
Unsupervised Clustering of Bioinformatics Data

D.K. Tasoulis, V.P. Plagianakos, and M.N. Vrahatis
Department of Mathematics, University of Patras, GR-26110 Patras, Greece

University of Patras Artificial Intelligence Research Center (UPAIRC), GR-26110 Patras,
Greece

email: {dtas,vpp,vrahatis}@math.upatras.gr

ABSTRACT: The development of microarray technologies gives scientists the ability to examine, discover and
monitor the mRNA transcript levels of thousands of genes in a single experiment. Nevertheless, the tremendous
amount of data that can be obtained from microarray studies presents a challenge for data analysis. The most
commonly used computational approach for analyzing microarray data is cluster analysis. In this paper, we
investigate the application of an unsupervised extension of the recently proposed k-windows clustering algorithm
on gene expression microarray data. This algorithm apart from identifying the clusters present in a dataset also
calculates their number thus no special knowledge about the data is required. To improve the quality of the
clustering, we selected the most highly correlated genes with respect to the class distinction of the genes. The
results obtained by the application of the algorithm exhibit high classification success.

KEYWORDS: Bioinformatics, Gene Expression Analysis, Clustering, Cluster Analysis

INTRODUCTION

In any living cell that undergoes a biological process, different subsets of its genes are expressed. A cell’s proper
function is crucially affected by the gene expression at a given stage and their relative abundance. To understand
biological processes one has to measure gene expression levels in different developmental phases, different body
tissues, different clinical conditions and different organisms. This kind of information can aid in the character-
ization of gene function, the determination of experimental treatment effects, and the understanding of other
molecular biological processes [1].

Compared to the traditional approaches to genomic research, which has been to examine and collect data
for a single gene locally, DNA microarray technologies have made it now possible to monitor the expression
pattern for thousands of genes simultaneously. Unfortunately, the original gene expression data come along
with noise, missing values and systematic variations due to the experimental procedure. Several methodologies
can be employed to alleviate these problems, such as Singular Value Decomposition based methods, weighted
k–nearest neighbors, row averages, replication of the experiments to model the noise, and/or normalization,
which is the process of identifying and removing systematic sources of variation. Finally, gene expression data
are represented by a real-valued expression matrix X , where the rows of the matrix are vectors forming the
expression patterns of genes, the columns of the matrix represent samples from various conditions, and each
cell, xij , is the measured expression level of gene i in sample j.

Discovering the patterns hidden in the gene expression microarray data is a tremendous opportunity and
challenge for functional genomics and proteomics [1]. An interesting approach to address this task is to utilize
data mining techniques. Cluster analysis is a key step in understanding how the activity of genes varies during
biological processes and is affected by disease states and cellular environments. In particular clustering can
be used either to identify sets of genes according to their expression in a set of samples [2, 3], or to cluster
samples into homogeneous groups that may correspond to particular macroscopic phenotypes [4]. The latter
is in general more difficult because of the curse of dimensionality (due to limited number of samples and high
feature dimensionality), but is very valuable in clinical practice. The present paper focuses on this issue.

Generally, clustering can be defined as the process of “grouping a collection of objects into subsets or
clusters, such that those within one cluster are more closely related to one than objects assigned to different
clusters” [5]. Clustering is applied in various fields including data mining [6], statistical data analysis [7],
compression and vector quantization [8], global optimization [9, 10], image analysis, and others. Clustering
is, also, extensively applied in social sciences [7]. Recently clustering techniques have been applied to gene

eunite 2004 47 www.eunite.org

expression data [2, 11, 12, 13] and have proved useful for identifying biologically relevant groupings of genes and
samples, and further helping answering such questions as gene function, gene regulation and gene expression
differentiation under various conditions.

A fundamental issue in cluster analysis, independent of the particular clustering technique applied, is the
determination of the number of clusters present in a dataset. This issue remains an open problem in cluster
analysis. For instance well–known and widely used iterative techniques, such as the k-means algorithm [14],
require from the user to specify the number of clusters present in the data prior to the execution of the algorithm.
Algorithms that have the ability to discover the number of clusters present in a dataset fall in the category of
unsupervised clustering algorithms.

In this paper, we investigate the application of an unsupervised extension of the recently proposed clustering
algorithm k-windows [15], on gene expression microarray data. The paper is organized as follows: in the next
sections for completeness purposes we present the original k-windows algorithm along with its complexity issues,
and how it is extended to endogenously determine the number of clusters present in a dataset [15, 16].Next we
describe the application in gene expression microarray data and the paper ends with concluding remarks.

UNSUPERVISED k–WINDOWS CLUSTERING ALGORITHM

For completeness purposes we outline the basic concepts of the unsupervised k-windows algorithm which is
applied in this paper. This algorithm generalizes the original algorithm [15]. Suppose that we have a set
of points in the R

d space. Intuitively, the k-windows algorithm tries to place a d-dimensional window (box)
containing all patterns that belong to a single cluster; for all clusters present in the dataset. At first, k points
are selected (possibly in a random manner). The k initial d–ranges (windows), of size a, have as centers these
points. Subsequently, the patterns that lie within each d-range are identified. Next, the mean of the patterns
that lie within each d–range (i.e. the mean value of the d–dimensional points) is calculated. The new position
of the d–range is such that its center coincides with the previously computed mean value. The last two steps
are repeatedly executed as long as the increase in the number of patterns included in the d–range that results
from this motion satisfies a stopping criterion. The stopping criterion is determined by a variability threshold
θv that corresponds to the least change in the center of a d–range that is acceptable to recenter the d–range.
This process is illustrated in Figure 1.

M1

M2
M3

Figure 1: Sequential Movements (solid lines) of the initial window M1 that result to the final window M3.

Once movement is terminated, the d–ranges are enlarged in order to capture as many patterns as possible
from the cluster. Enlargement takes place at each dimension separately. The d–ranges are enlarged by θe/l
percent at each dimension, where θe is user defined, and l stands for the number of previous successful enlarge-
ments. After the enlargement in one dimension is performed, the window is moved, as described above. Once
movement terminates, the proportional increase in the number of patterns included in the window is calculated.
If this proportion does not exceed the user–defined coverage threshold, θc, the enlargement and movement
steps are rejected and the position and size of the d–range are reverted to their prior to enlargement values.
Otherwise, the new size and position are accepted. If enlargement is accepted for dimension d′ > 2, then for all
dimensions d′′, such that d′′ < d′, the enlargement process is performed again assuming as initial position the
current position of the window. This process terminates if enlargement in any dimension does not result in a
proportional increase in the number of patterns included in the window beyond the threshold θc.

An example of this process is provided in Figure 2. In the figure the window is initially enlarged horizontally
(E1). This enlargement is rejected since it does not produce an increase in the number of patterns included. Next
the window is enlarged vertically, this enlargement is accepted, and the result of the subsequent movements and

eunite 2004 48 www.eunite.org

E2

E1

Figure 2: The enlargement process. Enlargement in the horizontal dimension (E1) is rejected, while in the
vertical dimension it is accepted. After subsequent movements and enlargements the window becomes E2.
Further enlargement in the horizontal dimension is rejected.

enlargements is the initial window to become E2. Next enlargement in the horizontal direction is reconsidered
but it is rejected again.

The key idea to automatically determine the number of clusters, is to apply the k-windows algorithm using
a sufficiently large number of initial windows. The windowing technique of the k-windows algorithm allows
for a large number of initial windows to be examined, without any significant overhead in time complexity.
Once all the processes of movement and enlargement for all windows are terminates, all overlapping windows
are considered for merging. The merge operation is guided by a merge threshold θm. Having identified two
overlapping windows, the number of patterns that lie in their intersection is calculated. Next the proportion of
this number to the total patterns included in each window is calculated. If the mean of these two proportions
exceeds θm, then the windows are considered to belong to a single cluster and are merged, otherwise not.
This operation is illustrated in Figure 3; the extent of overlapping between windows W1 and W2 exceeds the
threshold criterion and the algorithm considers both to belong to a single cluster, unlike windows W3 and W4,
which capture two different clusters.

W4

W1

W2

W3

Figure 3: The merging procedure. W1 and W2 have many points in common thus they are considered to belong
to the same cluster. On the other hand W3 and W4, capture two different clusters.

The remaining windows, after the quality of the partition criterion is met, define the final set of clusters. If
the quality of a partition, determined by the number of patterns contained in any window, with respect to all
patterns is not the desired one, the algorithm is re-executed. The user defined parameter u serves this purpose.
Thus the algorithm takes as input seven user defined parameters:

1. a: the initial window size,

2. u: the quality parameter,

3. θe: the enlarge threshold,

4. θm: the merge threshold,

5. θc: the coverage threshold,

6. θv: the variability threshold

7. k: the number of initial windows

eunite 2004 49 www.eunite.org

The output of the algorithm is a number of sets that define the final clusters discovered in the original
dataset. In brief, the algorithm works as follows:

1. input{a, u, θe, θm, θc, θv}
2. Determine the number, k, and the centers of the initial d–ranges.
3. Perform sequential movements and enlargements of the d–ranges.
4. Perform the merging of the resulting d–ranges.
5. Report the groups of d–ranges that comprise the final clusters.

THE ALGORITHMIC COMPLEXITY OF k-WINDOWS ALGORITHM

The most demanding step of the algorithm in terms of computational time is the identification of the patterns
of the dataset that lie within a specific d–range (Orthogonal Range Search Problem). To make this step time
efficient a technique from Computational Geometry [17, 18, 19, 20] is employed. This technique constructs a
multi–dimensional binary tree for the data at a preprocessing step and traverses this tree to solve the Orthogonal
Range Search Problem.

Figure 4: A set V = {p1, p2, . . . , p16} of points in 2-dimensional space R
2 and the corresponding 2-dimensional

binary tree.

From the performance viewpoint, the multi–dimensional binary tree requires, optimally, θ(dn) storage and
can be optimally constructed in θ(dn log n) time, where d is the dimension of the data and n is the number of
patterns. The worst–case behavior of the query time is O(|A|+dn1−1/d) (see [20]) where A is the set containing
the points belonging to the specific d–range.

In the original paper [15] for the k-windows algorithm, a different type of data structure was used. Instead of
a multi–dimensional binary tree, a range tree was constructed. Despite the fact that search in a range tree has
a polylogarithmic time complexity; the storage requirement is super–linear with respect to the dimensionality
d of the data. Thus, in [21], the multi–dimensional binary tree version was proposed to render the algorithm
more suitable to real–life problems.

In the version of the algorithm proposed in this paper a range tree is constructed only for the first coordinate
of the data. This tree is solely used to select the initial window positions. As previously mentioned the user
is given the option to select the number of d–ranges employed by the algorithm. More specifically, the user
by choosing the value i, initializes 2i, d–ranges. The algorithm goes to depth i of the range tree which has 2i

nodes. From each node at depth i a single point is selected to comprise the center of one window. For each

eunite 2004 50 www.eunite.org

node that lies to the left of the middle node the point at the leftmost leaf of the subtree with root that node
is selected. Respectively, for each node that lies to the right of the middle node, the point at the rightmost
leaf of the subtree with root that node, is selected. Although different methods can also be used we chose this
approach because it takes into account from the beginning the structure of the data.

EXPERIMENTAL RESULTS

To investigate the performance of the k-windows algorithm in gene expression microarray data we used data from
a previous study that examined mRNA expression profiles from 72 leukemia patients to develop an expression-
based classification method for acute leukemia [4]. Affymetrix Hu6800 GeneChips were used in that study. This
data set contains a large number of patients and has been well characterized. Each sample is measured over
7129 genes. The first 38 samples have been used for the clustering process (train set), while the remaining 34
were used to evaluate the final clusters (test set). The initial 38 samples contained 27 acute myeloid leukemia
(ALL) samples and 11 acute lymphoblastic leukemia (AML) samples. The test set contained 20 ALL samples
and 14 AML samples. Golub et al. in [4] applied the Self Organizing Map [22] (SOM) clustering algorithm on
the training set, selecting 50 highly correlated genes with the ALL-AML class distinction. SOM automatically
grouped the 38 samples into two classes with one containing 24 out of the 25 ALL samples and the other
contained 10 out of the 13 AML samples.

Generally, in a typical biological system, it is often not known how many genes are sufficient to characterize
a macroscopic phenotype. In practice, a working mechanistic hypothesis that is testable and largely captures
the biological truth seldom involves more than a few dozens of genes, and knowing the identity of these relevant
genes is very important [23]. Initially we applied the k-windows algorithm over the train set using all 7129
genes as well as various randomly selected gene collections ranging from 10 to 2000. The algorithm produced
clusters that often contained both AML and ALL samples. Typically, at least 80% of all the samples that were
assigned to a cluster were characterized by the same leukemia type.

To improve the quality of the clustering, it proved essential to identify genes that significantly contribute
to the partition of interest. Thus we selected the 50 most highly correlated genes with the ALL-AML class
distinction (top 25 differentially expressed probe sets in either sample group) according to Thomas et al. [24].
More specifically their approach is based on well-defined assumptions, uses rigorous and well-characterized
statistical measures, and accounts for the heterogeneity and genomic complexity of the data. The modeling
approach uses known sample group membership to focus on expression profiles of individual genes in a sensitive
and robust manner, and can be used to test statistical hypotheses about gene expression. The first step in the
statistical analysis of microarray expression profiles is preprocessing and/or transformation of the data. This
includes removal of the spiked oligonucleotide controls. The second step is to estimate correction factors for
sample-specific heterogeneity, as well as for chip-specific heterogeneity, and to use these factors to normalize
the data. The final step is to perform a regression analysis to estimate the relevant model parameters for each
gene transcript using robust statistical techniques in order to assess the confidence level that the corresponding
gene is differentially expressed between the two groups.

Applying the k-windows algorithm for those 50 genes over the train set produced 6 clusters each of which
contained samples from either ALL or AML, as exhibited in Table I. In particular, 4 clusters contained only
ALL samples and 2 clusters contained only AML samples.

Leukemia type ALL Clusters AML Clusters
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 1 Cluster 2

ALL 10 3 10 4 0 0
AML 0 0 0 0 8 3

Table I: Clustering result for the train set

To evaluate the clustering result each sample from the test set was assigned to one of the clusters discovered
in the train set according to its distance from the cluster center. Specifically, if an ALL (AML) sample from
the test set was assigned to an ALL (AML, respectively) cluster then that sample was considered correctly
classified. From the results exhibited in Table II, it is evident that only 3 AML samples from the test set were
misclassified, resulting in a 91.2% correct classification.

eunite 2004 51 www.eunite.org

Leukemia type ALL Clusters AML Clusters
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 1 Cluster 2

ALL 8 0 9 3 0 0
AML 0 0 3 0 8 3

Table II: Clustering result for the test set

CONCLUDING REMARKS

In this contribution we present a modification of the recently proposed k-windows clustering algorithm. Cluster
analysis presented here groups leukemia samples into clusters based on similar gene expression microarray data.
The data set used was provided by The Center of Genome Research, Whitehead Institute [4]. From the 7129
genes provided, 50 of them (top 25 differentially expressed probe sets in either sample group) were used according
to the modeling approach of [24]. This approach makes no distributional assumptions, it is well-founded, and
provides a sensitive and robust method to extract relevant information from DNA microarrays.

Our analysis produced 6 different clusters, each one containing only AML or ALL samples. These clusters
were evaluated using an independent test set, exhibiting high classification success.

ACKNOWLEDGMENT

The authors thank T.R. Golub and his colleagues at MIT for making their AML/ALL data set available in the
public domain as well as the referees for their valuable suggestions and comments. The authors also ackowledge
the support of the “Karatheodoris” research grant awarded by the Research Committee of the University of
Patras, and the “Pythagoras” research grant awarded by the Greek Ministry of Education and Religious Affairs
and the European Union.

REFERENCES

[1] D. Jiang; C. Tang; A. Zhangi, to appear, “Cluster analysis for gene expression data: A survey”, IEEE
Transactions on Knowledge and Data Engineering.

[2] M.B. Eisen; P.T. Spellman; P.O. Brown; D. Botstein, 1998, “Cluster analysis and display of genome-wide
expression patterns”, Proc. Natl. Acad. Sci. USA, 95, pp. 14863–14868.

[3] X. Wen; S. Fuhrman; G. Michaels; D. Carr; S. Smith; J. Barker; R. Somogyi, 1998, “Large-scale temporal
gene expression mapping of cns development”, Proceedings of the National Academy of Science USA, 95,
pp. 334–339.

[4] T.R. Golub; D.K Slomin; P. Tamayo; C. Huard; M. Gaasenbeek; J. Mesirov; H. Coller; M.L. Loh; J. Down-
ing; M. Caligiuri; C. Bloomfield; E. Lander, 1999, “Molecular classification of cancer: Class discovery and
class prediction by gene expression monitoring”, Science, 286, pp. 531–537.

[5] T. Hastie; R. Tibshirani; J. Friedman, 2001, “The elements of statistical learning”, Springer-Verlag.

[6] U.M. Fayyad; G. Piatetsky-Shapiro; P. Smyth, 1996, “Advances in knowledge discovery and data mining”,
MIT Press.

[7] M.S. Aldenderfer; R.K. Blashfield, 1984, “Cluster analysis”, volume 44 of Quantitative Applications in the
Social Sciences, SAGE Publications, London.

[8] V. Ramasubramanian; K. Paliwal, 1992, “Fast k-dimensional tree algorithms for nearest neighbor search
with application to vector quantization encoding”, IEEE Transactions on Signal Processing, 40(3), pp. 518–
531.

[9] R.W. Becker; G.V. Lago, 1970, “A global optimization algorithm”, In Proceedings of the 8th Allerton
Conference on Circuits and Systems Theory, pp. 3–12.

[10] A. Torn; A. Zilinskas, 1989, “Global optimization”, Springer-Verlag, Berlin.

eunite 2004 52 www.eunite.org

[11] U. Alon; N. Barkai; D.A. Notterman; K.Gish; S. Ybarra; D. Mack; A.J. Levine, 1999, “Broad patterns of
gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide
array”, Proc. Natl. Acad. Sci. USA, 96(12), pp. 6745–6750.

[12] R. Shamir; R. Sharan, 2000, “Click: A clustering algorithm for gene expression analysis”, In 8th Interna-
tional Conference on Intelligent Systems for Molecular Biology (ISMB 00). AAAIPress.

[13] S. Tavazoie; J.D. Hughes; M.J. Campbell; R.J. Cho; G.M. Church, 1999, “Systematic determination of
genetic network architecture”, Nature genetics, volume 22, pp. 281–285.

[14] J.A. Hartigan; M.A. Wong, 1979, “A k-means clustering algorithm”, Applied Statistics, 28, pp. 100–108.

[15] M.N. Vrahatis; B. Boutsinas; P. Alevizos; G. Pavlides, 2002, “The new k-windows algorithm for improving
the k-means clustering algorithm”, Journal of Complexity, 18, pp. 375–391.

[16] D.K. Tasoulis; M.N. Vrahatis, 2004, “Unsupervised distributed clustering”, In Proceedings of the IASTED
International Conference on Parallel and Distributed Computing and Networks. Innsbruck, Austria.

[17] P. Alevizos, 1998, “An algorithm for orthogonal range search in d > 3 dimensions”, In Proceedings of the
14th European Workshop on Computational Geometry. Barcelona.

[18] B. Chazelle, 1986, “Filtering search: A new approach to query-answering”, SIAM J. Comput, 15(3),
pp. 703–724.

[19] B. Chazelle; L.J. Guibas, 1986, “Fractional cascading II: Applications”, Algorithmica, 1, pp. 163–191.

[20] F. Preparata; M. Shamos, 1985, “Computational geometry”, Springer Verlag, New York, Berlin.

[21] P. Alevizos; B. Boutsinas; D.K. Tasoulis; M.N. Vrahatis, 2002, “Improving the orthogonal range search
k-windows clustering algorithm”, In Proceedings of the 14th IEEE International Conference on Tools with
Artificial Intelligence, pp. 239–245. Washington, D.C.

[22] T. Kohonen, 1997, “Self–organized maps”, Springer Verlag, New York, Berlin.

[23] E.P. Xing; R.M. Karp, 2001, “Cliff: Clustering of high–dimensional microarray data via iterative feature
filtering using normalized cuts”, Bioinformatics Discovery Note, 1, pp. 1–9.

[24] J.G. Thomas; J.M. Olson; S.J. Tapscott; L.P. Zhao, 2001, “An efficient and robust statistical modeling
approach to discover differentially expressed genes using genomic expression profiles”, Genome Research,
11, pp. 1227–1236.

eunite 2004 53 www.eunite.org

