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Abstract- In this paper a new clustering operator for
Evolutionary Algorithms is proposed. The operator in-
corporates the unsupervised k-windows clustering algo-
rithm, utilizing already computed pieces of information
regarding the search space in an attempt to discover re-
gions containing groups of individuals located close to
different minimizers. Consequently, the search is con-
fined inside these regions and a large number of global
and local minima of the objective function can be effi-
ciently computed. Extensive experiments shown that the
proposed approach is effective and reliable, and greatly
accelerates the convergence speed of the considered al-
gorithms.

1 Introduction

Evolutionary Algorithms (EAs) refer to problem solving op-
timization algorithms which employ computational mod-
els of evolutionary processes. A variety of evolution-
ary algorithms have been proposed. The major ones in-
clude: Genetic Algorithms [11, 13], Evolutionary Pro-
gramming [9, 10], Evolution Strategies [25, 27], Genetic
Programming [16], and the Differential Evolution algo-
rithm [31]. All these algorithms share the common con-
ceptual base of simulating the evolution of the individuals
that form the population using a predefined set of operators.
Commonly two kinds of operators are used: the selection
and the search operators. The most widely used search op-
erators are mutation and recombination.

The selection operator mainly depends on the perceived
measure of the fitness of each individual and enforces the
natural selection and the survival of the fittest. The recom-
bination and the mutation operators stochastically perturb
the individuals providing efficient exploration of the search
space. This perturbation is primarily controlled by the user
defined recombination and mutation rates. Although sim-
plistic from a biologist's point of view, these algorithms are
sufficiently complex to provide robust and powerful search
mechanisms and have shown their strength in solving hard
optimization problems.

For the rest of the paper we consider the minimization
problem of finding global minima of a continuous nonlinear,
(possibly) nondifferentiable, multimodal objective function
f . More specifically, our goal is to locate global minimizers
X* of the real-valued objective function f: 8-£ IR:

ti(t*) < f (X), VX E .6,

where t = 1,2, ..., and the compact set
E
C R7' is a n-

dimensional scaled translation of the unit hypercube.

In this paper, we propose a new clustering operator for
EAs and we aim to study the above minimization problem
focusing on the well-known Differential Evolution (DE)
algorithm. DE utilizes mutations and recombinations as
search mechanisms and selection to direct the search to-
wards the most promising area of the solution space. It uses
a non uniform mutation operator that can take child param-
eters from a particular parent more often than it does from
others. DE has been applied to a large number of different
optimization tasks. It has successfully solved many artificial
benchmark problems [30], as well as hard real-world prob-
lems (see for example [6, 14, 26, 28]). In [15] DE has been
applied to train neural networks and in [20, 21] we have pro-
posed a method that made possible the efficient training of
neural networks having arbitrary as well as constrained inte-
ger weights. The DE algorithm has also been implemented
on parallel and distributed computers [7, 22].

Although DE is capable of optimizing difficult multi-
modal objective functions, the choice of the appropriate mu-
tation operator depends on the problem at hand and in gen-
eral is a nontrivial task that demands experimentation. In
the literature numerous mutation operators have been pro-
posed for DE [8, 31], having various effects on its explo-
ration and exploitation dynamics. In this paper, we study
the performance of some of the most commonly used muta-
tion operators and propose a novel clustering operator that
incorporates clustering techniques to accelerate the conver-
gence of the algorithm. In general, clustering can be defined
as the process of partitioning a set of patterns into disjoint
and homogeneous meaningful groups, called clusters. In
our cases the clusters discovered are regions of 8 contain-
ing a minimum of the objective function f.

The key features of the proposed operator is that it uti-
lizes already computed pieces of information regarding the
search space and that it efficiently computes a large num-
ber of minima of the objective function in the process of
finding the global ones. To achieve its design goals, the
new operator utilizes the recently proposed unsupervised
k-windows clustering algorithm [3, 4, 32, 36]. Histori-
cally, clustering techniques were originally conceived by
Aristotle and Theophrastos in the fourth century B.C. and
later during the 18th century were studied by Linnaeus [ 17].
However, their first comprehensive foundations were pub-
lished in 1939 [41]. Clustering is considered fundamental
in knowledge acquisition and has been applied in numerous
fields including, statistical data analysis [1], compression
and vector quantization [24], image analysis, etc.

In addition to the ongoing research aiming at the study
of new clustering algorithms, a large amount of research
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has already been attributed to the development of cluster-
ing methods trying specifically to tackle global optimiza-
tion problems. The starting point was Torn's work [39, 40].
Timmer in [37] considered several clustering methods and a
book that tries to cover this field was published in 1989 [38].
Nevertheless, to the best of our knowledge, although novel
efficient global optimization and clustering algorithms are
being constantly proposed, not much work has been per-
formed to identify the applicability and the performance of
their synergy.

The rest of the paper is organized as follows. In Sec-
tion 2 the Differential Evolution algorithm is outlined and
a comparative study of different mutation operators is per-
formed. In Section 3 the k-windows clustering algorithm is
briefly described. In Section 4 the new DE operator is pro-
posed and Section 5 is devoted to the presentation and the
discussion of the experimental results. The paper ends with
concluding remarks and some pointers for future work.

2 The Differential Evolutionary Algorithm

Differential Evolution [31] is a minimization method, ca-
pable of handling nondifferentiable, nonlinear and multi-
modal objective functions. To fulfill this requirement, DE
has been designed as a stochastic parallel direct search
method, which utilizes concepts borrowed from the broad
class of evolutionary algorithms. The method typically re-
quires few, easily chosen, control parameters. Experimental
results have shown that DE has good convergence proper-
ties and outperforms other well known evolutionary algo-
rithms [29, 31].
DE is a population-based stochastic algorithm that ex-

ploits a population of potential solutions, individuals, to ef-
fectively probe the search space. The population of the in-
dividuals is randomly initialized in the optimization domain
with NP, n-dimensional vectors, following a uniform prob-
ability distribution and is evolved over time in order to ex-
plore the search space and locate the minima of the objec-
tive function. NP is fixed throughout the training process.
At each iteration, called generation, new vectors are gener-
ated by the combination of vectors randomly chosen from
the current population. This operation in our context can
be referred to as mutation. The outcoming vectors are then
mixed with another predetermined vector - the target vec-
tor - and this operation can be called as recombination. This
operation yields the so-called trial vector. The trial vector
is accepted for the next generation if and only if it yields a
reduction in the value of the objective function f. Other-
wise, target vector is retained in the next generation. This
last operator can be referred to as selection.

2.1 Search Operators

Here, we briefly describe the search operators that were
studied in this paper. The search operators efficiently shuf-
fle information among the individuals, enabling the search
for an optimum to focus on the most promising regions of
the solution space. The first operator considered is the mu-
tation. Specifically, for each individual x', i = 1, ... ,NP,

where g denotes the current generation, a new individual
v?+j (mutant vector) is generated according to one of the
following equations:

= Xbest + r2

Vg+l = Xg + (Xg - xg

V+ = St+ ±(Xbest -X)+ -,(Xrl_ r2

t= Xbest± (X-1 _) + (Xr3-r4

Vg+1 =xrl + u(xr2 - xr3) + Lr4 - r5

(1)

(2)

(3)

(4)
(5)

where xbest is the best member of the previous generation;g
,lt > 0 is a real parameter, called mutation constant, which
controls the amplification of the difference between two in-
dividuals so as to avoid the stagnation of the search process;
and rl,r2,r3,r4,r5 E {1,2,...,i-1,i+1,...,NP},
are random integers mutually different and not equal to the
running index i.

Trying to rationalize the above equations, we observe
that Equation (2) is similar to the crossover operator used
by some Genetic Algorithms and Equation (1) derives from
it, when the best member of the previous generation is em-
ployed. Equations (3), (4) and (5) are modifications ob-
tained by the combination of Equations (1) and (2). It is
clear that more such relations can be generated using the
above ones as building blocks. For example, the recently
proposed trigonometric mutation operator [8] performs mu-
tations with probability , according to the following equa-
tion:

Ug+1 (Xgxg+rx )/3 +(P2 P1)(Xrl_xr2)+
+ (P3-P2) (x2-_x3 ) + (Pl-p3) (xr3-xrl ), (6)

and with probability (1 - ,) mutations according to Equa-
tion (2), where M is a user defined parameter. The values of
Pm) m = {1, 2, 3} and p' are obtained through the follow-
ing equations:

Pi = (xg )I /P
P2 = f(xr2) /p'

p3 f(x3) /p', and

P = f(xr1)I + If(Xr2)1 + If(xr3)1
For the rest of the paper, we call DE1 the differential evolu-
tion algorithm that uses Equation (1) as the mutation opera-
tor, DE2 the algorithm that uses Equation (2), and so on.

The recombination operator is subsequently applied to
further increase the diversity of the mutant individuals.
To this end, the resulting individuals are combined with
other predetermined individuals, called the target individ-
uals. Specifically, for each component 1 (l = 1, 2, ... , n)
of the mutant individual vi+,, we randomly choose a real
number r in the interval [0, 1]. Then, we compare this num-
ber with the recombination constant, p. If r < p, then we
select, as the l-th component of the trial individual ug+j,
the l-th component of the mutant individual v +1. Other-
wise, the l-th component of the target vector xg l becomes
the l-th component of the trial vector. This operation yields
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the trial individual. Finally, the trial individual is accepted
for the next generation only if it reduces the value of the
objective function.

2.2 Exploration vs. Exploitation

The main problem when applying Evolutionary Algorithms
is to find a set of control parameters which optimally bal-
ances the exploration and the exploitation capabilities of the
algorithm. There is always a trade off between the efficient
exploration of the search space and its effective exploita-
tion. For example, if the recombination and mutation rates
are too high, much of the space will be explored, but there is
a high probability of losing good solutions. In extreme cases
the algorithm has difficulty to converge to the global min-
imum due to insufficient exploitation of the search space.
Fortunately, the convergence properties of the DE typically
do not heavily depend on its control parameters. However,
since not all search operators have the same impact on the
exploration of the search space, the choice of the optimal
mutation operator can be troublesome. To illustrate this
we utilize the following simple multimodal 2-dimensional
function:

f (xl, X2) = sin(xi)2 + sin(X2 )27
where (X1, X2) G R2. This function has an infinite number
of global minima in R2, with function value equal to zero,
at the points (tir, ir), where r, c Z. In the hypercube
[-5, 5]2 the function f has 9 global minima. In Figure 1 a
surface plot of the function f is exhibited.

2

1.5
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Figure 1: 3-D Plot of the sin(xi)2 + sin(x2)2 function

The six DE variants described above are applied to com-
pute the global minima of the objective function f. Exper-
imental results indicate that DE, exhibits very fast conver-
gence to one of the global minima of f. On the contrary,
DE2 explores a large portion of the search space before con-
verging to a solution. This fact is illustrated in Figures 2
and 3, where (for visualization purposes) a population con-
sisting of 1000 individuals is plotted after 1, 5, 10, 20 gen-
erations of DE, and DE2, respectively.
A closer look at Equations (1) and (2) reveals that DE,

uses the best individual as a starting point for the computa-
tion of the mutant vector, thus constantly pushing the popu-
lation closer to the location of the best computed point. On

the other hand, since DE2 utilizes three randomly chosen
individuals for the computation of the mutant one, its explo-
ration capability is greatly enhanced. However, it exhibits
lower convergence speed.
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Figure 2: DE1 population after 1, 5, 10, and 20 generations

4St t'.
+:jrir t*[ v h- .. -e .f s! +. i +;O rl > i<2 t . tqtqzr t wR erlu L- + ¢:ET !>,+W; ,x, 4w ti n, XwJ>+ X n MV-2 n - 1 . -z--r; t +9 sl I ;t <-. * <2 X; . t 2 1 #X ;r- - jjj *< 3a>qu,;u . .. * 1 j . r-- 4 > tf > :, h r iS X % r .-4 *-+; 0 i : t-, t ri dt i ffinr -;,; .. r;

4 2 o 2 4

4

4 .4.4 .

-4+ 44.v44

<..v

4 -2 0 2 4 4 0 2 4

Figure 3: DE2 population after 1, 5, 10, and 20 generations

The performance of algorithms DE3 and DE4 resembles

that of DE,, due to the use of the best individual. However,

DE3 and DE4 exhibited better exploration than DE,, since

they also incorporate randomly selected individuals. Algo-

rithms DE5 and DE6 use only randomly selected individ-

uals resulting in maximum exploration and the individuals

of their populations are simultaneously attracted by more

than one minimizers. In Figure 4 the population of the DE6

algorithm at different generations is plotted.

Figures 3 and 4 show that some mutation operators have

the tendency to concentrate subsets of the population in the

region of attraction of different minimizers of the objective
function. This observation motivated the incorporation of a

clustering algorithm to identify such subsets. Experiments
indicate that the k-windows clustering algorithm discovers
boxes capturing subpopulations of individuals located in the

region of a minimizer. Consequently, the subpopulations are

confined to search within each box. Thus, the optimization
of the objective function proceeds without affecting the dy-

namics of the DE algorithm. This process gives all the min-

ima existing in regions that the DE algorithm explored be-

fore the use of the clustering operator. It is obvious that DE
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Figure 4: DE6 population after 1, 5, 10, and 20 generations

algorithm must adequately explore the search space prior to
the call of the clustering operator. In the next section, for
completeness purposes, we give a brief description of the
k-windows clustering algorithm.

3 The Unsupervised k-windows Clustering Al-
gorithm

The recently proposed k-windows clustering algorithm
uses a windowing technique to discover the clusters present
in an n-dimensional dataset. More specifically, assuming
that the dataset lies in n dimensions, the algorithm initial-
izes a number of n-dimensional windows (boxes) over the
dataset. Subsequently, it iteratively perturbs these windows
using the movement and enlargement procedures, in order
to capture within each window patterns that belong to a sin-
gle cluster.

The movement and enlargement procedures are guided
by the points that lie within each window. As soon as the
movement and enlargement procedures do not significantly
increase the number of points within each window they ter-
minate. The final set of windows defines the clustering re-

sult of the algorithm.
A fundamental issue in cluster analysis, independent of

the particular clustering technique applied, is the determi-
nation of the number of clusters present in a dataset. For
instance well-known and widely used iterative techniques,
such as the k-means algorithm [12] as well as the fuzzy c-

means algorithm [5], require from the user to specify the
number of clusters present in the data prior to the execution
of the algorithm. On the other hand, the unsupervised k-
windows algorithm is capable to deternine the number of
clusters through a generalization of the original algorithm.

The unsupervised version of the k-windows algorithm
was used in this paper, since the number of minima of an

objective function is, in general, unknown. For a compre-

hensive description of the algorithm and an investigation of
its capability to automatically identify the number of clus-
ters present in a dataset, refer to [3, 4, 32, 36].

It must be noted that no objective function evaluations
are necessary during the operation of the k-windows clus-
tering algorithm. The computationally demanding step of

the k-windows clustering algorithm is the determination of
the points that lie in a specific window. This is the well stud-
ied orthogonal range search problem [23]. Numerous Com-
putational Geometry techniques have been proposed [2, 23]
to address this problem. All these techniques employ a pre-
processing stage at which they construct a data structure that
stores the patterns. This data structure allows them to an-
swer range queries fast. For applications of very high di-
mensionality, data structures like the Multidimensional Bi-
nary Tree [23] are more suitable. On the other hand, for
low dimensional data with a large number of points the ap-
proach of [2] seems more attractive. The k-windows clus-
tering algorithm has been successfully applied in numerous
applications including bioinformatics [33, 34], medical di-
agnosis [18, 35], and time series prediction [19].

4 The Proposed Clustering Operator

In this section, the clustering operator is described. The
proposed operator utilizes the unsupervised k-windows al-
gorithm and is called only once, after a user-defined number
of generations. In practice, a small number of generations is
sufficient for the DE algorithm to explore the search space.

Afterwards, the clusters of individuals are determined
and subpopulations are confined within each region. Each
subpopulation has NP/ individuals, where is the num-
ber of clusters found. If a region contains more individuals,
the clustering operator selects the best NP/ . On the other
hand, if less individuals exist the clustering operator initial-
izes new ones. The result of the algorithm is the location
of many minima in a single run, including the global one.
The modified DE algorithm using the clustering operator is
outlined in Algorithm 1.

DIFFERENTIAL EVOLUTION ALGORITHM MODEL
0: Initialize the population ofNP individuals
1: Evaluate the fitness of each individual
2: Repeat
3: Fori=ltoNP
4: Mutation(x,) -* Mutant'
5: Recombination(Mutant') -* Trialg
6: If f(Trial') < f(xg),
7: accept Trial' for the next generation
8: EndFor
9: Until the search space is sufficiently explored

10: Find clusters using the clustering operator
11: Forj= 1 to
12: Confine NP/ individuals within each cluster
13: Use the DE algorithm to compute the minimum
14: EndFor
15: Return all the computed minima

Algorithm 1: The proposed algorithm in pseudocode.

To better utilize the proposed approach it is advisable to
start the DE algorithm using a mutation operator that per-
mits adequate exploration of the search space (for example
DE2 or DE6). Once the clusters around the minima have
been determined, one can switch to a mutation operator that
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has faster convergence speed (for example DE1). Note that
instead of using again the DE algorithm in Steps 12 and 13
of Algorithm 1, any other minimization algorithm (even not
an evolutionary one) can be employed.

For very hard optimization problems, when the objective
function is defined in many dimensions and possesses mul-
titudes of local and global minima, the clustering operator
could be called more than once. The same might be true for
real-life optimization tasks, where the function value of the
global minimum is unknown. Each consecutive call of the
clustering operator will result in more promising subregions
of the original search space and will save unneeded objec-
tive function evaluations, since the subpopulations will stay
focused on regions containing desirable minima. For all the
experiments conducted in this paper, one call of the clus-
tering operator was sufficient for the algorithm to locate the
global, as well as, many local minima.

To determine the applicability and the efficiency of the
proposed clustering operator we incorporated it to the DE
algorithm and applied the new method to the multimodal
test function f, defined in Section 2.2, which posses 9
global minima in the hypercube [-5, 5] 2. The result of the
application of the clustering operator on the function f is
illustrated in Figure 5.
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Figure 5: Clusters and global minimizers discovered in f

It must be noted that a number of independent experi-
ments of the original DE algorithm gives no guarantee that
all global minimizers will be detected, since the algorithm
has no memory; no information concerning previously de-
tected minimizers is kept. We performed 100 independent
simulations, using each one of the six different mutation op-
erators described above and Table 1 exhibits the average
number of restarts needed for the DE algorithms to locate
all the global minimizers of f. The modified algorithm that
uses the clustering operator in most cases managed to find
all the minimizers of f in a single execution.

5 Experimental Results

We implemented and tested the proposed clustering opera-
tor on a number of hard optimization tasks and it exhibited
stable and robust performance. In this section we report the
experimental results from 4 well-known minimization test
functions. For each mutation operator we performed 100
independent experiments. A population consisting of 200

Original DE Algorithm DE with k-win
Min Mean Max Min Mean Max

DE1 54 110.2 203 1 17.5 66
DE2 57 119.1 294 1 1.0 1
DE3 60 133.0 239 1 1.1 7
DE4 52 114.9 212 1 1.0 1
DE5 49 106.7 245 1 1.0 1
DE6 62 111.4 221 1 1.0 1

Table 1: Restarts needed to locate all the minimizers of f

individuals was used and the mutation and recombination
constants had values p = 0.6 and p = 0.8, respectively.
The algorithm was terminated when the global minimum
was located. The proposed clustering operator was called
only once for the optimization of each of the four test func-
tion considered below, after 20,20, 10, and 200 generations,
respectively.

For each test function used, we present a table (Tables 2-
5) summarizing the average results for the 100 runs. The
first column of the table indicates the name of the algorithm
and the second column the average number of generations
needed for the algorithm to locate the global minimum with-
out the use of the clustering operator. The third and fourth
columns give the average number of minima discovered (in-
cluding the global one) and the corresponding average gen-
erations needed for the DE algorithm to locate the global
minimum using the clustering operator.

5.1 The Levy No.5 Test Function

The first test function considered is the Levy No. 5:

fX(7) - 1 2 + (xi + 1.42513)2 ± (X2 + 0.80032)2

wherexi e [-10, 10],i= 1,2,and 1and 2 aregivenby:

5

1 = icos[(i + 1)xi + i],

5

2 = jcos[(j+1)x22+].
j=l

There exist about 760 local minima and one global min-
imum with function value fJ = -176.1375 located at
7* = (-1.3068,-1.4248). The large number of local opti-
mizers makes it extremely difficult for any method to locate
the global minimizer.

w/o k-win operator with k-win operator
Generations Minima located Generations

DE1 33.21 5.97 34.36
DE2 70.66 20.52 54.26
DE3 64.09 11.96 39.77
DE4 65.11 20.22 50.25
DE5 133.01 22.70 70.85
DE6 64.89 19.20 50.24

Table 2: Average results for the Levy function
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The experimental results exhibited in Table 2 indicate
that generally the use of the clustering operator enhances
the performance of the DE algorithms. In detail, there is an
average acceleration of the algorithm's convergence speed
ranging from 30% to 80%. Additionally, as many as 20 min-
ima (including the global one) were simultaneously com-

puted. The only exception is DE1 where a slight increase
in the generations is observed (3%), but the modified algo-
rithm locates the global as well as 5 local minima.

To better demonstrate the ability of the proposed ap-

proach to locate many minima at once, independent runs

were conducted with the number of individuals in the pop-

ulation gradually increasing from 200 to 2000. In general, a

larger population explores better the search space and more
regions containing minima are located by the k-windows
operator. In Figure 6 we exhibit the detailed results. The
algorithm DE1 locates on average 10 minima regardless
of the size of its populations. On the contrary, the rest of
the algorithms locate more minima as their population is
increased. DE5 exhibited the best performance finding si-
multaneously up to 85 minima.
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Figure 6: The effect of the population size on the number of
located minima for the Levy test function

5.2 The Rastrigin Test Function

The Rastrigin test function is a typical example of a non-

linear multimodal function. This function was first pro-

posed by Rastrigin as a 2-dimensional function [38] and
is a fairly difficult problem due to its large number of local
minima. It is given by the following equation:

2

f2@() = (x2 - cos(18xi))
i=1

where xi E [-1,1], i = 1, 2. There exist 49 local minima.
Table 3 summarizes the average results from the 100 ex-

periments. The results for the Rastrigin function are similar
to the results for the Levy function. Faster convergence is
exhibited for all the DE algorithms (except DE1). The aver-

age increase in convergence speed was from 10% to 130%
and up to 20 minima were simultaneously located.

w/o k-win operator with k-win operator
Generations Minima located Generations

DE1 20.93 1.00 26.34
DE2 61.67 17.19 45.72
DE3 80.11 11.23 34.88
DE4 47.17 13.89 42.64
DE5 98.69 19.43 54.74
DE6 55.26 15.72 44.28

Table 3: Average results for the Rastrigin function

5.3 The Shekel's Foxholes Test Function

This is a 2-dimensional test function given by the following
equation:

1

f3( ) =0.002 + (x)'
where xi E [-65.536,65.536], i = 1,2 and

24

2?1i)0 1 + I+ I:i=_ (xi -ali)6

The parameters for this function are:

akl = {-32,-16,0,16,32}, where
k = {0, 1,2,3, 4} and akl = akmod 5,1

ak2 = {-32,-16,0,16,32}, where

k = {0,5,10,15,20} and

ak2 = ak+m,2, m = {1, 2,3,4} .

The global minimum of fi (-32, -32) = 0.998004. This is
a relatively easy test function and was included in the exper-

iments in order to investigate the performance of the clus-
tering operator when applied to problems for which the DE
algorithm requires a relatively small number of generations
to locate the global minimizer.

w/o k-win operator with k-win operator
Generations Minima located Generations

DE1 7.70 7.81 12.58
DE2 12.95 12.58 13.69
DE3 2.04 9.34 12.43
DE4 10.75 8.13 12.24
DE5 11.86 9.87 16.85
DE6 2.76 14.33 13.58

Table 4: Average results for the Shekel's Foxholes function

In Table 4 the average performance of the algorithms is
exhibited. It is clear that the use of the clustering opera-
tor results in the computation of many minima at once, but
the problem is so easy that there is always an increase in
the number of generations needed to locate the global mini-
mum. This fact indicates that the proposed approach is bet-
ter suited to difficult optimization tasks, when more than
one minimizer is sought.
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5.4 The 10-dimensional Griewangk Test Function

This test function is a generalization of the 2-dimensional
Griewangk function, which is known to be relatively diffi-
cult to minimize and is given by the following equation:

1 10 10
X

f4(Y)= 40 EZx2-flcos +1,

where xi E [-10,10], i = 1, 2. This test function is riddled
with local minima. The global minimum of the function is
f4(0, ... ,0) = 0.

w/o k-win operator with k-win operator
Generations Minima located Generations

DE1 302.34 14.19 415.55
DE2 873.93 8.58 346.31
DE3 799.06 23.36 439.82
DE4 1280.42 4.40 356.52
DE5 1816.09 1.65 571.30
DE6 619.43 18.09 328.31

Table 5: Average results for the Griewangk function

The experimental results illustrated in Table 5 show that
the clustering operator greatly accelerates the DE algo-
rithms ranging from 80% to 260%. Again, DE1 is the ex-
ception; although on average 14 minima are located the pro-
posed algorithm requires 27% additional generations.

6 Conclusion

In this work we propose a novel clustering operator and in-
vestigate its impact on the performance of the Differential
Evolution optimization algorithm. This operator uses the
recently proposed unsupervised k-windows clustering algo-
rithm. The k-windows clustering algorithm uses previously
computed pieces of information in an attempt to discover re-
gions containing groups of individuals attracted by different
minima.

Experiments show that the proposed approach greatly
accelerates the convergence speed of the DE algorithms and
that in addition to the global minimum is capable to locate
simultaneously many local minima without extra function
evaluations. To this end, the use of the proposed clustering
operator is always suggested. In brief, the clustering opera-
tor has the following advantages:

1. locates local minima with relatively low function
value, in addition to the global ones,

2. in general, fewer generations are required for the DE
algorithm to converge,

3. there is no need for additional function evaluations,
4. utilizes the range search algorithm for fast and reli-

able execution,
5. its parallel implementation is straightforward [7],
6. is better suited to difficult high-dimensional multi-

modal objective functions.

In a future correspondence, we will present an adaptive
scheme, based on the average movement of each individ-
ual, for the automatic call of the clustering operator. This

scheme will ensure that the search space is sufficiently ex-
plored. We also intend to investigate the parallel imple-
mentation of the proposed approach, as well as its perfor-
mance on difficult high-dimensional real-life problems en-
countered in bioinformatics, medical applications and neu-
ral network training.
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