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Abstract- Fuzzy Cognitive Maps constitute an important sim-
ulation methodology that combines neural networks and fuzzy
logic. The Fuzzy Cognitive Maps designed by the experts can be
enhanced significantly through learning algorithms, which proved
to increase their efficiency and accuracy of simulation. Recently,
learning algorithms that employ Particle Swarm Optimization
for the minimization of properly defined objective functions
have been introduced. In this work, we enhance these learning
schemes by incorporating local search in PSO, resulting in a
Memetic Particle Swarm Optimization learning algorithm. Three
variants of the memetic algorithm are applied successfully for
the optimization of an Ecological Industrial Park simulation
system and they are compared also with the established Particle
Swarm Optimization learning schemes. Results are reported and
discussed, deriving useful conclusions.

I. INTRODUCTION

Simulation has proved to be very useful in understand-
ing and studying both natural and artificial systems. The
increasing power of modern computers rendered modeling
of high-complexity systems viable, providing better insight
into their functioning. Also, simulation has been successfully
used to show the eventual real effects of alternative conditions
and courses of action, contributing towards the performance
optimization of a system [1]. Key issues in simulation are
the acquisition of information about the simulated system, the
determination of its main features and their interconnections,
as well as the accuracy of the simulation outcomes.

Depending on the application at hand, there are different
types of simulation tools. Fuzzy Cognitive Maps (FCMs) are
fuzzy modeling and simulation tools that resemble neural net-
works. The flexibility and learning properties that stem from
the fuzzy and neural representation of FCMs has rendered
them an attractive tool for modeling complex systems and
supporting decision tasks. Thus, after their introduction by
Kosko in 1986 [2], FCMs have been used in a plethora of
applications in diverse scientific and technological fields [3]-
[1 1].
FCMs are designed by a group of experts that have deep

knowledge of the problem at hand. Experts identify the key
concepts of a system and represent them as nodes, while
their interconnections are represented as connecting edges, i.e.,
FCMs represent the system as a directed graph. The strengths

of the causal relationships among concepts are represented by
weights on the edges. The values of the weights are important
for the proper simulation of the system. In the initial design of
the FCM, these values are determined through a fuzzification-
defuzzification procedure that harnesses the opinions of all
experts. However, in some cases, experts may be wrong in
their estimations or have widely varied opinions [12]. In such
cases, the initial weights of the FCM may not simulate the
system properly. In such cases, the performance of FCMs
can be significantly enhanced through learning procedures.
These procedures modify further the weights of the FCM in
order to optimize a specific criterion that is usually problem-
dependent.

There is a small number of learning procedures proposed
in the literature, borrowing ideas from neural networks train-
ing [2], [13] and evolutionary computation [12], [14], [15].
Particle Swarm Optimization (PSO) has proved to be very
efficient for FCMs learning in different applications [11],
[12], [16]-[18]. Recently, a Memetic PSO (MPSO) has been
introduced for FCMs learning with promising results on a
control problem [19].

In this work, we enhance the MPSO learning scheme and
apply it for the optimization of an Ecological Industrial Park
simulation system with respect to its pollution output concept.
The rest of the paper is organized as follows: Section II
provides a short description of FCMs, while Section III is
devoted to the description of the memetic learning scheme and
its components. The problem under investigation is described
in Section IV. Experimental results are reported and discussed
in Section V, and the paper concludes with Section VI.

II. FUZZY COGNITIVE MAPS

FCMs were introduced as fuzzy extensions of the Cognitive
Maps proposed by Axelrod [20], for knowledge representation
and modeling of human decision-making processes. Like their
predecessors, traditional concept maps, FCMs consist of nodes
that represent key concepts of the system, as well as signed
links ("+" or "-") that represent the nature of the relationship
among nodes. Weights on the links can further express the
magnitude of the effect among the concepts. However, FCMs
differ from traditional concept maps in the nature of their
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that their physical meaning is preserved. Special attention
is usually given to the output concepts, i.e., concepts that
correspond to crucial features of the system and constitute
the core of the simulation investigation.

After the assignment of initial values to the concepts and
weights, the FCM operates similarly to a discrete dynamical
system, and it is let to converge. This is performed by applying
the following rule [21], [22]:

Ai(t + 1) = f (Ai(t) + E Wki(t)Ak(t)),
k=l

(1)

Fig. 1. A simple FCM with 5 concepts and 10 weights.

representation, which, for the FCMs, is causal as well as
temporal. The causality modeling over time facilitates the
exploration of the implications of complex conceptual models
and offers a greater representation flexibility. Also, fuzzy logic
allows the representation of fuzzy concepts and degree of
causality, while feedback allows the user to explore the hidden
properties of the map.

Let N be the number of concepts, Ci, i = 1, 2, .., N, of
an FCM. Each concept, Ci, has a value, Ai, i = 1, 2, .., N,
which lies in the range [0, 1]. An edge with direction from
Ci to a different concept, Cj, is characterized by a weight,
wij, j = 1, 2, ... , N, that lies in the range [-1, 1]. A positive
weight, wij > 0, denotes a positive causality, which implies
that an increment in concept Ci results in an increment
in concept Cj, while a decrement in Ci results also in a
decrement in concept Cj. On the other hand, a negative
weight, wij < 0, implies a negative causality between the
two concepts, i.e., an increment in Ci results in a decrement
in Cj and vice versa.

Therefore, the FCM can be described merely by the matrix
of its weights,

( Wi1 W12 ... WlN
W21 W22 ... W2N

W=-I . .1
WN1 WN2 ... WNN

and the values of its concepts. The absence of interconnection
between two concepts can be represented by setting the
corresponding weight equal to zero. A simple FCM with 5
concepts and 10 weights is depicted in Fig. 1.
The number of concepts, edges (along with their direc-

tions), weights, and their initial values, are provided by the
group of experts that designs the FCM [6], [9]. In order
to avoid the direct assignment of numerical values by the
experts, which fosters the danger of introducing numerical
errors, a procedure of fuzzification/defuzzification is used.
Thus, experts can express their opinions using a linguistic
notion that is converted into fuzzy functions, allowing the
developer to capture more fine grain information about the
representation [12]. The experts can also pose bounds on
the values of both weights and concepts in order to ensure

where t denotes time; Ai(t + 1) is the value of concept Ci
at time t + 1; Ak (t) is the value of concept Ck at time t,
and f is usually a sigmoid function. All concepts are updated
synchronously at each time step, until their values are not
modified any further. This is called a stable state of the FCM,
and it is assumed that it can simulate the system accurately,
i.e., the output concepts lie in specific bounds that are crucial
for the desirable operation of the system.

In complex applications, the opinions among of the experts
can be significantly different or some estimations can be
wrong, thereby hindering the designed FCM from achieving a
desirable stable state. In such cases, a proper revision of the
weights may be necessary to achieve acceptable output concept
values. This can be achieved through learning algorithms,
which are means to increase the efficiency and robustness of
FCMs, by selecting and modifying the FCM's weights.

In the literature, two different approaches for FCMs learning
are reported. The first borrows ideas from neural networks
training and consists of unsupervised learning algorithms [2],
[13], while the latter exploits the computational strength of
evolutionary algorithms. Genetic algorithms [14], as well as
Particle Swarm Optimization and Differential Evolution [11],
[12], [16]-[18] have been used with success in different ap-
plications. Recently, a first investigation of a simple Memetic
PSO approach was conducted on a control problem, with
promising results [19].

III. MEMETIC PARTICLE SWARM OPTIMIZATION

A. Particle Swarm Optimization
PSO is a population-based optimization algorithm that

gained increasing attention from the scientific community
during the last years, mainly due to its simplicity and efficiency
in solving difficult problems. The population, called a swarm,
consists of individuals (agents), called particles, which probe
the search space simultaneously [23]. Each particle moves
with an adaptable velocity and it can store in a memory the
best position it has ever visited in the search space. At each
iteration, the particle moves stochastically in a new position
that depends on its velocity, its own best position, as well as
on information (best position) shared with a group of other
particles, called its neighborhood.

Depending on the information exchange scheme, there are
two main PSO variants. In the global variant, the best position
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ever attained by all individuals of the swarm is communicated
to all the particles at each iteration. In the local variant,
each particle is assigned a neighborhood consisting of some
of the particles and the best position ever attained by the
particles that comprise the neighborhood is communicated
among them [23]. The neighborhoods are determined based
on the particles' indices rather than their actual distance in
the search space, in order to avoid the heavy computational
burden of computing the distances among all particles at each
iteration of the algorithm.
Assume an n-dimensional search space, S C R1, and a

swarm consisting of M particles. The i-th particle is an n-
dimensional vector,

Xi = (Xil,Xi2, ... , Xin) E S.

Its velocity is also an n-dimensional vector,

Vi (vil, Vi2,*Vin)

The best previous position encountered by the i-th particle in
S is denoted by,

Pi = (Pil,Pi2, Pi )T S.

Ring topology, where the particles are assumed to lie on a ring,
i.e., xi is the immediate neighbor of XM, is the most common
choice for the determination of neighborhoods. Thus, if r is the
neighborhood's radius, then the neighborhood of xi is defined
as,

{Xi-,r, Xi-'r+l: *.. *,Xi: ..** Xi+,r- v Xi+,r

Let gi denote the index of the particle that attained the best
previous position among all the particles in the neighborhood
of xi, and t to be the iteration counter. Then, the swarm is
updated using the equations [24],

X( +X)= X Vt) +01 (t)

(t+l)_=(t) + (t+l)
Xi tXi i

-x()) + (P2 (p() x()) (2)

(3)

B. The Memetic Scheme

Memetic Algorithms (MAs) are also population-based al-
gorithms that imitate adaptation in natural systems, where
evolutionary adaptation of individuals is combined with in-
dividual learning within a lifetime. In practice, MAs usually
include a local search phase as part of their operation. An
important aspect that has been investigated in Memetic Genetic
Algorithms is the Baldwin effect [25], [26], i.e., the interaction
between local and global search component of the algorithm,
where individual learning speeds up evolutionary change.

Recently, a Memetic PSO (MPSO) that combines PSO with
the simple Random Walk with Direction Exploitation local
search method [27] was introduced and applied successfully
on a plethora of test problems [28]. A pseudocode of MPSO
is provided below [28]:

Input: M (swarm size), X, A1, A2, S, F (objective function)
Set t = 0
Initialize x(),() C PSxitv t) .: I M

Evaluate F (Xt))
Determine the indices gi, i = 1, . . . , M
While (stopping criterion is not satisfied) Do

Update the velocities (t±+), using Eq. (2)
Set xP+) according to Eq. (3)
Constrain each particle xi in S
Evaluate F (X(t+1)), i = 1, ... . M

If F (X(t+1)) < F (p(t)) Then p(t+l) v (t±1)

Else p(t+±) + p(t)
Update the indices gi
When (local search is applied) Do

Choose a best position p(tl), q C {1,.l. , M}
Apply local search on p(t+l) and obtain y

If F(y) < F (p(t+l)) Then p(t+l) v y

End When
Set t = t + 1

End While

where i = 1, 2, ... ,M; X is the constriction factor that
controls the magnitude of the velocity; and 9Pj and eP2 are

two positive random vectors with their components uniformly
distributed within ranges [0, A1] and [0, A2], respectively.
It is assumed that all operations between vectors are per-

formed componentwise. The stability analysis of Clerc and
Kennedy [24] suggested that x is derived analytically:

2

where p = A1 + A2. The values received for p > 4 and = 1

are considered the most common settings of X due to their
good average performance [24].

Also, an MPSO scheme for FCMs learning that employs PSO
and the Hooke and Jeeves (HJ) algorithm as local search
component was proved to be competitive to the standard PSO
learning methods on an industrial control problem [19].

In this paper, we extend our investigation by proposing
two MPSO schemes that combine PSO with the HJ and
Solis and Wets (SW) local search, respectively, with different
configurations regarding the frequency and point of application
of the local search. The two local search methods were selected
due to their ability to work on non-differentiable functions
(since they need only function values), their simplicity, as
well as their flexibility in fitting a specific problem. Brief
descriptions of the two methods are provided in the following
paragraphs.
HJ is a deterministic pattern search algorithm [27], [29] that
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searches the space along the coordinate axis using a suitable
step size. More specifically, starting from an initial point, xi,
with function value F1 = F(xi), the search increases the first
component of xi by some step length 1\, moving to a new
point that is called the trial point. If simple decrease in the
function value is found, the trial point becomes the current
iterate and the search continues on the next component of xi.
If no decrease appears in the function value, then the next trial
point is formed by subtracting l\ from that component of xl.
Again, if improvement is found at the trial point, it becomes
the current iterate of the search. Otherwise, the trial point
retains the first component of the initial point. The processes
continues for all the components of the starting point.
Upon completion of the coordinate search on all dimensions,

the current iterate becomes the base point, X2, with value F2.
If F2 < F1, a pattern extending step relocates to the new
point 2x2-xl. This new point act as a temporary base point,
Xtemp, in the sense that it becomes the current iterate whether
or not its value improves F2. The HJ algorithm carries out
a coordinate search in all dimensions of the temporary base
point. If at the end of the coordinate search on xtemp, the value
of the current iterate is less than F2, then the current iterate
becomes the new base point, X3, with value F3, and a pattern
extending move is made to 2x3 -X2, from where the search
continues as above. On the other hand, if the current function
value at the termination of the coordinate search on x2 fails to
improve F2, then x2 becomes the current iterate, 1\ is reduced
and the HJ algorithm conducts a coordinate search on x2. This
procedure takes place until a stopping criterion is met.
SW is a stochastic algorithm [30] that starts with an initial

point Xk, k = 0. Then, a random point, x, is sampled in a
region around Xk, following a multivariate normal distribution.
If the function value of x is worse than the current one, a new
point 2Xk -x is created. If this point does not improve Xk, then
the current point is kept and a new sample point is generated.
The covariance of the distribution determines the "diameter" of
the aforementioned region, and its center is the point Xk with
the addition of a bias factor, slanting the sampling in favor of
the direction where success has been recorded. The algorithm
uses also some parameters to adapt the center and covariance
of the normal distribution, thereby changing the sampling
region of the points. These parameters are the number of
successive successes and failures in decreasing the value of
F. If the new solutions are often improving, the region is
expanded, while in the opposite case it is contracted.

Several memetic schemes can be produced depending on the
point and frequency of application of the local search scheme.
In the next section, the problem of the Ecological Industrial
Park is described.

IV. THE ECOLOGICAL INDUSTRIAL PARK
PROBLEM

Our application study considers an FCM model that has
been constructed to study the impact of developing an Eco-
logical Industrial Park (EIP) [31]. EIPs are characterized by
a network of synergistic resource linkages among facilities

Fig. 2. The FCM for the Eco-Industrial Park.

within a defined geographical area. They are designed such
that industrial areas are developed mimicking a natural ecosys-
tem (self-contained, self-sustaining, and producing zero waste
through complex interactions of food chains). We use the
proposed FCM model for the Lloydminster EIP, at the Western
Canadian plains. In our study, we consider the pollution
concept as the output concept of our model and our goal was
to detect the appropriate weights such that it lies within some
bounds.

The concepts of the FCM are the following:

C.:
02:
03:
04:
05:
C6:
C7:
C8:
Cg:
C0o:
Cii:
C12:
C13:
C14:
C15:
C16:
C17:
C18:

Pollution
Water disposal
Unutilized byproducts/wastes
Demand
Byproducts/wastes provided by existing facilities
Secondary facilities
Availability
Vehicles
Employment
Property cost
Owned housing
Roads
Population
Available land
Rental cost
Schools and recreation facilities
Service facilities
Byproducts/wastes provided by co-locating facilities

The ranges of the 40 weights provided by the experts are
reported in Table I. The objective function that is used for this
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TABLE I

RANGES OF THE WEIGHTS OF THE FCM FOR THE ECOLOGICAL

INDUSTRIAL PARK PROBLEM.

W32

W51

W56

W63
W6,14

W74
W9,13

W10,11

W11,14

W12,14

W13,8

W13,15

W14,10

W16,1

W16,9

W16,18

W17,3

W17,14
W18,1

W8,12

[0.5,1.0]

[-1.0, -0.5]
[0.0,0.25]
[0.0,0.5]

[-0.5,0.0]
[-0.5,0.0]
[0.5,1.0]
[-1.0, -0.5]
[-0.5,0.0]
[-1.0, -0.5]
[0.0,0.5]
[0.0,0.5]

[-0.5,0.0]
[0.0,0.25]
[0.5,1.0]
[0.0,0.5]
[0.0,0.5]
[-1.0, -0.5]
[-1.0, -0.5]
[0.25,0.5]

W47

W52

W61
W69

W6,18

W81
W10,6

W10,17

W12,6
W13,4

W13,11

W13,17
W15,11

W16,3
W16,14

W17,1
W17,9
W17,18

W18,2
W13,16

[-0.5,0.0]
[-0.5,0.0]
[0.0,0.25]
[0.5,1.0]
[0.0,0.5]
[0.0,0.25]

[-0.5,0.0]
[-0.5,0.0]
[0.0,0.25]
[0.5,1.0]
[0.0,0.5]
[0.0,0.5]
[0.0,0.5]
[0.0,0.5]

[-0.5,0.0]
[0.0,0.25]
[0.5,1.0]
[0.25,0.55]
[-1.0, -0.5]
[0.5,0.75]

TABLE II

RESULTS FOR CASE 1.

SS PSOg PSOHJ PSOSW PSOe PSOHJ PSOS
Suc 20 100 100 86 100 100
Mean 196.0 285.3 5409.0 401.6 359.5 3161.4

20 StD 88.6 85.9 7418.1 138.4 158.1 9266.5
Min 100 151 99 120 212 100
Max 480 768 36415 780 1166 78015
Suc 31 99 100 99 100 100
Mean 361.3 355.6 8654.5 753.9 462.6 1447.4

40 StD 160.2 73.4 11301.3 247.7 178.1 871.3
Min 200 195 139 400 240 138
Max 840 546 73138 1680 1280 5137
Suc

Mean
60 StD

Min
Max
Suc

Mean
80 StD

Min
Max

43
477.2
152.1
240
840
36
657.8
210.5
320
1600

100
412.2
83.5
247
747
100
473.7
77.4
323
742

100
9898.9
15841.1
180
102057
99
8056.5
14051.4
215
67136

100
1026.6
262.6
480
1620
100
1295.2
307.2
640
2000

100
566.5
198.2
287
1372
100
676.8
221.8
452
1467

100
1413.5
722.2
180
3778
100
1718.9
844.4
219
4277

problem is defined as [12]:
m

F(w) ZH (Amin-Aotj) Amin_Aouti| +
i=l

Z H (Aout -Amatx)A AmAx-aAout ,

j=1

where H is the well-known Heaviside function and A min

Aouti are bounds of the output concepts' values. In our
experiments, the (pollution) output concept, Cl, was bounded
in the range [0.1,0.2].

V. EXPERIMENTAL RESULTS

We investigated six algorithms, namely the standard global
and local PSO, denoted as PS09 and PSOe, respectively, as
well as their memetic counterparts with HJ and SW local
search, denoted as PSOHJ PSOSW, PSOHJ, and PSO ,
respectively. The neighborhood radius for the local variants
was always equal to 1. Also, the default set of PSO parameters,
x = 0.729, A1, A2 = 2.05, was used [24]. The algorithms were
compared in terms of the function evaluations required to reach
the error goal 10-8. There were 100 experiments performed
for each problem, for different swarm sizes, 20, 40, 60 and
80. For each application of the local search, a maximum of
60 function evaluations were performed.
We investigated three cases regarding the application of the

local search:
Case 1: Local search is applied on the best position at each

iteration.
Case 2: Local search is applied on the best position at each

iteration with probability 0.1.

Case 3: Local search is applied at each iteration on a best
position that is selected through the well-known
fitness proportionate (roulette wheel) selection.

All results are reported in Tables II-IV. At each table, and
for each swarm size (denoted as SS) and algorithm, we report
the number of successes in receiving the solution with the
desired accuracy (out of 100 experiments), as well as the mean,
standard deviation, minimum and maximum number of the
expected number of required function evaluations, i.e., solely
for the cases where the algorithm succeeded.

In Case 1, where local search was applied on the overall best
position of the swarm at each iteration, the MPSO scheme
with HJ exhibited the best performance, outperforming also
the standard PSO learning schemes, with its global variant
preceding the local one. The memetic methods based on the
SW algorithm were also successful, although they required a
significantly larger number of function evaluations on average.
This can be attributed to the stochastic nature of the SW
algorithm, in contrast to the deterministic local search of HJ.
Also, the local variant of the SW-based memetic method was
more efficient than the corresponding global variant. However,
both variants had the highest standard deviation as well as the
smallest minimum number of required function evaluations
among all algorithms, which is indicative of their decreased
robustness.

Similar performance was obtained also for Case 2, where
local search was applied at each iteration on the overall
best position with a probability equal to 0.1. The HJ-based
schemes exhibited the best performance, having marginal
differences between them. However, there was a significant
decrease in the efficiency of PSOSW and an improvement in9
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TABLE III

RESULTS FOR CASE 2.

SS PSOg PSOHJ PSOSW PSOt PSOHJ PSOSW
Suc 20 99 75 86 100 92
Mean 196.0 341.1 7328.2 401.6 355.6 1807.3

20 StD 88.6 196.1 7981.4 138.4 96.9 4596.5
Min 100 100 120 120 165 140
Max 480 1445 24719 780 680 22119
Suc 31 99 71 99 100 99
Mean 361.2 586.4 9725.3 753.9 590.8 836.1

40 StD 160.1 432.1 13539.6 247.6 208.9 509.8
Min 200 200 139 400 265 138
Max 840 2146 45357 1680 1482 4539
Suc
Mean

60 StD
Min
Max
Suc
Mean

80 StD
Min
Max

43
477.2
152.1
240
840
36
657.7
210.4
320
1600

100
726.2
538.7
240
2825
100
835.4
590.7
320
3057

73
9546.3
14790.5
180
65339
75
17096.8
25105.1
300
85839

100
1026.6
262.5
480
1620
100
1295.2
307.1
640
2000

100
764.2
220.6
324
1353
100
975.1
272.9
459
1665

100
1029.1
367.3
240
2220
100
1202.7
389.1
300
2640

the performance of PSOHIJ, compared to Case 1. The SW-
based schemes had again the smallest minimum number of
required function evaluations.

In Case 3, where the selection of the best position for
the application of local search was fitness proportionate, the
PSOe algorithm was more efficient than the corresponding
variant with HJ, and the performance of PSOSw was improved

9

compared to the previous cases. The SW-based schemes
retained also in this case the smallest minimum number of
required function evaluations.

Summarizing the results, MPSO with HJ local search proved
to be the most efficient algorithm in learning the FCM for the
EIP problem. In the cases where local search was applied on

the best position of the swarm at each iteration, the determin-
istic method of HJ enhanced significantly the performance of
the memetic schemes, while the stochastic SW-based schemes
were favored mostly in the roulette wheel selection case, an

effect that can be attributed to the different nature of the two
local search methods. Finally, although the global variants
of the memetic algorithms required smaller mean number of
function evaluations, local variants proved to be more robust
in all cases, with the exception of PSOe in Case 2 for small
swarm sizes.

VI. CONCLUSIONS

We proposed an enhanced methodology for FCMs learn-
ing, based on a recently proposed Memetic Particle Swarm
Optimization algorithm that utilizes the Hooke and Jeeves
and Solis and Wets local search schemes. The algorithm was

applied successfully for the detection of proper weights of an

FCM that simulates an Ecological Industrial Park, such that

TABLE IV

RESULTS FOR CASE 3.

SS PSOg P~SOHJ PSOSW PSOe pSOHJ pSOS
Suc 20 98 100 86 100 100
Mean 196.0 608.3 6378.6 401.6 901.5 1012.1

20 StD 88.6 116.1 12122.8 138.4 194.1 830.1
Min 100 360 172 120 530 168
Max 480 972 67125 780 1527 8077
Suc 31 100 100 99 100 100
Mean 361.2 733.2 6178.1 753.9 1164.0 1085.2

40 StD 160.1 182.4 10905.1 247.6 265.9 432.6
Min 200 343 232 400 460 235
Max 840 1703 44225 1680 1791 2313
Suc
Mean

60 StD
Min
Max
Suc
Mean

80 StD
Min
Max

43
477.2
152.1
240
840
36
657.7
210.4
320
1600

100
876.3
179.2
530
1367
100
1018.6
213.8
515
1633

100
7899.2
16443.5
294
97012
99
7155.5
13776.7
352
76232

100
1026.6
262.5
480
1620
100
1295.2
307.1
640
2000

100
1414.7
282.5
685
2167
100
1646.8
303.7
805
2326

100
1326.1
519.8
294
3392
100
1452.5
517.7
350
2712

the environmentally important concept of pollution lies within
desirable bounds.
The algorithm proved to be heavily dependent on the local

search scheme. HJ increased significantly the efficiency, out-
performing both the standard PSO and the more randomized
in nature SW-based learning schemes. Also, the frequency and
point of application of the local search had an impact on the
algorithm's performance, although milder than the local search
algorithm itself.

Overall, MPSO with HJ exhibited the best performance,
with its efficiency being more evident in higher swarm sizes,
justifying its usefulness as an FCM learning scheme. Future
research will consider further investigation of MPSO with dif-
ferent local search algorithms, as well as a deeper investigation
of the effect of the local search on the algorithm's dynamics.
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