessed by the sum of all normalized indicator values. This
paper addresses a comparison of the adaptability of the L
and FL–systems and so the described “coarse” computation
of fitness is sufficient. Furthermore, the descriptive nature
of the rhythm indicators does not pronounce the necessity
of “fine” Pareto optimization. Nevertheless, future research
that focuses on the optimization of the rhythmic sequences
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Table 4: Composition of the rule chromosome from string rules.

P : RX1

→

P *: R*
X1

→ γ =
[
R*

X1
R*

X2
. . . R*

Xn

]RX2 R*
X2

...
...

RXn R*
Xn

Table 5: Decomposition of the rule chromosome to the string of rules.

γ =

[
n︷ ︸︸ ︷

M:R*
X1︷ ︸︸ ︷

xx . . . x

M:R*
X2︷ ︸︸ ︷

xx . . . x . . .

M:R*
Xn︷ ︸︸ ︷

xx . . . x︸ ︷︷ ︸
nM

] →

P *: R*
X1

→

P : RX1

R*
X2

RX2

...
...

R*
Xn

RXn

Table 6: An four–bar example rhythm with 16 beat analysis and the values of its indicators.

Rhythm Indicator

1 −1 1 −1 1 1 −1 1 −1 1 −1 1 1 −1 1 1 Density: 0.5938

1 1 0 −1 0 0 1 1 1 −1 1 −1 1 1 −1 1 Pauses: 0.4474

1 −1 1 1 −1 1 0 0 −1 0 1 1 1 0 1 0 Self Similarity: 0.2520

1 −1 1 1 1 1 1 0 1 −1 1 −1 1 1 −1 1 Symmetry: 0.4460

Syncopation: 0.7273

per se, should incorporate the principles of multi–objective
optimization.

4. RESULTS
We present a comparison of the L and FL–systems in

terms of adaptability to certain rhythmical constraints. The
rules of the L and FL–systems are adjusted over their chro-
mosomic expression using a GA scheme. The fitness evalua-
tion of an individual’s phenotype (the rhythm it produces) is
provided by computing the sum of distances of each rhythm
indicator from a target value. We have created a set of 100
different random rhythm indicator combinations and used
them as fitness values for assessing the results of 100 GA
simulations. In these simulations each rhythm indicator is a
value in the respective range, i.e. density is in [0, 1], pauses
in [0, 0.5], self similarity in [−1, 1], symmetry in [0, 1] and
syncopation in [0, 2].

The genetic operators that we included during the evolu-
tionary process, are the crossover, the character mutation
and substring mutation with probability 0.80, 0.05 and 0.15
respectively. The crossover operator acts on the chromosome
of two individuals by splitting their string representation to
a certain point and cross–exchanging the four parts. The
character mutation operator acts on a single chromosome
string and substitutes a character in a random place within
the string with a random character from the alphabet. The
substring mutation operator substitutes a substring in a ran-
dom place within a chromosome string with a new random
string of characters in the alphabet with the same length.
The selection scheme that we utilized was roulette selection,
where each individual has a probability of being selected

that is proportional to its fitness superiority against the rest
individuals in the population.

The results are obtained from evolving L and FL–systems
in 100 different simulations with a fitness value provided
by the aforementioned 100 target indicator sets. All L and
FL–systems for every simulation were evolved for 50 gener-
ations with a population size of 20 individuals. The initial
population had random rule strings and the axioms in ev-
ery generation were random, thus an individual was only
characterized by its rules. The time analysis was set to 16
and the alphabet constituted of 6 characters, 5 indicating a
simple onset event and 1 indicating a pause event. The fit-
ness value for each individual was computed from rhythmic
sequences they composed and consisted of 50 measures.

Comparing the adaptability of L and FL–systems.
The FL–systems have been better adapted to the 100 ran-

dom target tasks. The mean error for the FL–systems was
0.9939 with 0.4069 standard deviation while the respective
quantities for the L–systems are 1.5121 and 0.5175. The FL–
systems had a better fitness value in the 93% of the target
tasks. The box plots of the fitness values of all 100 simula-
tions for the L and FL–systems are illustrated in Figure 1.

Two features have been used to examine the informa-
tion complexity of the rhythmic sequences with the best
fitness value, the Shannon Information Entropy (SIE) [23]
and the Compression Rate (CR) using the Ziv–Lembel com-
pression algorithm [30]. The SIE of a rhythmic sequence
corresponds to the SIE of the rhythm Probability Density
Function (rPDF). This is computed from the binary repre-
sentation form as the probability that a certain beat has an
onset event. An example rhythmic sequence and its respec-
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L FL
0

0.5

1

1.5

2

2.5

3

Figure 1: Box plot of errors produced during 100
training simulations with 50 generations of L and
FL–systems.

tive rPDF is shown in Table 7. CR represents the ratio of
the size of the compressed rhythmic sequence with the Ziv–
Lembel algorithm to the size of the uncompressed sequence.

Table 7: Computation of the rPDF of a rhythmic
sequence with analysis to fourths.

1 0 1 1

1 0 1 0

1 1 1 1

1 0 1 0

rPDF 0.36 0.09 0.36 0.18

A greater value for SIE, provided a specific time analy-
sis value, indicates an rPDF closer to the uniform distri-
bution. Greater CR values indicate the lack of repeating
rhythmic patterns, since the Ziv–Lembel compression algo-
rithm is based on locating repetitions of a substring within
the string under compression. A combination of great SIE
and CR values of a rhythmic sequence indicate that this se-
quence is more random and complex. Figure 2 illustrates
the box plot of the SIE values and Figure 3 the CR values
of the 100 best fitted rhythms for the L and FL–systems.

The SIE values of the rPDFs of rhythms produced by the
FL–systems are systematically lower than the ones produced
by the L–systems. This fact indicates that the FL–systems
produce rhythms that have a certain rhythmic identity, with
characteristic onset events happening on certain beats. The
SIE values for the L–systems’ rhythms are deteriorated near
their mean value which is 2.7667. This value is near the SIE
of the uniform distribution with 16 random events (2.7726).
Furthermore, the mean CR of the quasi–binary representa-
tion of the L–systems’ rhythms is 0.0273, a value that ap-
proaches the CR of random quasi–binary rhythms (around
0.0300). The FL–systems rhythms are more structured, with
a mean CR 0.0146.

Analyzing the impact of each fitness indicator.
The fitness value of the rhythms produced by the L and

FL–systems depends on the 5 fitness indicators mentioned
earlier. Throughout the evolutionary process the results are
optimized simultaneously for all the fitness indicators. Ta-
ble 8 shows the errors produced for each indicator for the

L FL

2.2

2.4

2.6

2.8

Figure 2: Box plot of the Shannon Information En-
tropy of the 100 best individuals for each simulation.

L FL

0.01

0.015

0.02

0.025

0.03

Figure 3: Box plot of the compressor rates of the
100 best individuals for each simulation.

L and FL–systems where it is obvious that the FL–systems
outperformed the L–systems in any indicator. The great-
est difference is exhibited for the self similarity indicator (in
bold) where the FL–systems reached a remarkable perfor-
mance. It has to be noted that the extreme adaption of the
FL–systems to the any random self similarity task does not
mean that they only produce rhythms with great self simi-
larity. On the contrary, it means that they may produce a
great variety from diverse to repetitive rhythms, since the
random fitness tasks for the self similarity had a range from
−1 to 1.

Table 8: Mean errors among 100 simulations for
each rhythmic feature separately.

Indicator L–systems FL–systems

Density 0.2724 0.2484

Pauses 0.3305 0.2979

Self Similarity 0.4123 0.0792

Symmetry 0.1859 0.1699

Syncopation 0.3109 0.1984

5. CONCLUSIONS
This work presents a methodology for applying Genetic

Algorithms (GA) for the evolution of the rules that deter-
mine the L–systems and their finite variation, the Finite
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L–systems (FL–systems), for the composition of rhythmic
sequences. The L–systems construct a string by recursively
applying their set of rules on an initial axiom, while the FL–
system produce packages of string sequences that match the
required length of the music measure, provided a time res-
olution. The strings produced by the L and FL–system are
directly interpreted into rhythmic entities. The GA method-
ology becomes applicable on the rules of the aforementioned
grammatical systems through the augmented rules represen-
tation that we introduce, which leads directly to the formu-
lation of the chromosome of rules. The evolutionary process
is led towards rhythms with predefined characteristics which
are provided by a set of rhythm indicators that describe the
density, pauses, self similarity, symmetry and syncopation.
Results are presented among 100 random target tasks which
indicate that the FL–systems are more flexible and adapt
more efficiently to a presented task than the L–systems.

The customizability of the FL–systems not only in terms
of rhythmic features, but also in terms of randomness and
complexity, may provide a useful tool for automatic music
composition that meets specified criteria. The interpretation
from string to rhythm may be further developed in order to
incorporate more rhythmic or even musical information. For
example, the quasi–binary representation could be enriched
with more digits that the ones we included in Section 2.
These digits could represent rhythmic notions like intensity
and polyphony, or even melodic content like notes or pitches.
For demonstration of primitive work on these comments, we
provide links to two sample compositions with FL–systems,
one in which the rhythm, polyphony and intensity is pro-
vided by an FL–system [8], and the pitches by the logistic
map [24], and another in which an FL–system also deter-
mines all rhythmic and tonal factors [10]. Future work would
also incorporate the utilization of existing “target” rhythms
for fitness evaluation, examining the potentiality of the dis-
cussed systems to carbon–copy entire rhythmic sequences.
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