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Abstract— The computation of periodic orbits of nonlinear
mappings is very important for studying and better understand-
ing the dynamics of complex systems. Evolutionary algorithms
have shown to be an efficient alternative for the computation
of periodic orbits in cases where the inherent properties of
the problem at hand render gradient–based methods invalid.
Such cases usually involve nondifferentiable mappings or poorly
behaved partial derivatives. We propose a Memetic Particle
Swarm Optimization algorithm that exploits Shannon’s infor-
mation entropy for decision making in swarm level, as well
as a probabilistic decision making scheme in particle level, for
determining when and where local search is applied. These
decisions have a significant impact on the required number of
function evaluations, especially in cases where high accuracy is
desirable. Experimental results are performed on well–known
problems and useful conclusions are derived.

I. INTRODUCTION

Natural phenomena and complex systems are usually
modeled by dynamical systems that involve nonlinear map-
pings [1]–[14]. The points that are invariant under the
mapping are called fixed points or periodic orbits of the
mapping and they are considered very important, since they
can provide crucial information regarding its behavior. If

is a nonlinear mapping, then a point
, is a periodic orbit of period of , if applications of
on result in the same point, , i.e.,

times

The detection of periodic orbits requires solving the system
, which can be equivalently defined as an

optimization problem by considering the objective function

(1)

where is a distance measure for the vectors and .
Typically, common norms such as the , and –norms,
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defined as

respectively, are used as the distance measures, with
, and , for [1],

[15], [16].
The computation of periodic orbits is considered a chal-

lenging problem. Analytical derivation of such points is
feasible only for mappings of special types (e.g., polynomials
of low degree) and low periods [6]. On the other hand,
approximations of such points with gradient–based methods,
such as the Newton–family algorithms, are heavily depen-
dent on the initial conditions, as well as on the behavior
of the partial derivatives, if they exist, around the fixed
point. Evolutionary algorithms have shown to be an efficient
alternative in cases where traditional methods fail. Particle
Swarm Optimization (PSO) has been applied successfully
for tracing periodic orbits of 3D galactic potentials [15] and
well–known nonlinear mappings [16], [17].

Memetic Algorithms (MAs) are hybrid optimization al-
gorithms that consist of a global and a local search com-
ponent [18]–[22]. The first is responsible for the detection
of the global minimizers, while the latter is used for more
refined local search in the neighborhood of detected potential
minimizers. MAs are suitable for numerical optimization
problems where high accuracy is required, since the local
search component can refine significantly the rough solution
set detected by the (usually evolutionary) global component.
Recently, Memetic Particle Swarm Optimization (MPSO)
variants that combine PSO with different stochastic and
deterministic local search schemes, such as Hooke and
Jeeves, Solis and Wets, and Random Walk with Directional
Exploitation, have been proposed and applied on different
applications, outperforming the standard PSO variants [23]–
[25].

In this work, we propose a new MPSO algorithm for
computing periodic orbits of nonlinear mappings with high
accuracy. The new scheme exploits the concept of Shan-
non’s information entropy (SIE) [26], in order to identify
search stagnation of the swarm during optimization. Stag-
nation evokes the local search component, which is applied
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probabilistically on the best position of each particle. The
performance of the proposed approach is investigated on four
widely used mappings for several periods, and it is compared
to the standard PSO algorithm.

The rest of the paper is organized as follows: Section II
contains the necessary background material, while Section III
is devoted to the description of the proposed scheme. Ex-
perimental results are reported in Section IV, and the paper
closes with conclusions in Section V.

II. BACKGROUND MATERIAL

For completeness purposes, the following two subsections
are devoted to the description of MPSO and SIE.

A. Memetic Particle Swarm Optimization

Swarm intelligence is the class of algorithms that model
information exchange and communication features of natural
swarms (ant colonies, fish shoals etc.), in order to produce
intelligent (emergent) behavior of populations consisting of
simple agents. PSO belongs to this class of algorithms, which
are characterized by proximity, quality, diverse response,
stability, and adaptability [27]. Search is performed by a
swarm of points, called particles. The particles are initialized
randomly in the search space and they move by stochastic
forces that attract them towards the best solutions detected
by them as well as their neighbors.

Let be the search space, and
be the swarm that consists of particles.

Each particle is a point in ,

The particles are usually initialized randomly and uniformly
in . Besides its position, for each particle, a randomly
initialized velocity,

is also assigned. The best position ever visited by the particle
in is retained in a memory,

For each particle, a social environment with which it will
exchange information, is defined. This environment is called
the neighborhood, , of the particle.

The scheme for determining for each particle is also
called topology of the neighborhood. The most typical
topologies are the ring (also called lbest) and the fully
connected (also called gbest) topology. In the first, the
particles are assumed to lie on a ring, and exchanges
information only with its immediate neighbors on the ring,
with being the particle that follows immediately after .
Thus, in a ring topology of radius , the neighborhood of the
particle is defined as

In the fully connected topology, the whole swarm is consid-
ered as the neighborhood of each particle, i.e., for
all .

Let denote the index of the particle that attained the
best position among all the particles in the neighborhood of

, i.e.,

for all such that

and to be the iteration counter. Then, the swarm is updated
using the equations [28],

(2)

where is the constriction factor that controls the magni-
tude of the velocity, and , , are two positive random
values uniformly distributed within ranges and ,
respectively. The parameters and control the cognitive
and social effect on the velocities, respectively.

The stability analysis of Clerc and Kennedy [28] suggested
that is obtained from the analytical formula,

where . The values received for and
are considered the most common settings of due to their
good average performance [28].

MPSO is based on the operation of the standard PSO
described above. However, a local search scheme is incorpo-
rated to the algorithm and applied under specific conditions,
which are usually problem–dependent. Critical issues in MAs
are the point and frequency of application of the local search,
as well as the available budget of function evaluations and
the type of the local search algorithm. Hart [20] investigated
the effect of local search frequency in combination with
Genetic Algorithms in continuous optimization problems. He
also studied fitness–based and distribution–based techniques
for adapting the probability of applying local search at each
individual.

In recently proposed MPSO schemes, local search was ap-
plied on best positions of the particles in a probabilistic way,
based on a user–defined threshold [23]–[25]. The procedure
of MPSO is outlined in the following pseudocode:

Initialize swarm, velocities and best positions
While (stopping criterion not satisfied) Do

Update particles, velocities and best positions
Select best positions for local search
Apply local search
If (improvement attained) Update best positions

End Do

In all cases, local search was applied always after a fixed
number of iterations, since the main goal was a balanced
search that combines the exploration ability of PSO with the
exploitation properties of the employed local search schemes.
However, in cases such as the detection of periodic orbits,
high accuracy is usually required.
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Applying the general scheme described above could result
in an excessive number of function evaluations, uniformly
spent over the iterations of the algorithm. Therefore, the
proportion of a limited budget of function evaluations that
would be left for refinement of the rough solutions detected
through PSO, would be very small. For this purpose, a di-
versity measure that could indicate, in swarm level, the most
proper time for applying local search could be very useful.
Such a diversity measure is the SIE, which is described in
the next subsection.

B. Shannon’s Information Entropy

Shannon’s information entropy (SIE) [26] has been used
as a diversity measure for populations in Genetic Program-
ming [29], [30]. For a population, , divided in phenotype
classes, SIE is defined as

SIE

where is the proportion of occupied by partition at
a given time [30].

The entropy principle has been combined with a mech-
anism based on natural immune system and applied for
preserving diversity in the population of a multiobjective evo-
lutionary algorithm [31]. Further work on parallel memetic
schemes combined with entropy–based techniques for deter-
mining the initial conditions of the local search is reported
in [32].

SIE represents the amount of chaos in a system. Large
values of entropy correspond to small values of , i.e., each
partition has a significant number of individuals. On the other
hand, small values of entropy correspond to larger values of

, i.e., a significant number of individuals is concentrated in
few partitions. Therefore, high entropy indicates higher diver-
sity in the population, in analogy with physical systems [26].
The concept of SIE is adopted for fitting to our periodic orbit
detection problems, as it is analyzed in the next section.

III. ENTROPY–BASED MEMETIC PARTICLE SWARM

OPTIMIZATION

The development of the proposed Entropy–Based Memetic
Particle Swarm Optimization (E–MPSO) was motivated by
the difficulty of the standard PSO in detecting periodic orbits
with high accuracy. Experiments on different mappings have
shown that for accuracy greater than , PSO is prone to
search stagnation or requires an excessive number of function
evaluations. However, we were also interested in avoiding
disturbing PSO’s dynamic in cases where it performed satis-
factorily. Thus, a mechanism for making decisions in swarm
level regarding the application of local search was needed. A
decision making procedure in particle level was also needed
in order to select the individuals that would constitute the
initial conditions of the local search.

SIE has been used as a measure of diversity in evolution-
ary algorithms, providing information regarding the spread
of the individuals’ function values. Thus, monitoring its
value during the optimization procedure provides information

regarding the population’s behavior. High values of SIE
correspond to widely spread function values, while smaller
values indicate similar function values of the individuals.
Also, a rapidly changing value of SIE is an indication of
rapidly changing diversity of the population, while slight
changes of SIE indicate that the relative differences among
function values of the population remain almost unchanged,
an effect that also characterizes search stagnation.

Therefore, SIE was selected as the core of the procedure
for deciding in swarm level regarding the application or not
of local search. More specifically, the changes in the value
of SIE are monitored in equidistant intervals (e.g., every
iterations), and, if the difference of the current and previous
value is smaller than a user–defined threshold value, then the
local search component of the algorithm is evoked.

Let be a swarm of size . Then, the SIE of at iteration
, is computed by

SIE (3)

where,

i.e., is the proportion of the function value of th
particle’s best position, , at iteration . If

SIE SIE SIE

where SIE is a user–defined threshold value, then the local
search component is evoked. However, not all best positions
of the swarm will be used as initial conditions for local
search. Since the function values of the best positions will be
close as indicated by the value of SIE, a randomized, non–
elitist selection of best positions is performed. Thus, for each
best position, , with , a random value,
uniformly distributed within , is drawn, and, if

where is a user–defined selection probability, then is
used as an initial condition for local search, otherwise it is
ignored. The non–elitism can prevent from premature conver-
gence to local minima, while the selection pressure imposed
by the user–defined threshold prevents from excessively large
numbers of required function evaluations. A pseudocode of
the E–MPSO scheme is reported in Table I.

IV. EXPERIMENTAL RESULTS

A. The Considered Test Problems

The mappings that were considered in our experiments
are:
TEST PROBLEM 1 [1], [6] (Hénon –dimensional map) This
mapping is –dimensional and defined by the following
equation:
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TABLE I

PSEUDOCODE OF THE E–MPSO SCHEME.

Input: Swarm , Size , Parameters SIE, ,
Set and SIEprev SIE
While (stopping criterion not satisfied) Do

Set
Update using Eq. (2)
If mod Then

Compute SIE
If SIE SIEprev SIE Then

For Do
Draw a random number
If Then

Apply local search on .
Update if improvement achieved.

End If
End For

End If
Set SIEprev SIE

End If
End While

where is the rotation angle. The case of
was considered for periods and within

.

TEST PROBLEM 2 [33] (Standard Map) This is also a –
dimensional mapping. It is discontinuous and defined by the
following equation:

mod

mod

where , and

mod

mod if mod

mod if mod

mod otherwise

This mapping was considered also for periods and
within .

TEST PROBLEM 3 [1] (Hénon 4–dimensional symplectic
map) This –dimensional map is an extension of the Hénon

D map to the complex case:

where is the rotation angle, and , , are defined
as [1]:

The case of was considered, for periods
and within .

TABLE II

PARAMETER SETTINGS FOR THE E–MPSO SCHEME.

Parameter Value(s)

,

Swarm size up to
Overall function evaluations ,
Function evaluations per local search
Accuracy

SIE

, ,

TEST PROBLEM 4 [34], [35] This is a –dimensional map,
and it represents a case of the standard maps studied by
Kantz and Grassberger [35]. It is defined by the following
equations:

All variables are given mod , so , for
. For , the map gives three uncoupled standard

maps, while for the maps are coupled and influence
each other. In our experiments, , and the periods

and were considered.

B. Algorithmic Settings

Our E–MPSO algorithm consisted of the standard PSO
with ring topology (lbest) as the global search component,
and the stochastic Solis and Wets (SW) [36] algorithm as
the local search component. SW has been used in successful
memetic schemes [24], [25]. Whenever local search was
applied, a budget of function evaluations was available to
the SW algorithm. Naturally, detecting a point that improves
the initial condition, seizes the local search procedure and
returns the improved point, without exhausting this budget.

Regarding PSO, the neighborhood radius was ,
since it promotes exploration. Also, the default set of pa-
rameters, , was used [28]. The
corresponding optimization problem for each mapping was
produced using Eq. (1) with the squared –norm. Therefore,
the global minimum was always equal to . The desired
accuracy for detecting this global minimum was equal to

for all test problems. The available number of function
evaluations was problem–dependent, due to the different
computational effort required for different test problems.
Thus, function evaluations were available for Test
Problems (TP) 1–3, while function evaluations were
available for the case of TP 4 (which was the problem
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Fig. 1. Evolution of SIE values for successful and failure cases of PSO
(dotted and dashed lines, respectively), and E–MPSO (solid line).

with the highest dimension). Regarding the SIE decision
parameter, we monitored its value every iterations
after the first iterations of the algorithm where PSO was
let to perform global search solely. Two consecutive values
of SIE that differ less than SIE , triggered the local
search component of E–MPSO.

In order to investigate the performance scaling of the
algorithm, different swarm sizes as well as probabilities of
selection for local search, , were considered for each test
problem and period. Thus, the swarm size varied from
up to , while assumed the values , and
that correspond to acceptance probability of up to
of a best position for serving as starting point for the SW
algorithm. All parameter values are summarized in Table II.

C. Analysis of the Results

For each test problem, experiments for E–MPSO and
standard PSO were conducted, for different swarm sizes and
selection probabilities, . Figure 1 illustrates the values of
SIE for a successful and an unsuccessful experiment for the
standard PSO (dotted and dashed lines, respectively) as well
as for the (successful) E–MPSO (solid line). It is obvious that
in successful experiments SIE assumes increasing values in
the first iterations, and declines slowly, while in unsuccessful
experiments, it decreases rapidly and finally takes a high,
fixed value that remains unchanged. The existence of such
plateaus has been correlated with search stagnation over local
minima [30].

The number of successes in achieving the solution with
the desired accuracy was monitored for each algorithm.
For the successful experiments, the mean, standard devia-
tion, minimum and maximum number of required function
evaluations were recorded. The corresponding statistics are
reported in Tables III–X. The smallest values of mean and
standard deviation per case are boldfaced in the tables for the
completely successful algorithms (i.e., with successes).

TABLE III

RESULTS FOR TP1 AND PERIOD . THE NUMBER OF SUCCESSES,

MEAN, STANDARD DEVIATION, MINIMUM AND MAXIMUM NUMBER OF

REQUIRED FUNCTION EVALUATIONS ARE REPORTED FOR E–MPSO AND

DIFFERENT VALUES OF , AS WELL AS FOR THE STANDARD PSO, FOR

SWARM SIZES EQUAL TO , , AND .

Swarm E–MPSO ( ) Standard
Size PSO

Suc
Mean 4453.3
StD 1576.5
Min
Max
Suc
Mean 5686.8
StD 1132.0
Min
Max
Suc
Mean 7209.2
StD 1203.7
Min
Max

For TP1 and period , E–MPSO outperformed
standard PSO in almost all cases. Smaller values of
were more efficient for small swarm sizes. For larger swarm
sizes, standard PSO was more competitive. More specifically,
for swarm size equal to , E–MPSO always outperformed
PSO, with exhibiting the best performance. The
improvement in the number of the required number of
function evaluations lied between and when E–
MPSO was used. However, the case of was
the most promising regarding its robustness, exhibiting the
smallest standard deviation. Increasing swarm size to , the
improvement gained by using E–MPSO lied between and

, with being the most efficient and robust case.
PSO became more competitive when particles were used,
outperforming the case of E–MPSO. However, it
was still inferior than the other two cases, with
being the most efficient, but being the most robust.

The case of period for TP1, required higher swarm
sizes. Again, E–MPSO was superior to standard PSO, which
never attained successful experiments. Due to the large
number of particles, higher values of proved to be more
efficient and robust. The improvement gained by using E–
MPSO was up to , which corresponds to more than

function evaluations.
Similar remarks can be made for TP2. Larger swarm sizes

favor higher values of . E–MPSO outperformed PSO in
all cases, improving its performance from up to for
period , and from up to for . Naturally,
increasing the swarm size resulted in improved performance
of PSO, which approaches E–MPSO.

The motif does not change for the rest of the test problems,
TP3 and TP4. E–MPSO always outperforms PSO. In some
cases, such as in TP3 for period and swarm size equal
to , the mean number of function evaluations required by
PSO is smaller than the best of E–MPSO, but it corresponds
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TABLE IV

RESULTS FOR TP1 AND PERIOD . THE NUMBER OF SUCCESSES,

MEAN, STANDARD DEVIATION, MINIMUM AND MAXIMUM NUMBER OF

REQUIRED FUNCTION EVALUATIONS ARE REPORTED FOR E–MPSO AND

DIFFERENT VALUES OF , AS WELL AS FOR THE STANDARD PSO, FOR

SWARM SIZES EQUAL TO , , AND .

Swarm E–MPSO ( ) Standard
Size PSO

Suc
Mean 117011.3
StD 85997.3
Min
Max
Suc
Mean 150517.2
StD 92417.2
Min
Max
Suc
Mean 165381.1
StD 104915.0
Min
Max

TABLE V

RESULTS FOR TP2 AND PERIOD . THE NUMBER OF SUCCESSES,

MEAN, STANDARD DEVIATION, MINIMUM AND MAXIMUM NUMBER OF

REQUIRED FUNCTION EVALUATIONS ARE REPORTED FOR E–MPSO AND

DIFFERENT VALUES OF , AS WELL AS FOR THE STANDARD PSO, FOR

SWARM SIZES EQUAL TO , , AND .

Swarm E–MPSO ( ) Standard
Size PSO

Suc
Mean 8111.3
StD 4828.9
Min
Max
Suc
Mean 8339.1
StD 2845.2
Min
Max
Suc
Mean 10842.4
StD 3278.1
Min
Max

to lower success rate (equal to ). Thus, E–MPSO may
need a slightly higher number of function evaluations, but
it is counterbalanced by increased efficiency. The same case
of TP3 constitutes an exception also for the general trend
observed in the other cases, i.e., the increased efficiency of
schemes with higher values of for higher swarm sizes.
Instead, we observe that smaller values of tend to perform
better.

In general, besides some very rough trends, there are
no patterns that can be observed in the reported results,
regarding the most efficient E–MPSO scheme, in spite of
its clear superiority against standard PSO. This can be
attributed to the dynamic nature of the proposed algorithm.
SIE is monitored during the optimization at each experiment
independently, and the local search component is evoked

TABLE VI

RESULTS FOR TP2 AND PERIOD . THE NUMBER OF SUCCESSES,

MEAN, STANDARD DEVIATION, MINIMUM AND MAXIMUM NUMBER OF

REQUIRED FUNCTION EVALUATIONS ARE REPORTED FOR E–MPSO AND

DIFFERENT VALUES OF , AS WELL AS FOR THE STANDARD PSO, FOR

SWARM SIZES EQUAL TO , , AND .

Swarm E–MPSO ( ) Standard
Size PSO

Suc
Mean 55071.3
StD 33270.4
Min
Max
Suc
Mean 82830.5
StD 45847.0
Min
Max
Suc
Mean 86208.8
StD 36464.8
Min
Max

TABLE VII

RESULTS FOR TP3 AND PERIOD . THE NUMBER OF SUCCESSES,

MEAN, STANDARD DEVIATION, MINIMUM AND MAXIMUM NUMBER OF

REQUIRED FUNCTION EVALUATIONS ARE REPORTED FOR E–MPSO AND

DIFFERENT VALUES OF , AS WELL AS FOR THE STANDARD PSO, FOR

SWARM SIZES EQUAL TO , , AND .

Swarm E–MPSO ( ) Standard
Size PSO

Suc
Mean 15677.7
StD 4339.9
Min
Max
Suc
Mean 21532.1
StD 4152.0
Min
Max
Suc
Mean 26770.3
StD 4618.3
Min
Max

based on the evidence up to that moment. Thus, the dynamic
of the memetic algorithm depends solely on the specific state
of the swarm, i.e., the progress of the optimization procedure
so far.

V. CONCLUSIONS

We proposed a new, Entropy–based Memetic Particle
Swarm Optimization (E–MPSO) for tackling the problem
of detecting periodic orbits of nonlinear mappings with
high accuracy. The algorithm employs Shannon’s information
entropy (SIE) for deciding when the Solis and Wets local
search component of the algorithm shall be applied (decision
at swarm level), as well as a probabilistic scheme for random
selection of the corresponding initial conditions for the local
search.
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TABLE VIII

RESULTS FOR TP3 AND PERIOD . THE NUMBER OF SUCCESSES,

MEAN, STANDARD DEVIATION, MINIMUM AND MAXIMUM NUMBER OF

REQUIRED FUNCTION EVALUATIONS ARE REPORTED FOR E–MPSO AND

DIFFERENT VALUES OF , AS WELL AS FOR THE STANDARD PSO, FOR

SWARM SIZES EQUAL TO , , AND .

Swarm E–MPSO ( ) Standard
Size PSO

Suc
Mean 93865.2
StD 47690.4
Min
Max
Suc
Mean 147676.5
StD 63007.2
Min
Max
Suc
Mean 183985.0
StD 64566.9
Min
Max

TABLE IX

RESULTS FOR TP4 AND PERIOD . THE NUMBER OF SUCCESSES,

MEAN, STANDARD DEVIATION, MINIMUM AND MAXIMUM NUMBER OF

REQUIRED FUNCTION EVALUATIONS ARE REPORTED FOR E–MPSO AND

DIFFERENT VALUES OF , AS WELL AS FOR THE STANDARD PSO, FOR

SWARM SIZES EQUAL TO , , AND .

Swarm E–MPSO ( ) Standard
Size PSO

Suc
Mean 158030.2
StD 89048.4
Min
Max
Suc
Mean 224235.6
StD 95625.8
Min
Max
Suc
Mean 305069.6
StD 133073.6
Min
Max

The algorithm was applied on widely used test problems,
with very promising results. E–MPSO outperformed PSO
and has been shown to be a good alternative when high
accuracy is desirable. Also, the dynamic nature of the al-
gorithm is reflected to the reported results. Future work will
include further application of E–MPSO on problems where
high accuracy is crucial, as well as alternative local search
and selection schemes.
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TABLE X

RESULTS FOR TP4 AND PERIOD . THE NUMBER OF SUCCESSES,

MEAN, STANDARD DEVIATION, MINIMUM AND MAXIMUM NUMBER OF

REQUIRED FUNCTION EVALUATIONS ARE REPORTED FOR E–MPSO AND

DIFFERENT VALUES OF , AS WELL AS FOR THE STANDARD PSO, FOR

SWARM SIZES EQUAL TO , , AND .

Swarm E–MPSO ( ) Standard
Size PSO

Suc
Mean 332503.9
StD 244096.3
Min
Max
Suc
Mean 414523.5
StD 211083.7
Min
Max
Suc
Mean 522622.9
StD 235228.7
Min
Max
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