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ABSTRACT: In this paper the effectiveness of a new Hybrid Evolutionary Algorithm in on-line Neural Network training for tumor 

detection is investigated. To this end, a Lamarck-inspired combination of Evolutionary Algorithms and Stochastic Gradient Descent 

is proposed. The Evolutionary Algorithm works on the termination point of the Stochastic Gradient Descent. Thus, the method 

consists in a Stochastic Gradient Descent-based on-line training stage and an Evolutionary Algorithm-based retraining stage. On-line 

training is considered eminently suitable for large (or even redundant) training sets and/or networks; it also helps escaping local 

minima and provides a more natural approach for learning nonstationary tasks. Furthermore, the notion of retraining aids the hybrid 

method to exhibit reliable and stable performance, and increases the generalization capability of the trained neural network. 

Experimental results suggest that the proposed hybrid strategy is capable to train on-line, efficiently and effectively. Here, an 

artificial neural network architecture has been successfully used for detecting abnormalities in colonoscopic video images. 

1. INTRODUCTION

Artificial neural networks (ANNs) provide to computing an 

alternative algorithmic model, which is biologically motivated: 

the computation is massively distributed and parallel, and the 

learning replaces a priori program development, i.e. ANNs 

develop their functionality based on training (sampled) data. 

The ANN approach to medical information processing has 

several benefits, such as: 

• Training by examples instead of rules

• Learning from experience

• Generalization to new test data

• Reduction of the number of false alarms, without

increasing significantly the number of false negatives

• Automation of the learning process

• Eliminating issues associated with human fatigue and

habituation

• Rapid identification of problematic cases

• Analysis of conditions and diagnosis in real time.

In medical imaging, ANNs learning from data sets encounters 

several difficulties, since these sets may be characterized by 

incompleteness (missing parameter values), incorrectness 

(systematic or random noise in the data), sparseness (few 

and/or non-representable records available from the patient), 

and inexactness (inappropriate selection of parameters for the 

given task). In principle, ANNs are able to handle these data 

sets and are mostly used for their pattern matching capabilities 

and their human-like characteristics (generalization, robustness 

to noise), in order to assist medical decision-making. 

Furthermore, it is acknowledged that ANNs contribute to the 

improvement of imaging information and to the development 

and spread of intelligent systems in medical imaging. ANN-

based intelligent systems strongly depend on the existence of 

technology that provides computers with high computing 

performance for processing large amount of information in 

reasonable time. 

In this paper, a new hybrid Evolutionary Algorithm (EA) 

combined with on-line ANN training is investigated The 

proposed method is used for tumor detection in colonoscopic 

video images. In the first stage of the proposed methodology, a 

recently proposed on-line learning algorithm [11] is employed 

to train the ANN. In the second stage, EAs [14] are used for 

retraining the network. The usage of EAs is based on the fact 

that the first stage has produced a population of potential 

solutions and hence the EA is less sensitive to the 

nonstationaries of the task. 

The rest of the paper is organized as follows: batch and on-line 

ANN training are discussed in Section 2, while a short 

introduction to EAs is given in Section 3. Section 4 describes 

the special task of interpreting endoscopic images, while 

Section 5 presents details on the application of the new hybrid 

method in training ANNs in interpreting colonoscopic images 

and outlines the implementation results. Finally, in Section 6, 

conclusions and a short discussion of future work are presented. 



2. BATCH vs. ON-LINE NEURAL NETWORK TRAINING

Learning in ANNs is usually achieved by minimizing the 

network's error, which is a measure of its performance and is 

defined as the difference between the actual output vector of 

the network and the desired one. This approach is very popular 

for training artificial neural networks and includes training 

algorithms that can be divided in two categories: stochastic, 

also called on-line, and batch, also called off-line. 

The batch training of ANNs is considered as the classical 

machine learning approach: a set of examples is used for 

learning a good approximating function, i.e. train the ANN, 

before the network is used in the application. Batch training is 

consistent with the theory of unconstrained optimization, since 

the information from all the training set is used. Thus, the aim 

is to find a minimizer n
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between the actual output value at the j-th output layer neuron 

for pattern p and the target output value; p is an index over 

input-output pairs.  

The rapid computation of such a minimizer is a rather difficult 

task since, in general, the dimension of parameter space is high 

and the error function generates a complicated surface in this 

space, possessing multitudes of local minima and having broad 

flat regions adjoined to narrow steep ones that need to be 

searched to locate an “optimal” weight set. 

On the other hand, in on-line training, the ANN parameters are 

updated after the presentation of each training example, which 

may be sampled with or without repetition. On-line training 

may be the appropriate choice for learning a task either because 

of the very large (or even redundant) training set, or because of 

the slowly time-varying nature of the task. Although batch 

training seems faster for small-size training sets and networks, 

on-line training is probably more efficient for large training sets 

and ANNs. It helps escaping local minima and provides a more 

natural approach for learning non-stationary tasks. On-line 

methods seem to be more robust than batch methods as errors, 

omissions or redundant data in the training set can be corrected 

or ejected during the training phase. Additionally, training data 

can often be generated easily and in great quantities when the 

system is in operation, whereas they are usually scarce and 

precious before. Lastly, on-line training is necessary in order to 

learn and track time varying functions and continuously adapt 

in a changing environment. As Sutton pointed out [22], “on-line 

learning is essential if we want to obtain learning systems as 

opposed to merely learned ones”. 

Given the inherent efficiency of stochastic gradient descent, 

various schemes have been recently proposed [1,18,19,20,22]. 

However, these schemes suffer from several drawbacks such as 

sensitivity to learning parameters [18]. Note that in this 

framework it is not possible to use advanced optimization 

methods, such as conjugate gradient, variable metric, simulated 

annealing etc., as these methods rely on a fixed error surface 

[18].  

So, despite the abundance of methods for learning from 

examples, there are only few that can be used effectively for 

on-line learning. For example, the classic batch training 

algorithms cannot straightforwardly handle nonstationary data. 

Even when some of them are used in on-line training there 

exists the problem of  “catastrophic interference”, in which 

training on new examples interferes excessively with previously 

learned examples leading to saturation and slow convergence 

[23]. Methods suited to on-line learning are those that can 

handle nonstationary (time-varying) data, while at the same 

time, require relatively little additional memory and 

computation in order to process one additional example. 

3. EVOLUTIONARY ALGORITHMS

In the second stage of the proposed hybrid algorithm, an 

evolutionary algorithm is employed on the termination point of 

the on-line training method. Evolutionary Algorithms (EAs) are 

stochastic search methods that mimic the metaphor of natural 

biological evolution. EAs operate on a population of potential 

solutions applying the principle of survival of the fittest to 

produce better and better approximations to a solution. At each 

generation, a new set of approximations is created by the 

process of selecting individuals according to their level of 

fitness in the problem domain and breeding them together using 

operators borrowed from natural genetics. 

To demonstrate the efficiency of the EAs, we have used 

Differential Evolution (DE) strategies to train ANNs [12,21]. 

DE strategies can handle non differentiable, nonlinear and 

multimodal objective functions efficiently, and require few 

easily chosen control parameters. Experimental results have 

shown that DE strategies have good convergence properties and 

outperform other evolutionary algorithms [14]. To apply DE 

strategies to ANN training we start with a specific number (NP) 

of n-dimensional weight vectors, as an initial weight 

population, and evolve them over time; NP is fixed throughout 

the training process and the weight population is initialized 

randomly following a uniform probability distribution. 

At each iteration, called generation, new weight vectors are 

generated by the combination of weight vectors randomly 

chosen from the population. This operation is called mutation. 

The outcoming weight vectors are then mixed with another 

predetermined weight vector - the target vector - and this 

operation is called crossover. This operation yields the so-

called trial vector. The trial vector is accepted for the next 

generation if and only if it reduces the value of the error 

function E. This last operation is called selection. We now 

briefly review the two basic DE operators. 

The first DE operator used is the mutation operator. 

Specifically, for each weight vector, a new vector called mutant 

vector is generated according to the following relation: 
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where 
best

w is the best member of the previous generation, 

0>ξ  is a real parameter called mutation constant and controls 

the amplification of the difference between two weight vectors, 
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w . To increase further the diversity of the mutant weight 

vector, the crossover operator is applied. Specifically, for each 

component j, (j=1,2,…, n), of the mutant weight vector, we 

randomly choose a real number r from the interval [0,1]. Then, 

we compare this number with 0>ρ  (crossover constant), and 

if ρ≤r  we select, as the j-th component of the trial vector, the 

corresponding component j of the mutant vector. Otherwise, we 

pick the j-th component of the target vector. 

The above operators introduce diversity in the population and 

are used to help the algorithm escape the local minima in the 

weight space. The combined action of mutation and crossover 

is responsible for much of the effectiveness of DE’s search, and 

allows them to act as parallel, noise-tolerant hill-climbing 

algorithms, which efficiently search the whole weight space.  

4. INTERPRETATION OF ENDOSCOPIC IMAGES

Neural networks have been increasingly used in medicine and 

especially in the development of neural expert systems for 

intelligent medical image interpretation [3,5,6,8,13,24]. In most 

cases, the development of such systems is considered an 

attempt to emulate the doctor’s expertise in the identification of 

malignant regions in minimally invasive imaging procedures 

(for example, computed tomography, ultrasonography, 

endoscopy, confocal microscopy, computed radiography, or 

magnetic resonance imaging). The objective is to increase the 

expert’s ability to identify cancer regions while decreasing the 

need for intervention and maintaining the ability for accurate 

diagnosis. Furthermore, it may be possible to examine a larger 

area, studying living tissue in vivo - possibly at a distance [2] - 

and thus minimize the shortcomings of biopsies, such as a 

limited number of tissue samples, a delay in diagnosis, and 

discomfort for the patient. The need for more effective methods 

of early detection - such as those that computer assisted medical 

diagnosis systems aim to provide - is obvious. 

In technical terms, the problem in automatic image 

interpretation is to associate sets of pixels (structures) in an 

image with the unknown objects that are present in the scene 

from which the image has been drawn. The difficulty increases 

when several objects of different kinds, related by a set of 

spatial-temporal relations, are present in the observed scene. In 

medical practice, endoscopic approaches and other minimally 

invasive techniques (for example, computed tomography and 

magnetic resonance imaging) are now permitting visualization 

of previously inaccessible regions of the body. In diagnostic 

endoscopy, the medical expert, based on a distributed percept of 

local changes, interprets the physical surface properties of the 

tissue - such as the roughness or the smoothness, the regularity, 

and the shape - to detect abnormalities. Adjacent surfaces 

showing different surface properties are distinguished on the 

basis of the texture differences.  

It is important to note, however, the vast difficulties in physical 

attributes of the organs. For example, in colonoscopy, no two 

colons are alike. Even within the same colon, one section may 

have very different characteristics from another. This fact 

introduces severe limitations in the use of computer-assisted 

endoscopy for interpreting colonoscopic images [7]. Given a 

medical image, the ‘true’ features associated with the physical 

surface properties of the tissue are not exactly known to the 

image-interpretation system developer. Usually, one or more 

feature-extraction models [10] are used to provide values for 

each feature’s parameters. The findings are then used to infer 

the correct interpretation. On this same task of interpretation on 

the basis of local changes on the properties of the tissue under 

examination, the performance of human perception is 

considered outstanding. Furthermore, medical experts have the 

ability to either add or remove components from an image to 

give meaning to what they see. Medical experts can also adapt 

to changes to the extent that even a distorted image can be 

recognized. 

Neural network methodologies present some human-like 

qualities, such as learning from experience, generalization, and 

handling uncertainty and ambiguity in distorted or noisy 

images. Thus, such methods provide human experts with 

significant assistance in medical diagnosis [6,8,13,24]. 

5. IMPLEMENTATION AND RESULTS

The interpretation of diagnostic medical images is usually quite 

sophisticated and involves multiple levels of processing. To 

provide a common platform for studying the various problems 

of medical-image-based diagnostics, a three-level model is 

employed as shown in Figure 1 (adapted from [9,p.95]). 

Image Formation Images

Lower Level Processing

Enhancement, Feature
Extraction, Segmentation.

Higher Level Processing

Classification, Labelling, Outcome
prediction.

Features

Diagnostics

Figure 1: Model for diagnostic system using medical images. 

Figure 2: A frame of the video sequence illustrating a polypoid 

tumor of the colon. 



Hybrid On–line Training Algorithm 

Step 0: Initialize the weights ,, 00 ηw  and the meta-stepsize K. 

Step 1: Repeat for each input pattern p 

Step 2: Calculate )E(w p
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Step 6: Return the final weights 
1+p

w  to the Stage 2. 

Step 0: Initialize the DE population, in the neighborhood of 
1+p

w . 

Step 1: Repeat for each input pattern p 

Step 2: For i = 1 to NP 

Step 3: MUTATION(
p

i
w ) →  Mutant_Vector.

Step 4: CROSSOVER(Mutant_Vector) →  Trial_Vector.

Step 5: If E(Trial_Vector) ≤  E(
p
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w ), accept Trial_Vector for the next generation. 

Step 6: EndFor 
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Step 7: Until the termination condition is met. 

Algorithm 1 

Image processing is separated into two levels: the lower-level 

processing and the higher-level processing. The lower-level 

processing takes image pixels as input and performs various 

tasks such as image enhancement, feature extraction and image 

segmentation. The higher-level processing takes the output 

from the lower-level processing as input and generates output 

related to medical diagnostics. Tasks accomplished in the 

higher-level processing include classification of features, 

detection of specific lesions and diagnosis for various 

abnormalities. 

In this application example we will focus on computer-assisted 

endoscopy for interpreting colonoscopic images. As already 

mentioned, colonoscopy is a minimal invasive technique for the 

production of medical images. A narrow pipe like structure, an 

endoscope, is passed into the patient’s body. Video endoscopes 

have small cameras in their tips, when passed into a body, what 

the camera observes is displayed on a television monitor (see 

Figure 2 for a sample frame of the video sequence). The 

physician controls the endoscope’s direction using wheels and 

buttons. 

An important stage of the implementation is the feature 

extraction process. In our experiments we have used a 

technique kown as co-occurrence matrices to generate features, 

as illustrated in Figure 3. More specifically, the endoscopic 

image was separated into windows of size 16 pixels by 16 

pixels. Then the co-occurrence matrices algorithm was used to 

gather information regarding each pixel in an image window. 

Cooccurrence matrices [4] represent the spatial distribution and 

the dependence of the gray levels within a local area. Based on 

these matrices, sets of statistical measures are computed for 

different angles. Four angles were considered, as well as a 

predefined distance of one pixel. The following four statistical 

measures, provide high discrimination accuracy [4]: Energy-

Angular Second Moment, Correlation, Inverse Difference 

Moment, Entropy and were used to extract the feature vectors. 

The elements of these feature vectors are the data that is to be 

presented to the ANN in order to train it. For a full explanation 

see [8]. 

Original Image

16x16 window
extracted

from the original image

Feature extraction-

Cooccurrence
Martices

A1 A2 A3 A16

Feature Vector

. . .

Figure 3: Feature extraction process. 

So in our experiments, the feature vectors contain sixteen 

elements each and therefore the first layer of the ANNs will 

consist of sixteen neurons. 

A high-level description of the proposed algorithm, is given in 

Algorithm 1. First, the stochastic gradient descent is outlined in 

the Stage 1 of Algorithm 1, where η  is the stepsize, K is the 

meta-stepsize and ⋅⋅,  stands for the usual inner product in 

nℜ . The memory-based calculation of the stepsize, in Step 4, 

takes into consideration previously computed pieces of 

information to adapt the stepsize for the next pattern 

presentation. This seems to provide some kind of stabilization 

in the calculated values of the stepsize, and helps the stochastic 

gradient descent to exhibit fast convergence and high success 

rate. Note that the classification error or an upper limit to the 

error function evaluations can be used as the termination 

condition in Step 5. The key features of the on-line method are 

the low storage requirements and the inexpensive computations. 

Moreover, in order to calculate the stepsize to be used at the 

next iteration, this on–line algorithm uses information from the 

current, as well as the previous iteration.  



In Stage 2 of Algorithm 1, the DE algorithm, responsible for 

the retraining is outlined. No operation for tuning the mutation 

and crossover constants was carried out; the fixed values 

5.0=ξ  and 7.0=ρ  have been used. 

In the first stage of the algorithm, an ANN having 16 inputs, 30 

hidden and 2 output nodes was initially trained to discriminate 

between normal and abormal image regions using 300 

randomly selected patterns from the first frame. The method 

used is the stochastic training method introduced in [11]. The 

training procedure stopped when the ANN exhibited 3% 

misclassifications on the training set. At this moment, the 

generalization capability of the ANN at the whole first frame 

was 83.77%. It must be noted that the first stage was extremely 

fast; approximately 40 training epochs were needed. 

In the second stage, the same ANN architecture has been 

retrained using the DE algorithm [14]. The DE population has 

been initialized with weight vectors in the neighborhood of the 

weight vector found after the first stage had beed completed. 

The new training set consisted of 1200 patterns; the 300 

patterns that were selected from the first frame, plus 900 

patterns randomly selected from other three video frames of the 

same sequence. The DE algorithm is allowed to perform only 

two iteration with each pattern. This was necessary to prevent 

the “catastrophic interference” between the patterns of the 

different training sets. 

To test the performance of the trained ANN approximately 

4000 patterns have been created from each frame. These test 

sets constitute the whole image region in the frame and contain 

normal and abnormal samples. After the retraining phase, it is 

easy to visually pinpoint the actual location of the tumor. The 

generalization results without and without retraining, are 

exhibited in Table 1. 

As shown in Table 1, by training the ANN with on-line 

backpropagation using data extracted form the frame 3 and 

testing it on the whole frame a recognition success of 82.84% 

was achieved. On the other hand, the hybrid method by 

applying retraining provides a percentage of 93.09%. 

Without Retraining With Retraining 

Frame 1 83.77% 91.91% 

Frame 2 77.18% 83.57% 

Frame 3 82.84% 93.09% 

Frame 4 87.60% 89.24% 

Table 1: Generalization Results 

6. DISCUSSION AND CONCLUSIONS

Research in computer-assisted interpretation of endoscopic 

images to-date is centred on technological issues and is mostly 

application driven. 

Towards this direction, a new hybrid method for on-line neural 

network training has been developed, tested and applied to 

tumor detection in colonoscopic video images. Simulation 

results suggest that the new method exhibits fast and stable 

learning, good generalization and therefore a great possibility 

of good performance. The proposed algorithm is able to train 

large networks using on-line data, and is better suited for tasks 

with large, redundant or slowly time-varying training sets, such 

those of medical imaging. In general, the results obtained 

indicate that the proposed hybrid algorithm is capable of 

detecting successfully tumors in single images, as well as, in 

sequences of frames with an acceptable recognition success 

rate. Further work is needed to optimize the hybrid algorithm 

performance, as well as to test it on even bigger training sets 

from different endoscopic video images. 

Our ultimate aim is to incorporate this learning mechanism to a 

prototype intelligent system for intrerprating endoscopic 

images. At this point it is useful to mention that previous 

research and experience suggests that the successful 

implementation of computerised systems [16], and decision 

support systems in particular [17], in the area of healthcare 

relies on the successful integration of the technology with the 

organisational and social context within which it is applied. 

Therefore, the successful implementation of intelligent medical 

image interpretation systems should not only rely on their 

technical feasibility and effectiveness but also on organisational 

and social aspects that may rise from their applications, as 

clinical information is acquired, processed, used and exchanged 

between professionals [15]. All these issues are critical in 

healthcare applications because they ultimately reflect on the 

quality of care provided.  
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