
Human Designed Vs. Genetically Programmed
Differential Evolution Operators

N.G. Pavlidis, V.P. Plagianakos, D.K. Tasoulis, and M.N. Vrahatis

Abstract— The hybridization and combination of different
Evolutionary Algorithms to improve the quality of the solutions
and to accelerate execution is a common research practice.
In this paper, we utilize Genetic Programming to evolve
novel Differential Evolution operators. The genetic evolution
resulted in parameter free Differential Evolution operators.
Our experimental results indicate that the performance of the
genetically programmed operators is comparable and in some
cases is considerably better than the already existing human
designed ones.

I. INTRODUCTION

Evolutionary Algorithms (EAs) are problem solving op-
timization methods that employ computational analogs of
evolutionary processes. A variety of evolutionary algorithms
have been proposed; the most commonly encountered being:
Genetic Algorithms [1], [2], Evolution Strategies [3], [4], Ge-
netic Programming [5], [6], Evolutionary Programming [7],
[8], Ant Colony Optimization [9], Particle Swarm Optimiza-
tion [10], and the Differential Evolution algorithm [11]. EAs
rely on the concept of simulating the evolution of a set
of individuals that constitute a population using a set of
predefined operators. Commonly two types of operators are
used: selection and search operators. The most widely used
search operators are mutation and recombination (crossover).

The Differential Evolution (DE) algorithm utilizes the
mutation and recombination operators as search mechanisms,
and the selection operator to direct the search towards the
most promising regions of the solution space [11]. DE is
capable of optimizing difficult multimodal objective func-
tions and has been applied to a large number of different
optimization tasks. It has successfully solved many artifi-
cial benchmark problems [12], as well as hard real–world
problems (see for example [13]–[16]). In [17], DE has been
applied to train neural networks and in [18]–[20] we have
proposed an efficient method to train neural networks having
arbitrary, as well as, constrained integer weights. The DE
algorithm has also been implemented on parallel and dis-
tributed computers [20], [21]. It employs uniform crossover
operators that can take offspring parameters from a particular
parent more often than they do from others. However, the
choice of the appropriate mutation operator depends on the
problem at hand and it is, in general, a nontrivial task
that requires experimentation. In the literature numerous
mutation operators have been proposed for DE [11], [22],
bearing various effects on its exploration and exploitation
capabilities, and the trade off between these two.

All the authors are with the Computational Intelligence Laboratory,
Department of Mathematics, University of Patras, GR–26110 Patras, Greece
(email:

�
npav,vpp,dtas,vrahatis � @math.upatras.gr)

The hybridization and combination of different EAs to im-
prove the quality of the solutions obtained and to accelerate
execution is a common practice. In this paper, we follow
a different approach. We utilize Genetic Programming (GP)
to evolve novel DE mutation operators. GP is a method for
automatically creating working computer programs employ-
ing principles of Darwinian evolution, and having as input
a high-level statement of the problem [5]. In other words,
GP aims to address the problem of automatic programming,
i.e. how to enable a computer to do useful things without
providing it with step by step instructions. GP aspires to
induce a population of computer programs that gradually
improve as they evolve and experience the data on which
they are evaluated. Notice that the term GP can also include
systems that constitute, or contain, explicit references to
programs (executable code), or to programming language
expressions [23].

In this study, we present a comparison between already
known human-designed mutation operators and new geneti-
cally programmed ones. In a similar manner, in [24] and [25]
the evolution of optimal equations to control the particles
of PSO using genetic programming was introduced. Using
a restricted set of test problems to evaluate performance,
it is likely to obtain operators that appear effective but
are not on broader problem sets. It is interesting to note,
however, that GP managed to evolve a special case of a
particularly effective DE mutation operator. A genetically
evolved operator also exhibited the most robust performance.

The rest of the paper is organized as follows. In Section II
the DE algorithm is briefly described and in Section III the
GP algorithm is outlined. Section IV describes the proposed
approach and Section V is devoted to the presentation and
the discussion of the experimental results. The paper ends
with concluding remarks and some pointers for future work.

II. THE DIFFERENTIAL EVOLUTION ALGORITHM

Differential Evolution [11] is a minimization method,
capable of handling non-differentiable, nonlinear and multi-
modal objective functions. To this end DE has been designed
as a stochastic parallel direct search method, which utilizes
concepts borrowed from the broad class of EAs. The method
typically requires few, easily chosen, control parameters. Ex-
perimental results have shown that DE has good convergence
properties and outperforms other well known EAs [26].

DE is a population–based stochastic algorithm that exploits
a population of potential solutions, individuals, to effectively
probe the search space. The population of individuals is
randomly initialized in the optimization domain with Np,

0-7803-9487-9/06/$20.00/©2006 IEEE

2006 IEEE Congress on Evolutionary Computation
Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada
July 16-21, 2006

1880

� –dimensional, vectors following a uniform probability dis-
tribution. Individuals evolve over successive iterations to ex-
plore the search space and locate the minima of the objective
function. The population size, Np, is fixed throughout the
execution. At each iteration, called generation, new vectors
are derived by the combination of randomly chosen vectors
from the current population. This operation is referred to as
mutation and produces the mutant individuals. Each mutant
individual is then mixed with another, predetermined, vector
– the target vector – through an operation called recombi-
nation. This operation yields the so–called trial vector. The
trial vector undergoes the selection operator, according to
which it is accepted as a member of the population of the
next generation only if it yields a reduction in the value of
the objective function � relative to that of the target vector.

Next, we briefly describe the human designed search
operators that were considered in this paper. The search op-
erators efficiently shuffle information among the individuals,
enabling the search for an optimum to focus on the most
promising regions of the solution space. The first operator
considered is mutation. Specifically, for each individual ���� ,�
	����������Np, where � denotes the current generation, a new
individual ���� (mutant individual) is generated according to
one of the following equations:� �� 	 ���������� ���! �#"%$�'& �#")(�+* (1)� �� 	 � "%$� ���! � ",(� & � ")-� * (2)� �� 	 � �� �.�! � �������� & � �� */���! � "%$� & � ")(� * (3)� �� 	 ���������� ���! �#"%$�'& �#")(�+*/���! �0",-�'& �0"21�+* (4)� �� 	 �#"%$� ���! �0",(� & �#")-� *3�.�! �#",1� & �0",4� * (5)

where � �������� is the best member of the previous gen-
eration; � 5 6 is a real parameter, called mutation
constant, which controls the amplification of the differ-
ence between two individuals, and is used to prevent the
stagnation of the search process; and 7 $ 7 (7 - 7 1 7 498: �;)<=������>2� & �?,� � ���������)@BADC , are random integers mutu-
ally different and not equal to the running index � .

Trying to rationalize the above equations, we observe that
Eq. (2) is similar to the crossover operator employed by some
Genetic Algorithms; while Eq. (1) is derived from Eq. (2),
by substituting the best member of the previous generation,�0EGFIH�J� , for the random individual � "%$� . Eqs. (3), (4) and (5) are
modifications obtained by the combination of Eqs (1) and (2).
Clearly, more such relations can be generated using the above
ones as building blocks. For example, the recently proposed
trigonometric mutation operator [22] performs a mutation
according to the following equation, with probability KML :� �� 	 �0"N$� � �#")(� � �0",-� *,OQPD�R TS (&US $ *> �#"%$� & �0",(� *N��V TS - &US (*> � ")(� & � ",-� *;�R WS $ &US - *� � ")-� & � "%$� * (6)

while, with probability � & K L * , the mutation is performed
according to Eq. (2). Here, K L is a user defined parameter,
typically set around 6 �X� . The values of SZY \[]	 : ��N<= P C

and S#^ are obtained through the following equations:S $ 	`__ � � "N$� * __ ONS ^ S (__ � � ",(� * __ ONS ^ S - 	`__ � � ",-� * __ ONS ^ andS ^ 	`__ � �0"N$�+* __ � __ � �0",(�+* __ � __ � �#")-�+* __ �
In the remaining paper, we call acb $ the DE algorithm that
uses Eq. (1) as the mutation operator, adb (the algorithm that
uses Eq. (2), and so on.

Having performed mutation, the recombination operator is
applied to further increase the diversity of the population.
To this end, the mutant individuals are combined with
other predetermined individuals, called the target individuals.
Specifically, for each component e (e 	f�;)<g������> �) of the
mutant individual ���� , we randomly choose a real number 7
in the interval h 6 ��>i . Then, we compare this number with the
recombination constant, jd7 . If 7lkmjd7 , then we select, as thee –th component of the trial individual n��� , the e –th component
of the mutant individual �=�� . Otherwise, the e –th component
of the target vector � �� becomes the e –th component of the
trial vector. This operation yields the trial individual. Finally,
the trial individual is accepted for the next generation only
if it reduces the value of the objective function.

III. GENETIC PROGRAMMING

GP is an extension of Genetic Algorithms in which indi-
viduals are no longer fixed-length strings but rather computer
programs expressed as syntax trees. GP individuals consist
of function and terminal nodes. Terminal nodes store a value
which they return as an output, while functions process
their inputs to compute an output. The terminal set, o , is
comprised of the inputs, the constants supplied, and the zero-
argument functions. Thus, terminal nodes have an arity of
zero. On the other hand, the function set, � , is composed of
the statements and functions available to GP.

The primary GP search operators are crossover and mu-
tation. In crossover, a randomly selected subtree from each
of the two selected parents is exchanged between them to
form two new individuals (offsprings). The idea is that useful
building blocks for the solution of a problem are accumulated
in the population and crossover permits the aggregation
of good building blocks into even better solutions to the
problem [6]. Crossover is the predominant search operator
in GP [23]. Mutation operates on a single individual by
altering a random subtree. Next, we briefly describe the GP
initialization and the GP operators used in this paper.

A. The GP Initialization
The individuals in the GP population are initialized by

recursively generating syntax trees composed of random
function and terminal nodes. Two established GP initial-
ization methods are the grow and the full method. Both
methods require from the user to specify the maximum
initial tree depth. According to the grow method, nodes
are selected randomly from the function and the terminal
sets. The grow method, therefore, produces trees of irregular

1881

shape, since once a terminal node is inserted the path ending
with this node cannot be extended, even if the maximum
initial depth has not been reached. On the other hand, in the
full initialization method only function nodes are selected
until the maximum initial depth is reached. Beyond that depth
only terminal nodes are chosen to end the branches. This
method results in a balanced tree, every branch of which
reaches the maximum initial depth.

B. The GP Selection Algorithm
To derive the individuals that will comprise the population

of the next generation, GP initially selects individuals from
the current generation. The selection operators that have been
proposed for Genetic Algorithms are also applicable to GP.
In this study, we employed the most commonly encountered
one, namely roulette wheel selection. Define the fitness of the� th individual as p � , where p is the error function we wish
to minimize. Then the probability of selecting individual �
as a parent of an individual of the next generation is equal
to prq� Otsvuw,x $ prqw ; where prq� 	�� O= � � p � * .
C. The GP Crossover Operator

The crossover operator combines the genetic material of
two parents chosen by the selection operator to yield two
offsprings. In particular, a real number 7 is randomly chosen
in the interval h 6 �X�>i . Crossover takes place only if 7ykzj ,
where j is the predefined crossover constant. In this case,
a random node in each parent is chosen and the subtrees
rooted at these nodes are exchanged between the parents to
yield the offsprings. If an offspring exceeds the maximum
depth it is discarded and the corresponding parent individual
takes its place in the population of the next generation. Thus,
crossover produces offsprings by swapping a part of one
parent with a part of the other. If crossover does not take
place (7 5 j) the offsprings are exact copies of the parents.

D. The GP Mutation Operator
After the crossover operator has finished, each offspring

produced undergoes mutation. The probability of mutation
is a user defined parameter. The mutation operator in GP
randomly selects a node of the tree. If the node is a function
then it is replaced by another function. If the node is terminal,
another randomly selected terminal is used instead (point
mutation) [23]. The mutated individual is then placed back
into the population.

IV. GENETICALLY PROGRAMMED DIFFERENTIAL
EVOLUTION MUTATION OPERATORS

As previously mentioned, the aim of this study is to
discover new efficient DE mutation operators using GP. This
is possible since, mutation operators are simply the compo-
sition of elementary functions such as addition, subtraction,
and multiplication, operating on the vectors that represent
individuals of the the DE population. To this end, the
terminal set used for GP, included two numerical constants,
the vector of the best so far DE individual, � �������� , three
vectors of different randomly selected DE individuals, and

the fixed mutation constant � employed by the DE mutation
operators. In detail, the terminal set used in this study was,o 	 : 6 � {g��� � � �M���|�� � "%$� � ")(� � ",-� C . The function set was� 	 : � & %}~N�lC , where } and � are defined as follows:&� � } &� � 	 &� �l�����g�X��� : � $ � (������� � q Cc		 � $ � $ � (� (������� � q � q * � &� � � &� � 	 &� � � ���g�X��� : � O � $ �� O � (��������� O � q Cd		 � $ O � $ � (O � (������� � q O � q * �
where the vectors &� � &� � 8�� q , with &� � � 	 � $ � (������� � q *and &� � � 	 � $ � (������� � q * . Note that the operator � utilizes
a protected division; if the absolute value of the denominator
is less 6 � 6�6�6 � , then � returns � .

The presentation of the problem and the fitness function
typically define the space of candidate solutions for each
particular problem. At present, more than one performance
measure are applicable. One approach is to use the distance
of the discovered minimizer from the global one to measure
the operator’s performance [24]. However, in many real
life applications the location of the global minimizer is
unknown. Conversely, the value of the global minimum could
be known (for example when minimizing the sum of squares,
a chemical or physical process, etc).

In this study, we defined a fitness function, suitable for
general optimization tasks, which utilizes three well known
benchmark optimization problems. More specifically, the
performance of each operator was measured through the sum
of the generations required to locate the global minimum on
each benchmark function, plus the minimum function values
that were discovered. It is known that the performance of the
DE algorithm (like the performance of every other EA) can
vary with the initial random individuals. To reduce the effect
of the stochastic nature of DE, 10 independent evaluations
were performed, and the final fitness was averaged. If the
global minimum was not found after 100 generations DE
terminated. Using this fitness function, we strain GP evolu-
tion towards obtaining DE operators capable of locating the
global optimum, within a minimum number of generations.
Next, we report the three benchmark optimization functions
used along with their global minima and minimizers.

Train Problem 1: Shekel’s Foxholes [27]� (� * 	 �6 � 6;6 < �.� $ � * � w 8 h &�� {g� { P�� � {g� { P�� i�
where, � $ � * 	 (21� � x��

�� � � � s (w,x $ � w &R� � w *I� �
The parameters for this function are:� � $: &�P <g & � � 6 �� � P <�C� where�\	 : 6 ��;)<g P ,�gC and � � $ 	 � �2�\�%� 4�� $� � (: &�P <g & � � 6 �� � P <�C� where�\	 : 6){g�� 6 ���{=N< 6 C and� � (� �X�/� � (3�!	 : ��)<g P 2�gC��

1882

The global minimum is � (I&�P <= &�P < * 	 6 � �;��� 6;6 � .
Train Problem 2: Corana Parabola [28]

� (� * 	 1�w,x $
� � (� w * if � � w &y w ��¡ 6 � 6 {=� - � w * otherwise

where � (� w * 	 6 �X�M{ | w &R6 � 6 { sign ¢ w *2* (�£ w , � - � w * 	£ w � (w , w 	 ¤¥{ � � w � �¦6 � �������;�Q§ sign � w *I6 �¨< and £ w 	: �;�� 6�6�6 �� 6 �� 6�6 C .
The Corana test function defines a paraboloid with axes

parallel to the coordinate axes. The function is characterized
by a multitude of local minima, increasing in depth as one
moves closer to the origin. The global minimum of the
function is � (� * 	 6 , for � w 8 2&�6 � 6 {g 6 � 6 { * .
Train Problem 3: Levy No. 5 Function [29]

� - � * 	 4� � x $~© �+ª�«;¬t � & � * � $ � �I®%¯ �� 4�w,x $U© ° ª>«�¬ ° � � * � (� ° ®%¯ ��± � $ � ��� ��<;{=� P;* (�² � (��6 � � 6�6;P < * (
where & � 6 k�� � k � 6 , and �d	³�;)< . There are about ´ ��6
local minima and one global minimum with function value� - � * 	 & � ´ � �X� P ´ { , at ��� P�6�� �g���� ��<Q��� * . The large number
of local minimizers makes it difficult for any method to locate
the global one.

V. PRESENTATION OF EXPERIMENTS

The computational experiments were performed utilizing a
GP–DE interface developed in C++, using the GNU compiler
collection (gcc) version �#� 6 � P on a Debian Linux operating
system. The C++ implementation relies on the interface for
the creation of expressions described in [30].

We employed the full GP initialization method with a max-
imum initial tree depth of P . Another critical GP parameter
is the maximum allowed depth for the trees. The maximum
depth parameter is the largest allowed depth between the
root node and the outermost terminals. The maximum depth
during the GP execution was 100. GP population size was� 6 , while the maximum number of generations was set to� 6;6�6 . The mutation and crossover probabilities for GP were
set to 6 � � and 6 �X� , respectively. The values for the parameters� and jd7 employed by the DE algorithm (irrespective of the
mutation operator), were set to 6 � � and 6 � � , respectively.

We conducted 100 independent GP experiments. The five
best performing DE mutation operators discovered are the

following:� �� 	 � "N$� � � ")(� ® � � �² � ")-� � � �������� * ® (7)� �� 	 ���������� �.6 � { �0"N$� & �#")(� * (8)� �� 	¶µ �#"%$�l� �#")-�!· �±µ� �#"%$� � ���������� ® � �#")(� � ���������� ® · (9)� �� 	 µ �#")-�l� ���������� · � µ# �#")-� � �0"N$� ® � �#")(� � �#�M���|�� ® · (10)� �� 	 µ# �0"N$� } �0",-�¸· � �#"%$� � �#")-� ® · }} µ� �#�������� � �#")-� · � ���������� � �#")(� ® · � (11)

Throughout the remaining paper, we call ¹»º¼adb $,¹»º½acb (������> ¹»º¼adb 4 the DE algorithm that uses Eq. (7),
Eq. (8), ����� , Eq. (11) as the mutation operator, respectively.
It is evident that the proposed methodology allows us to
routinely “invent” new specialized DE operators, which are
optimal or near-optimal for a specific problem. Notice that
although the mutation constant � was included in the ter-
minal set, all the above mentioned GP derived DE mutation
operators are parameter free. This is a considerable advantage
since it alleviates the need for parameter tuning by the user.

The original DE algorithm exploits the information from
the differences between pairs of individuals to guide its
search in the solution domain [12], [31]. Although, in all
the mutation operators discovered here, individuals interact
in pairs, pairwise differences are not encountered in any¹»º½acb operator but ¹»º½acb (. Indeed, ¹»º¼adb (is equivalent
to adb $ for the special case that � 	 6 �¨{ . The experimental
results reported below suggest that this particular setting is
more effective than a typical value of � for the benchmark
problems considered.

To measure the efficiency and effectiveness of the newly
discovered ¹»º¼adb operators, we tested them on the three
previously mentioned optimization benchmark functions, as
well as on two additional functions; namely the Griewangk’s
and the Rosenbrock’s Saddle test functions. As a final vali-
dation test for the GP derived DE operators we apply them
to minimize the Shifted-Rotated Weierstrass Function [32].
Below we report the optimization functions along with their
global minima and minimizers.
Test Problem 1: Griewangk’s Function [33]

� 1 � * 	 $ ��w,x $ � (w� 6;6�6 & $ �¾w,x $ ª>«�¬�¿±�
wÀ °
Á � �;� w 8 h & � 6�6 2� 6;6 iG�

This test function is riddled with local minima. The global
minimum of the function is � 1 ¥6 ������> 6;* 	 6 .
Test Problem 2: Rosenbrock’s Saddle [27]� 4 � * 	Â� 6�6 � �#($ & � (* (�� � & � $ * (� w 8 h & <=� 6 ���g)<g� 6 �;�?i��
This is a two–dimensional test function, which is known to
be relatively difficult to minimize. The global minimum is� 4 �;�� * 	 6 .The performance of the human-designed and the genet-
ically programmed DE mutation operators is presented in

1883

TABLE I
SIX HUMAN DESIGNED VS FIVE GENETICALLY PROGRAMMED DIFFERENTIAL EVOLUTION OPERATORS

TRAINING PHASE TESTING PHASE
PROBLEM 1 PROBLEM 2 PROBLEM 3 PROBLEM 1 PROBLEM 2
Gen. (Ã) Gen. (Ã) Gen. (Ã) Gen. (Ã) Gen. (Ã)adb $ 95.6 5 87.5 42 64.9 50 29.8 100 — 0adb (83.8 95 — 0 76.8 100 56.8 100 — 0adb - 97.5 13 97.9 35 76.9 63 43.7 100 — 0adb 1 — 0 39.8 79 89.2 16 52.3 74 96.8 12adb 4 94.6 20 — 0 92.9 22 81.2 85 — 0adb � 81.2 64 — 0 72.1 100 63.1 96 — 0¹»º¼adb $ — 0 29.9 94 43.7 96 55.9 68 93.6 44¹»º¼adb (84.1 23 98.8 3 34.0 88 25.1 100 — 0¹»º¼adb - 78.5 25 58.2 57 52.8 65 28.0 100 76.9 53¹»º¼adb 1 — 0 12.1 100 82.6 32 38.8 100 20.3 100¹»º¼adb 4 — 0 25.7 100 57.1 59 38.4 93 82.2 28

(— denotes that the algorithm failed to find the global minimum in all runs)

Table I. In particular, for each mutation operator and for
each benchmark function, Table I reports the mean number of
generations required to locate a global minimizer (Gen.), as
well as, the percentage of times the algorithm was successful
in locating a global minimizer (%). The reported results
are averages over � 6�6 independent experiments for each
mutation operator. Note, that in the cases DE was unable to
identify a global minimizer, the maximum allowed number
of generations was added to the sum used to compute the
mean number of generations required to locate a global
minimizer. The entry “—” in the table suggests that the
success rate of a mutation operator for the corresponding
benchmark was zero. Finally, bold faced entries are used to
indicate the mutation operator with the lowest mean number
of generations to detect a global minimizer and the one with
the highest success rate.

With respect to the mean number of generations required
to detect a global minimizer, the best performing mutation
operator is in all cases derived by Genetic Programming. The
best performing mutation strategy in this respect is ¹»º½acb (,which is a special case of acb $. For two out the five optimiza-
tion problems (Train Problem 3 and Test Problem 1), acb $requires the lowest mean number of generations to compute
a global minimizer among the original acb operators. On the
same two problems ¹»º¼adb (is the overall best performing
strategy in this respect, but it performs badly on Test Problem
2. ¹»º¼adb 1 is by far the best performing strategy on Train
Problem 2 and Test Problem 2, for which most operators
performed badly. With respect to the percentage of times a
minimizer was located, the two types of operators perform
similarly well on Test Problem 1. Last but not least, it
is important to note that the most robust operator with
respect to both criteria is ¹»º¼adb - . It is the best performing
operator with respect to mean number of generations on Train
Problem 1, the second best on Test Problem 1, and the third
best performing on Train Problem 3 and Test Problem 2.

Furthermore, it is the only operator that achieved a positive
percentage of locating a minimizer on all the test functions.
Our experience is that ¹»º¼adb - is stable and effective, and
can be used to optimize an unknown function with good
results.

A. Shifted-Rotated Weierstrass Function
Finally, we validated the GP derived DE operators on the

Shifted-Rotated Weierstrass Function [32]. This is the test
function � $)$ of the CEC 2005 benchmark for real functions.
The Weierstrass function is a hard to minimize multimodal
function that has been rotated and shifted. The Shifted-
Rotated Weierstrass Function is defined as follows:

� $)$ 	 (� � x $
Ä �NÅ/Æ2Ç�� xÈ� � � ª>«�¬ <?É/Ê � ¢ � �.6 � { *2* ®>Ë &

& < � �NÅ/Æ,Ç�� xÈ� �=� ª�«;¬ <QÉ/Ê �?6 �¨{ * ® � ÊN� �=Ì $,$ (12)

where � 	 6 �¨{=NÊd	 P N� YÎÍ>Ï 	Ð< 6 � 	 � � &�Ñ � *3ÒÔÓ and� � 8 h &�6 �¨{= 6 � {Qi�,�Õ	Ö��)< . For the rotation the linear trans-
formation matrix Ó has been used and ��× 	 h Ñ $ Ñ (i is the
new (shifted) global optimum, with � $)$ �Z× * 	ØÊN� ��Ì $)$ 	v� 6 .Figure 1 illustrates the 3-d plot of this benchmark function,
while Table II reports the experimental results obtained for
this function.

VI. CONCLUSIONS

In this paper, we utilize Genetic Programming to evolve
novel Differential Evolution operators. As the “no free lunch
theorem” [34] implies, it is impossible to find a single DE
operator that outperforms all the other in every test problem.
Instead, we try to discover new DE operators better suited
for general optimization problems, or classes of problems.

The experimental results indicate that the best performing
DE mutation operator is in all cases GP derived. GP has been

1884

Fig. 1. 3–D Plot of the Shifted-Rotated Weierstrass Function

TABLE II
PERFORMANCE ON THE SHIFTED-ROTATED WEIERSTRASS FUNCTION

Gen. (Ù)Ú
Û/Ü 81.88 78Ú
ÛZÝ — 0Ú
Û0Þ — 0Ú
Û0ß — 0Ú
ÛZà — 0Ú
Û0á — 0â
ã Ú
Û Ü 93.27 42â
ã Ú
Û Ý 66.57 79â
ã Ú
Û Þ 64.66 98â
ã Ú
ÛZß 89.39 54â
ã Ú
ÛÈà 73.05 71
(— denotes that the algorithm failed to
find the global minimum in all runs)

able to automatically evolve a variety of new DE mutation
operators that operate as well or considerably better, for
the considered problems, than the already existing human-
designed ones. It is interesting to note that all the new DE
mutation operators are parameter free, in the sense that no
mutation constant is needed.

In a future correspondence, we intend to investigate the
parallel implementation of the proposed approach. Addition-
ally, we will study the performance of the GP derived DE
algorithms on difficult high–dimensional real–life problems
encountered in bioinformatics, medical applications and neu-
ral network training.

ACKNOWLEDGMENT

The authors would like to thank the anonymous referees
for their constructive comments and useful suggestions that
helped to significantly improve this paper. We would also
like to thank the European Social Fund, Operational Program
for Educational and Vocational Training II (EPEAEK II), and
particularly the Program “Pythagoras” for funding this work.
We also acknowledge the financial support of the University
of Patras Research Committee through a “Karatheodoris”
research grant.

REFERENCES

[1] D. Goldberg, Genetic Algorithms in Search, Optimization, and Ma-
chine Learning. Reading, MA: Addison Wesley, 1989.

[2] J. Holland, Adaptation in natural and artificial system. University of
Michigan Press, 1975.

[3] I. Rechenberg, “Evolution strategy,” in Computational Intelligence:
Imitating Life, J. Zurada, R. Marks II, and C. Robinson, Eds. Piscat-
away, NJ: IEEE Press, 1994.

[4] H.-P. Schwefel, Evolution and Optimum Seeking. New York: Wiley,
1995.

[5] J. R. Koza, “Hierarchical genetic algorithms operating on populations
of computer programs,” in Proceedings of the Eleventh International
Joint Conference on Artificial Intelligence, 1989, pp. 768–774.

[6] ——, Genetic Programming: On the Programming of Computers by
Means of Natural Selection. Cambridge, MA, USA: MIT Press, 1992.

[7] D. Fogel, Evolutionary Computation: Towards a New Philosophy of
Machine Intelligence. Piscataway, NJ: IEEE Press, 1996.

[8] L. Fogel, A. Owens, and M. Walsh, Artificial intelligence through
simulated evolution. Wiley, 1966.

[9] E. Bonabeau, M. Dorigo, and G. Théraulaz, From Natural to Artificial
Swarm Intelligence. New York: Oxford University Press, 1999.

[10] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Pro-
ceedings IEEE International Conference on Neural Networks, vol. IV.
Piscataway, NJ: IEEE Service Center, 1995, pp. 1942–1948.

[11] R. Storn and K. Price, “Differential evolution – a simple and efficient
adaptive scheme for global optimization over continuous spaces,”
Journal of Global Optimization, vol. 11, pp. 341–359, 1997.

[12] ——, “Minimizing the real functions of the icec’96 contest by differ-
ential evolution,” in IEEE Conference on Evolutionary Computation,
1996, pp. 842–844.

[13] M. DiSilvestro and J.-K. Suh, “A cross-validation of the biphasic poro-
viscoelastic model of articular cartilage in unconfined compression,
indentation, and confined compression,” Journal of Biomechanics,
vol. 34, pp. 519–525, 2001.

[14] J. Hou, P. Siegel, and L. Milstein, “Performance analysis and code
optimization of low density parity-check codes on rayleigh fading
channels,” IEEE Journal on Selected Areas in Communications,
vol. 19, pp. 924–934, 2001.

[15] T. Richardson, M. Shokrollahi, and R. Urbanke, “Design of capacity-
approaching irregular low-density parity-check codes,” IEEE Transac-
tions on Information Theory, vol. 47, pp. 619–637, 2001.

[16] R. Storn, “Differential evolution design of an IIR-filter,” in IEEE In-
ternational Conference on Evolutionary Computation ICEC’96, 1996.

[17] J. Ilonen, J.-K. Kamarainen, and J. Lampinen, “Differential evolution
training algorithm for feed forward neural networks,” Neural Process-
ing Letters, vol. 17, no. 1, pp. 93–105, 2003.

[18] V. P. Plagianakos and M. N. Vrahatis, “Training neural networks
with 3–bit integer weights,” in Genetic and Evolutionary Computation
Conference (GECCO’99), W. Banzhaf, J. Daida, A. Eiben, M. Garzon,
V. Honavar, M. Jakiela, and R. Smith, Eds. Orlando, U.S.A.: Morgan
Kaufmann, 1999, pp. 910–915.

[19] ——, “Neural network training with constrained integer weights,”
in Congress of Evolutionary Computation (CEC’99), P. Angeline,
Z. Michalewicz, M. Schoenauer, X. Yao, and A. Zalzala, Eds. Wash-
ington D.C., U.S.A.: IEEE Press, 1999, pp. 2007–2013.

[20] ——, “Parallel evolutionary training algorithms for ‘hardware–
friendly’ neural networks,” Natural Computing, vol. 1, pp. 307–322,
2002.

[21] D. K. Tasoulis, N. G. Pavlidis, V. P. Plagianakos, and M. N. Vrahatis,
“Parallel differential evolution,” in IEEE Congress on Evolutionary
Computation (CEC 2004), 2004.

[22] H. Y. Fan and J. Lampinen, “A trigonometric mutation operation to
differential evolution,” Journal of Global Optimization, vol. 27, pp.
105–129, 2003.

[23] B. Wolfgang, P. Nordin, R. Keller, and F. Francone, Genetic pro-
gramming: An Introduction: on the automatic evolution of computer
programs and its applications. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1998.

[24] R. Poli, W. Langdon, and O. Holland, “Extending particle swarm
optimisation via genetic programming,” in Proceedings of the 8th
European Conference on Genetic Programming, ser. Lecture Notes
in Computer Science, vol. 3447. Springer, 2005.

[25] R. Poli, C. Di Chio, and W. Langdon, “Exploring extended particle
swarms: a genetic programming approach,” in GECCO 2005: Proceed-
ings of the 2005 conference on Genetic and evolutionary computation,
vol. 1. Washington DC, USA: ACM Press, 2005, pp. 169–176.

[26] J. Vesterstrom and R. Thomsen, “A comparative study of differential
evolution, particle swarm optimization, and evolutionary algorithms on

1885

numerical benchmark problems,” in IEEE Congress on Evolutionary
Computation (CEC 2004), vol. 2, 2004, pp. 1980–1987.

[27] K. D. Jong, “An analysis of the behaviour of a class of genetic adaptive
systems,” Ph.D. dissertation, University of Michigan, 1975.

[28] A. Corana, M. Marchesi, C. Martini, and S. Ridella, “Minimizing
multimodal functions of continuous variables with the “simulated
annealing” algorithm,” ACM Transactions Mathematical Software,
vol. 13, no. 3, pp. 262–280, 1987.

[29] A. Levy, A. Montalvo, S. Gomez, and A. Galderon, Topics in Global
Optimization. Springer-Verlag, New York, 1981.

[30] A. Koenig and B. Moo, Ruminations on C++: A Decade of Program-
ming Insight and Experience. Addison-Wesley, 1996.

[31] R. Storn and K. Price, “Differential evolution – a simple and efficient
adaptive scheme for global optimization over continuous spaces,”
Journal of Global Optimization, vol. 11, pp. 341–359, 1997. [Online].
Available: http://www.icsi.berkeley.edu/˜storn/code.html

[32] P.N. Suganthan, N. Hansen, J.J. Liang, K. Deb, Y.-P. Chen, A.
Auger and S. Tiwari, “Problem Definitions and Evaluation Criteria
for the CEC 2005 Special Session on Real–Parameter Optimization”,
Technical Report, Nanyang Technological University, Singapore, 2005.

[33] A. Griewank, “Generalized descent for global optimization,” Journal
of optimization theory and applications, vol. 34, no. 1, pp. 11–39,
1981.

[34] D. Wolpert and W. Macready, “No free lunch theorems for optimiza-
tion,” IEEE Transactions on Evolutionary Computation, vol. 1, no. 1,
pp. 67–82, 1997.

1886

