
Stretching technique for obtaining global minimizers through

Particle Swarm Optimization

K.E. Parsopoulos�

Department of Mathematics

University of Patras

GR{26110, Patras, Greece

V.P. Plagianakosy

Department of Mathematics

University of Patras

GR{26110, Patras, Greece

G.D. Magoulasz

Department of Information

Systems and Computing

Brunel University

Uxbridge UB8 3PH

United Kingdom

M.N. Vrahatisx

Department of Mathematics

University of Patras

GR{26110, Patras, Greece

Abstract

The Particle Swarm Optimizer, like many other evolutionary and classical minimization methods,

su�ers the problem of occasional convergence to local minima, especially in multimodal and scattered

landscapes. In this work we propose a modi�cation of the Particle Swarm Optimizer that makes use

of a new technique, named Function \Stretching", to alleviate the local minima problem. Function

\Stretching" consists of a two{stage transformation of the objective function that eliminates local minima,

while preserving global ones. Experiments indicate that the Particle Swarm Optimizer equipped with

the \Stretching" technique exhibits good performance and results in �nding global minima reliably and

predictably.

1 Introduction

In many practical optimization problems the search is usually focused on locating the global minimizer of a

real valued objective function f : E ! R, i.e. �nding a point x� 2 E such that

f(x�) � f(x); 8x 2 E ; (1)

where the compact set E � RD is a D{dimensional parallelepiped.

There are many Global Optimization (GO) methods developed so far to deal with the above problem,

see [9] for details. In general, GO methods possess strong theoretical convergence properties, and, at least

in principle, are straightforward to implement and apply. Issues related to their numerical e�ciency are

considered by equipping GO algorithms with a \traditional" local optimization phase. Global convergence,

however, needs to be guaranteed by the global{scope algorithm component which, theoretically, should be

used in a complete, \exhaustive" fashion. This behavior indicates the inherent computational demand of the

GO algorithms, which increases non{polynomially, as a function of problem{size, even in the simplest cases.

Evolutionary computation techniques belong to a special category of GO methods. Evolutionary compu-

tation methods work on a set of potential solutions, which is called population, and �nd the optimal problem

solution through cooperation and competition among the potential solutions [7]. The most commonly used

�kostasp@math.upatras.gr
yvpp@math.upatras.gr
zGeorge.Magoulas@brunel.ac.uk
xvrahatis@math.upatras.gr

population{based evolutionary computation techniques, such as Genetic Algorithms and Arti�cial Life meth-

ods, are motivated from the evolution of nature and the social behavior. These methods can often �nd optima

in complicated optimization problems more quickly than traditional optimization methods.

Recently, Eberhart and Kennedy [3, 5, 11, 12] proposed the Particle Swarm Optimization (PSO) al-

gorithm: a new, simple evolutionary algorithm, which di�ers from other evolution{motivated evolutionary

computation techniques in that it is motivated from the simulation of social behavior. Indeed, in PSO the

population dynamics simulates a bird
ock's behavior where social sharing of information takes place and

individuals can pro�t from the discoveries and previous experience of all other companions during the search

for food. Thus, each companion, called particle, in the population, which is now called swarm, is assumed

to \
y" over the search space in order to �nd promising regions of the landscape. For example, in the min-

imization case, such regions possess lower functional values than other visited previously. In this context,

each particle is treated as a point in a D{dimensional space which adjusts its own \
ying" according to its

ying experience as well as the
ying experience of other particles (companions).

PSO results, in general, good solutions. However, there are cases where PSO, as many other GO methods,

can detect just sub{optimal solutions of the function f . These sub{optimal solutions can be stated as follows.

Let a point �x such that there exists a neighborhood B of �x with

f(�x) � f(x); 8x 2 B: (2)

This point is a local minimizer of the objective function and in many cases this sub{optimal solution is

acceptable. However, there are applications where the optimal solution, i.e. the global minimizer is not only

desirable but also indispensable. Therefore, the development of robust and e�cient techniques for alleviating

this local minima problem is a subject of considerable ongoing research. To this end, the paper introduces

a new technique, named Function \Stretching", and shows through simulation experiments that Function

\Stretching" provides a way of escape from the local minima when PSO's convergence stalls.

The paper is organized as follows. The background of the PSO and the PSO version used in our ex-

periments are presented in Section 2. After introducing, in Section 3, the function \Stretching" technique,

we propose and test, in Section 4, a modi�cation of the PSO algorithm, named \Stretched" PSO. Finally,

discussion and conclusions are given in Section 5.

2 Background of the PSO method

There are many variants of the PSO proposed so far, after Eberhart and Kennedy introduced this method [4,

5]. In our experiments we have used a new version of this algorithm, which is derived by adding a new

inertia weight to the original PSO dynamics [3]. But before presenting the method, let us introduce the

notation adopted in this paper: the i-th particle of the swarm is represented by the D{dimensional vector

Xi = (xi1; xi2; : : : ; xiD) and the best particle in the swarm, i.e. the particle with the smallest function value,

is denoted by the index g. The best previous position (the position giving the best function value) of the

i-th particle is recorded and represented as Pi = (pi1; pi2; : : : ; piD), and the position change (velocity) of the

i-th particle is Vi = (vi1; vi2; : : : ; viD).
The particles are manipulated according to the equations

vid = wvid + c1r1(pid � xid) + c2r2(pgd � xid); (3)

xid = xid + vid; (4)

where d = 1; 2; : : : ; D; i = 1; 2; : : : ; N and N is the size of population; w is the inertia weight ; c1 and c2 are
two positive constants; r1 and r2 are two random values in the range [0; 1].

The �rst equation is used to calculate i-th particle's new velocity by taking into consideration three terms:

the particle's previous velocity, the distance between the particle's best previous and current position, and,

�nally, the distance between swarm's best experience (the position of the best particle in the swarm) and

i-th particle's current position. Then, following the second equation, the i-th particle
ies toward a new

position. In general, the performance of each particle is measured according to a prede�ned �tness function,

which is problem{dependent. The inertia weight is employed to control the impact of the previous history

of velocities on the current velocity. In this way, the parameter w regulates the trade{o� between the global

(wide{range) and local (nearby) exploration abilities of the swarm and in
uences PSO convergence behavior.

A large inertia weight facilitates global exploration (searching new areas), while a small one tends to facilitate

local exploration, i.e. �ne{tuning the current search area. A suitable value for the inertia weight w usually

provides balance between global and local exploration abilities and consequently a reduction on the number

of iterations required to locate the optimum solution. As a general rule of thumb, it is better to initially

set the inertia weight to a large value, in order to make better global exploration of the search space, and

gradually decrease it to get more re�ned solutions; thus, a time decreasing inertia weight value has been

used in our experiments presented in the next section.

It is becoming obvious from the above discussion that PSO, to some extent, resembles evolutionary

computing. However, in PSO, instead of using genetic operators, each individual (particle) updates its own

position based on its own search experience and other individuals (companions) experience and discoveries.

Adding the velocity term to the current position, in order to generate the next position, resembles the

mutation operation in evolutionary computing. Note that in PSO, however, the \mutation" operator is

guided by particle's own \
ying" experience and bene�ts by the swarm's \
ying" experience. In another

words, PSO is considered as performing mutation with a \conscience", as pointed out by Eberhart and

Shi [3].

3 Equipping PSO with function \stretching"

In this section we describe the function \stretching" technique and we propose an algorithm model for

equipping PSO with function \stretching"; this modi�ed PSO is named \Stretched" PSO (SPSO).

The basic idea behind function \stretching" is to perform a two{stage transformation on the form of

the original function f(x). This can be applied soon after a local minimum �x of the function f has been

detected:

G(x)=f(x) +
1
kx� �xk�(sign(f(x)� f(�x)) + 1)

2
; (5)

H(x)=G(x) +
2
sign (f(x)� f(�x)) + 1

2 tanh (�(G(x) �G(�x)))
; (6)

where
1;
2 and � are arbitrary chosen positive constants, and sign(�) de�nes the well known three valued

sign function.

The �rst transformation stage, Eq. 5, elevates the function f(x) and makes disappear all the local minima

which are located above �x. The second stage, Eq. 6, stretches the neighborhood of �x upwards, since it assigns
higher function values to those points. Both stages do not alter the local minima located below �x; thus, the
location of the global minimum is left unchanged. Note that the sign function, which is used in the above

transformation, can be approximated by the well known logistic function:

sign(x) � logsig(x) =
2

1 + exp(��1x)
� 1 ' tanh(�2x);

for large values of �1 and �2. This sigmoid function is continuously di�erentiable and is widely used as a

transfer function in arti�cial neurons.

At this point it is useful to provide an application example of the technique so as to illustrate its e�ect.

The problem considered is a notorious two dimensional test function, called the Levy No. 5 [6]:

f(x) =

5X
i=1

i cos[(i+ 1)x1 + i]�

5X
j=1

j cos[(j + 1)x2 + j] +

+(x1 + 1:42513)2 + (x2 + 0:80032)2;

where �10 � xi � 10; i = 1; 2. There are about 760 local minima and one global minimum with function

value f� = �176:1375 located at x� = (�1:3068;�1:4248). The large number of local minimizer makes

extremely di�cult for any method to locate the global minimizer. In Fig. 1, the original plot of the Levy

No. 5 into the cube [�2; 2]2 is shown.

Figure 1: Plot of the original Levy No. 5 function.

Figure 2: Plot of the Levy No. 5 after the �rst stage (left) and the second stage (right) of the \Stretching"

transformations.

After applying the transformation of Eq. 5 (�rst stage of function \Stretching") to the Levy No. 5, the

new form of the function is shown on the left side of Fig. 2. As one can observe, local minima with higher

functional values than the \stretched" local minimum (which looks as if a pin is positioned over it and the

rest of the function is stretched around it) disappeared, while lower minima as well as the global one have

been left una�ected. The �nal shape of the landscape is shown on the right side of Fig. 2; that is a result of

applying the second transformation stage to the Levy No. 5. It is clearly shown how the whole neighborhood

of the local minimum has been elevated; thus, the former local minimum has now turned to be a local

maximum of the function.

Table 1, below, provides an algorithm model for a modi�ed PSO method, named `Stretched" PSO. SPSO

is initialized with the PSO method, as presented in Section 2, for minimizing the �tness function. When

PSO stumbles upon a local minimum, the function \Stretching" technique is applied to the original �tness

function and SPSO is re{initialized with the PSO for the minimization of the stretched function.

Details on the performance of the SPSO in some well known test problems, as well as suggestions for

selecting parameter values for the function \Stretching" technique are presented in the next section.

4 Experimental results

In this section, we present results from testing the classical PSO method and the \Stretched" PSO. We

have used some hard and well known optimization problems, such as the minimization of several of the Levy

test functions [6], the 2{dimensional and the 4{dimensional Corana functions [2], the Freudenstein{Roth

\Stretched" Particle Swarm Optimizer

0: Set iteration counter it 0 and local minima counter LMC 0.

1: Initialize randomly population and velocities, as two matrices of dimension D � PS,
where D is the dimension of the problem and PS is the population size.

2: Set as best position for each particle the initial position assigned in Step 1.

3: Set inertia w to its initial value w0.

4: Find the index g of the best particle of the population.

5: While Error Goal not met, do

6: Set it it+ 1.

7: Set w (w � wd), where wd is a prede�ned value.

8: Update population and velocities according to Eq. 3 and 4.

9: Update best positions and the index g.
10: Check if a local minimum has been detected. If yes, set LMC LMC + 1.

11: if LMC 6= 0 then set f(x) H(x), where f(x) is the objective function and

H(x) is de�ned by Eq. 6.

12: End While

13: Return Results

Table 1: Algorithm model of the SPSO.

and Goldstein{Price functions [8], and a classical Arti�cial Neural Networks (ANNs) pattern classi�cation

problem, i.e. the classi�cation of the eXclusive{OR (XOR) patterns.

In all the simulations reported, the values of
1;
2 and � were �xed:
1 = 10000;
2 = 1 and � = 10�10.

Default values for the parameters c1 and c2 have been used: c1 = c2 = 0:5. Although the choice of the

parameter values seems to be not critical for the success of the methods, faster convergence can be obtained

by proper �ne{tuning. The balance between the global and local exploration abilities of the SPSO is mainly

controlled by the inertia weights, since the particles' positions are updated according to the classical PSO

strategy. A time decreasing inertia weight value, i.e. start from 1 and gradually decrease towards 0.4, has

been found to work better than using a constant value. This is because large inertia weights help to �nd

good seeds at the beginning of the search, while, later, small inertia weights facilitate a �ner search.

For each problem 100 runs were performed using the SPSO and the average performance is exhibited in

terms of the mean value and standard deviation of the number of function evaluations, and the percentage

of SPSO success. Results for all of the aforementioned problems can be seen in Table 2, while the size of

the population used for each problem as well as the initial hypercube into which the initial population was

randomly taken, are presented in Table 3.

\Stretching" applied PSO SPSO

Test Problem Dim. Mean St.D. Succ. Mean St.D. Succ. Mean St.D. Succ.

Levy No.3 2 15246.6 6027.3 15% 5530.5 6748.0 85% 6988.0 7405.5 100%

Levy No.5 2 3854.2 1630.1 7% 1049.4 235.1 93% 1245.8 854.2 100%

Levy No.8 3 0 0 0% 509.6 253.2 100% 509.6 253.2 100%

Freud.-Roth 2 3615.0 156.1 40% 1543.3 268.1 60% 2372.0 1092.1 100%

Goldst.-Price 2 17420.0 3236.56 5% 1080.0 225.6 95% 1897.0 3660.3 100%

Corana 2D 2 0 0 0% 1409.6 392.8 100% 1409.6 392.8 100%

Corana 4D 4 13704.6 7433.5 26% 2563.2 677.5 74% 5460.0 6183.8 100%

XOR 9 29328.6 15504.2 23% 1459.7 1143.1 77% 7869.6 13905.4 100%

Table 2: Analysis of the results for the minimization of several test problems.

Test Problem Dim. Popul. Size Initial Hypercube

Levy No.3 2 20 [�10; 10]2

Levy No.5 2 20 [�2; 2]2

Levy No.8 3 20 [�5; 5]3

Freud.-Roth 2 20 [�5; 5]2

Goldst.-Price 2 20 [�2; 2]2

Corana 2D 2 20 [�5; 5]2

Corana 4D 4 80 [�1; 1]4

XOR 9 80 [�1; 1]9

Table 3: Population size and initial hypercube for each test problem.

The Levy No. 3 function is given by the formula:

f(x) =

5X
i=1

i cos[(i+ 1)x1 + i]�

5X
j=1

j cos[(j + 1)x2 + j]

where �10 � xi � 10; i = 1; 2. There are about 760 local minima for this function and 18 global minima with

function value f� = �176:542. As can be seen from Table 2, in 85 out of 100 cases PSO found the global

minimum without any help, while in 15 cases it got stuck in a local minimum and function \Stretching" has

been successfully applied. Thus the success rate of PSO increased by 15%.

An increase of the success rate, from 93% to 100%, was observed for the Levy No. 5 function, where

\Stretching" has been applied in 7 cases, while for the Levy No. 8, PSO was able to detect the global

minimum without any help in all 100 runs. The Levy No. 8 function is given by the equation:

f(x) = sin2(�y1) +

n�1X
i=1

(yi � 1)2[1 + 10 sin2(�yi+1)] + (yn � 1)2

where yi = 1 + (xi � 1)=4, i = 1; : : : ; n and xi 2 [�10; 10] for i = 1; 2; 3 and has one global minimum at the

point x� = (1; 1; 1) with function value f� = 0, and, approximately, 125 local minima.
The Corana function in 4 dimensions is de�ned by the equation:

f(x) =

4X
j=1

8><
>:

0:15�

�
zj � 0:05 � sgn(zj)

�
2

� dj ; if jxj � zj j < 0:05;

dj � x2j ; otherwise;

where xj 2 [�1000; 1000], dj = 1; 1000; 10; 100 and

zj =
j��� xj
0:2

���+ 0:49999
k
� sgn(xj)� 0:2:

and is a very di�cult minimization problem for many methods. As can be seen from Table 2, plain PSO has

only 74% success rate, but using SPSO the success rate increases to 100%.

Similar results can be seen for the Freudenstein{Roth and Goldstein{Price functions, where the PSO

success rate is increased by 40% and 5% respectively. The Freudenstein{Roth function is given by the

formula:

f(x) = [�13 + x1 + ((5� x2)x2 � 2)x2]
2 + [�29 + x1 + ((x2 + 1)x2 � 14)x2]

2

and has a global minimizer x� = (5; 4) with function value f(x�) = 0, while the Goldstein{Price function is

given by the formula:

f(x) = (1 + (x1 + x2 + 1)2(19� 14x1 + 3x21 � 14x2 + 6x1x2 + 3x22))�

�(30 + (2x1 � 3x2)
2(18� 32x1 + 12x21 + 48x2 � 36x1x2 + 27x22))

and has a global minimum with function value f� = 3 at the point x� = (0;�1).
Several other optimization methods, such as Steepest Descent with adaptive stepsize and backtracking

(SD), Fletcher{Reeves (FR), Polak{Ribiere (PR), Davidon{Fletcher{Powell (DFP) and Broyden{Fletcher{

Goldfarb{Shanno (BFGS) [10], were tested too in the Freudenstein{Roth and the Goldstein{Pricefunctions.

None of these methods was able to outperform the SPSO, as can be seen from the results exhibited in Table 4.

Freudenstein{Roth Goldstein{Price

Algorithm Mean St.D. Succ. Mean St.D. Succ.

SPSO 2372 1092.1 100% 1897 3660.3 100%

SD 41651 6153.4 77.3% 700 363.9 84.3%

FR 245 599.8 44.3% 1475 3097.1 71.4%

PR 120 13.2 43.8% 238 41.3 79.9%

DFP 91 9.7 43.7% 162 28.6 59.3%

BFGS 91 9.8 43.8% 161 27.0 59.9%

Table 4: Comparative results for the Freudenstein{Roth and Goldstein{Price test functions.

In another experiment, an ANN has been trained using the SPSO to learn the XOR Boolean classi�cation

problem. The XOR function maps two binary inputs to a single binary output and the ANN that was trained

to solve the problem had 2 linear input nodes, two hidden nodes and one output node, all with logistic

activations. This task corresponds to the minimization of the following objective function [13]:

f(x) =

�
1 + exp

�
�

x7

1 + exp(�x1 � x2 � x5)
�

x8

1 + exp(�x3 � x4 � x6)
� x9

��
�2

+

�
1 + exp

�
�

x7

1 + exp(�x5)
�

x8

1 + exp(�x6)
� x9

��
�2

+

"
1�

�
1 + exp

�
�

x7

1 + exp(�x1 � x5)
�

x8

1 + exp(�x3 � x6)
� x9

��
�1
#2

+

"
1�

�
1 + exp

�
�

x7

1 + exp(�x2 � x5)
�

x8

1 + exp(�x4 � x6)
� x9

��
�1
#2
:

In the context of ANNs, the parameters x1; x2; : : : ; x9 are called weights and are usually initialized in the

interval [�1; 1]. It is well known from the neural networks literature that successful training in this case, i.e.

reaching a global minimizer, strongly depends on the initial weight values and that the above{mentioned

function presents a multitude of local minima [1]. It is obvious from the results reported in Table 2 that the

function \Stretching" technique helped to increase signi�cantly the success percentage of the PSO, i.e. the

success rate has been increased from 77% to 100%.

5 Conclusions

Locating global minimizers is a very challenging task for any minimization method. In this paper we use a

new technique, named function \Stretching", for the alleviation of the local minima problem of the Particle

Swarm Optimizer. This technique applies a two{stage transformation to the shape of the �tness function

that eliminates undesired local minima, but preserves the global ones.

Experiments from many hard optimization test problems indicate that the PSO method when equipped

with the proposed technique (SPSO) is capable of escaping from neighborhoods of local minima and locate

the global minimizer e�ectively. The function \Stretching" technique provides stable convergence and thus

a better probability of success for the PSO. The price we pay for the increased success rates of SPSO is an

increase in the total number of function evaluations performed by the algorithm, but we are almost sure that

the �nal result is the global minimum of the objective function.

Future work is focused on optimizing the performance of the proposed modi�cation of the PSO algorithm.

In addition, extensive testing on more complicated real{life optimization tasks is necessary to fully investigate

the properties and evaluate the performance of the function \Stretching" technique.

References

[1] E.K. Blum (1989). Approximation of Boolean functions by sigmoidal networks: Part I: XOR and other

two{variable functions, Neural Computation, 1, 532{540.

[2] A. Corana, M. Marchesi, C. Martini and S. Ridella (1987). Minimizing multimodal functions of contin-

uous variables with the \Simulated Annealing Algorithm", ACM Trans. Math. Soft., 13(3), 262{280.

[3] R.C. Eberhart and Y.H. Shi (1998). Evolving Arti�cial Neural Networks. Proc. International Conference

on Neural Networks and Brain, Beijing, P.R. China.

[4] R.C. Eberhart, P.K. Simpson and R.W. Dobbins (1996). Computational Intelligence PC Tools, Academic

Press Professional, Boston, MA.

[5] J. Kennedy and R.C. Eberhart (1995). Particle Swarm Optimization. Proc. IEEE International Con-

ference on Neural Networks, Piscataway, NJ, IV:1942{1948.

[6] A. Levy, A. Montalvo, S. Gomez and A. Galderon (1981). Topics in Global Optimization. Lecture Notes

in Mathematics No. 909. Springer{Verlag, New York.

[7] Z. Michalewicz (1996). Genetic Algorithms + Data Structures = Evolution Programs. Springer, New

York.

[8] J.J. More, B.S. Garbow and K.E. Hillstrom (1981). Testing Unconstrained Optimization Software, ACM

Trans. Math. Soft., 7(1), 17{41.

[9] A. Neumaier (2000). On the server of the Computational Mathematics group at the University of Vienna,

Austria, http://solon.cma.univie.ac.at/�neum/glopt.html, accessed 26/06/2000.

[10] E. Polak (1997). Optimization: Algorithms and Consistent Approximations. Springer{Verlag, New York.

[11] Y.H. Shi and R.C. Eberhart (1998). Parameter Selection in Particle Swarm Optimization. Proc. Annual

Conference on Evolutionary Programming, San Diego.

[12] Y.H. Shi and R.C. Eberhart (1998). A Modi�ed Particle Swarm Optimizer, Proc. IEEE International

Conference on Evolutionary Computation, Anchorage, Alaska.

[13] M.N. Vrahatis, G.S. Androulakis, J.N. Lambrinos and G.D. Magoulas (2000), A class of gradient un-

constrained minimization algorithms with adaptive stepsize. Journal of Computational and Applied

Mathematics, 114, 367{386.

